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Abstract: The price people pay for low energy efficiency includes not only high manufacturing costs,
but also public health. With technological innovation as the driving factor for improving energy
efficiency, this study uses two-stage dynamic undesirable data envelopment analysis (TDU-DEA)
under variable return to scale to evaluate energy and health efficiencies with inclusion of technological
innovation in 30 provinces of China over the period 2013–2016. The results show that the mean overall
efficiencies and ranks in the eastern region are significantly higher than those in the non-eastern
region, with or without the inclusion of technological innovations, and that energy efficiency in
most provinces is higher than health efficiency. The average technological innovation efficiencies for
energy conservation are higher than those for respiratory medical treatment. The former gap between
the eastern region and non-east region is also smaller than the latter. Lastly, regions with the best
technological innovation efficiencies are Beijing, Shanghai, Guangdong, Fujian, Hainan, Hebei, Inner
Mongolia, Ningxia, Qinghai, Shandong, Shanxi, Tianjin, Xinjiang, and Yunnan.

Keywords: SMB VRS two-stage DEA; energy efficiency; health efficiency; technological innovation

1. Introduction

Both higher manufacturing cost and more health treatment expenditure are conditions that people
pay for lower energy efficiency. With a huge consumption of fossil fuels, the economic growth rate
of China has been above 9% for nearly forty years. At the same time, the lung cancer mortality rate
in China has increased from 7.09 per 100,000 persons in 1975 to 30.83 in the latest census in 2005,
although mortality rates of gastric cancer and liver cancer have not risen as much. Among all diseases
leading to neonatal death, that of pneumonia is at the top [1]. Undoubtedly, air pollution caused by
the combustion of fossil fuels like coal and oil account for some or most of these phenomena.

In 2013, the Helsinki statement on health in all policies proposed a new cross-sectional public
policy framework. In that same year the State Council of China issued its 12th five-year plan for energy
development, implementing many energy policies such as the price reforms of natural gas, electricity,
etc. We thus analyze jointly provincial energy and health efficiencies with the inclusion of technological
innovation in China during 2013–2016 to provide evidence on the associations between energy, air
pollution, health, and technological innovation.

As renewable energy cannot replace traditional fossil fuels in a short time, energy efficiency has
attracted a lot of scholars’ attention. Some researchers focus on measuring energy efficiency [2–10],
while others target the influence factors of energy efficiency [11–15]. In the latter field, most researchers
emphasize the effect of technological innovation on energy efficiency [16–18]. In fact, a positive
influence of technological innovation on energy efficiency is found within different industries [19–21].
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The effects of pollutants on human health have widely appeared in the literature, especially the
relationship between air pollutants, such as carbon dioxide, sulfur dioxide, dust, nitrogen oxides, PM10
and PM2.5, and respiratory disease [22–30]. PM 2.5 denotes PM2.5 particles, which are air pollutants
with a diameter of 2.5 micrometers or less. PM 10 denotes PM10 particles, which are air pollutants
with a diameter of 10 micrometers or less. These particles generally come from activities that burn
fossil fuels. Many empirical researchers have looked at the impact of air pollution on human health
from various main cities, provinces, and regions in China [31–35]. Some scholars find that low energy
efficiency in China is related to high air pollution, which is harmful to public health [36].

Data Envelopment Analysis (DEA) has been adopted widely to analyze energy efficiency and
health efficiency. Tone [37], Fare et al. [38], and Tone and Tsutsui [39,40] used a two-stage DEA
or Network slacks-Based Measure to explore the efficiency in the production stage and pollution
treatment stage.

There are, however, less studies jointly focused on the relationships between energy, environmental
pollution, health, and technological innovation. In this paper, we add stock of energy conservation
knowledge as input variables like labor and energy consumption in the production stage (stage 1)
and stock of respiratory medical treatment knowledge in the health treatment stage (stage 2). The
undesirable intermediate outputs (CO2, PM2.5, and PM10) in stage 1 are regarded as inputs in stage 2.
Mortality rate and respiratory disease rate are regarded as outputs in stage 2. Thus, the relationship
between energy, environmental pollution, health, and technological innovation are constructed using a
two-stage DEA model.

This paper provides two contributions. It is the first empirical study on energy and health
efficiencies with the inclusion of technological innovation. Through International Patent Classification
(IPC) codes, we construct patent data on energy conservation and respiratory medical treatment and
then construct stock of knowledge by simultaneously considering two issues of decay and diffusion of
a patent. Technological innovation is the driving force for technology progress, which is the source of
efficiency improvement, and is regarded as input in both the production stage and health treatment
stage in a two-stage DEA model. Secondly, we extend the two-stage dynamic undesirable DEA
under constant return to scale (CRS) to variable return to scale (VRS). Most environmental pollution
and energy efficiency analyses are usually conducted under CRS, ignoring the role of knowledge.
According to the New Growth theory (Romer, 1986 [41]), knowledge, unlike land and capital, can
create increasing profit. The spillover effects of technological innovations enhance aggregate TFP in
the long-run (Chen and Wemy, 2015 [42]). We take knowledge as an input variable. Therefore, the VRS
research framework is used to evaluate energy, environmental, and health efficiencies.

The remainder of this paper is organized as follows. Section 2 gives the literature review. Section 3
describes the research method. Section 4 presents the empirical results and discussion. Section 5 offers
the conclusions.

2. Literature Review

There is an abundant amount of literature on energy environmental problems and health issues.
Most studies take them as two separate issues.

Research on energy environment issues has typically focused on energy and environmental
efficiencies in recent years. Using the DEA approach, some studies have noted that energy and
emission efficiencies in European countries are higher than that in Asian countries (Lu et al. [2]; Wang
et al. [3]; Guo et al. [4]). Song et al. [5] found that BRICS (Brazil, Russia, India, China, South Africa) are
less energy efficient, but are improving fast. There are many studies on energy efficiency in China.
Some scholars showed energy and emission efficiencies in its eastern region are higher than that in the
central and western regions by DEA (Hu et al. [6]; Wang et al. [7]; Yao et al. [8]; Meng et al. [9]). Some
have presented that the gap has widened rapidly since 2001 (Wang et al. [10]).

The literature has further explored the influencing factors of energy efficiency. Some emphasized
that economic development has a positive relationship with energy efficiency (Qin et al. [11]; Wang
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et al. [12]; Du et al. [13]). Some explored the influence of market-oriented reform, especially the
promotion of a factor market, on energy and emission efficiencies (Lin and Du [14]). Some studied
energy efficiency from the aspect of a circular economy (Halkos et al. [15]), while others focused on
the important role of technical progress and technological innovation on energy efficiency (Feng et
al. [16]; Jaffe et al. [17] Wang et al. [18]). Still, others examined the positive influence of technological
innovation on energy efficiency in different industries, such as the air conditioning industry (Newell et
al. [19]) and automotive industry (Crabb and Johnson [20]; Hascic et al. [21]).

Studies on environmental health issues have focused on the influence of environmental pollution
on public health. Scholars found that air pollution (particulate matter) affects asthma and lung
functions (Knibbs et al. [22]; Dauchet et al. [23]) and increases the risks of many diseases. These
diseases are lung carcinogenesis (Santibanez-Andrade et al. [24]), arterial stiffness (Ljungman et al. [25]),
Parkinson’s disease (Kasdagli et al. [26]), asthma (Khreis et al. [27]), hypertension (Kim et al. [28]),
and communicable diseases (Landrigan et al. [29]). Air pollution increases the weekly morbidity
in California by 0.5–4.6% (Ngo et al. [30]). Some scholars have explored air pollution in provinces
and cities of China, finding that it relates to 6.92% of China’s total deaths in 2015 (Maji et al. [31]),
respiratory disease (Chen et al. [32]; Chen et al. [33]), hypertension (Yang et al. [34]), and public health
(Wang et al. [35]).

Chen et al. [36] studied jointly the energy and health efficiencies in China by a two-stage dynamic
undesirable DEA for the first time. Compared to Chen et al. [36], who employed media reports as
the input variable in DEA, we provide additional evidence on the energy and health efficiencies in
China by including technological innovations. Moreover, different from Chen et al. [36], who used
the DEA model under constant returns to scale, we employ the DEA model under variable returns to
scale. There is no literature studying energy and health efficiencies with the inclusion of technological
innovation. This paper fills this research gap.

3. Research Method

Tone [37] proposed a slack model that uses Slack-Based measure (SBM), taking into account the
slack between input and output terms and presenting SBM efficiencies in terms of a non-radial variable
estimation with an efficiency value between 0 and 1. In 2007, Färe, Grosskopf, and Whittaker proposed
the network data envelopment analysis (NDEA), which recognized that the production process is
composed of many sub-production technologies (Sub-DMU), and then used a traditional model to find
the best solution. Following Färe et al. [38], Tone and Tsutsui [39] proposed a weighted slack-based
measures NDEA model in 2009, in which the decision-making unit linkages between the divisions are
used as the foundation for analyzing the network DEA model. In 2013, Tone and Tsutsui [40] set up
a weighted slack-based measures dynamic network DEA model, in which the decision-making unit
linkages are used as the basis for analyzing the network DEA model with each division being seen as a
sub-DMU. Since this study considers undesirable outputs in the dynamic network DEA model, we can
modify dynamic network DEA to be two-stage dynamic undesirable data envelopment analysis.

Following Chen et al. [36], our study uses two-stage dynamic undesirable data envelopment
analysis (TDU-DEA) to evaluate the energy efficiency and health efficiency with the inclusion of
technological innovation in 30 provinces of China over the period 2013–2016, in which there are
two stages. The first-stage inputs are labor, energy consumption, and stock of energy conservation
knowledge, the output is gross domestic product (GDP), and the link variables to the second stage
are PM2.5, PM10, and CO2 emissions. The second-stage inputs are stock of energy conservation
knowledge and stock of respiratory medical treatment knowledge, the outputs are mortality rate and
respiratory disease rate, and the carryover variable is fixed assets investment. This paper focuses on
the association of technological innovations with energy and health efficiencies. Based on the New
Growth Theory (Romer [41]), we choose variable returns-to-scale (VRS) DEA and designed two-stage
dynamic undesirable data envelopment analysis (TDU-DEA) under VRS as follows.
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Suppose there are n DMUs (j = 1, . . . ,n), with each having k divisions (k = 1, . . . ,K), and T time
periods (t = 1, . . . ,T). Each DMU has an input and output at time period t and a carryover (link) to the
next t+1 time period.

Set mk and rk to represent the inputs and outputs in each division K, with (k,h)i representing
divisions k to h and Lhk being the k and h division set. The inputs, outputs, links, and carryover
definitions are outlined in the following paragraphs. The following is the non-oriented model.

(a) Objective Function

Overall Efficiency:
Subject to:
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(b3) Division period efficiency:

ρ∗0 = min
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From the above, the overall efficiency, period efficiency, division efficiency, and division period
efficiency are obtained for the 30 provinces from 2013–2016.

Our study follows Hu and Wang’s [6] total-factor energy efficiency index to overcome any
possible bias in the traditional energy efficiency indicator. There are eleven key features of this present
study: labor efficiency, energy consumption efficiency, GDP efficiency, CO2 efficiency, PM2.5 efficiency,
PM10 efficiency, medical institution assets efficiency, mortality rate efficiency, respiratory disease rate
efficiency, technological innovation efficiency (TIE) for energy conservation, and TIE for respiratory
medical treatment. In our study, “i” represents area and “t” represents time. The eleven efficiency
models are defined in the following:

Labor efficiency =
Target Labor input (i, t)
Actual Labor input (i, t)

(13)

Energy consumption efficiency =
Target Energy consumption input (i, t)
Actual Energy consumption input (i, t)

(14)

TIE for energy conservation =
Target Energy conservation knowledge input (i, t)
Actual Energy conservation knowledge input (i, t)

(15)

GDP efficiency =
Actual GDP desirable output (i, t)
Target GDP desirable output (i, t)

(16)

CO2 efficiency =
Target CO2 Undesirable output (i, t)

Actual CO2Undesirable output (i, t)
(17)

PM2.5 efficiency =
Target Pm2.5 Undesirable output (i, t)
Actual Pm2.5 Undesirable output (i, t)

(18)

PM10 efficiency =
Target Pm10 Undesirable output (i, t)
Actual Pm10 Undesirable output (i, t)

(19)

Medical institution assets efficiency =
Target Medical institution assets input (i, t)
Actual Medical institution assets input (i, t)

(20)

TIE for respiratory medical treatment =
Target Respiratory medical treatment knowledge input (i,t)
Actual Respiratory medical treatment knowledge input (i,t) (21)

Mortality rate efficiency =
Target Mortality rate output (i, t)
Actual Mortality rate output (i, t)

(22)

Respiratory disease rate efficiency =
Target Respiratory disease rate output (i, t)
Actual Respiratory disease rate output (i, t)

(23)

If the target labor, energy consumption, energy conservation knowledge, medical institution
assets, and respiratory medical treatment knowledge inputs equal the actual inputs, then they all equal
1, indicating overall efficiency. If a target input is less than the actual input, then the efficiency is less
than 1, indicating overall inefficiency.

If the target undesirable outputs (CO2, PM2.5, PM10, mortality rate, and respiratory disease rate)
equal the actual undesirable outputs, then their efficiencies all equal 1, indicating overall efficiency. If a
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target undesirable output is less than the actual undesirable output, then its efficiency is less than 1,
indicating overall inefficiency.

If the target GDP desirable output is equal to the actual GDP desirable output, then the GDP
efficiency equals 1, indicating overall efficiency. If the actual GDP desirable output is less than the
target GDP desirable output, then the GDP efficiency is less than 1, indicating overall inefficiency.

Figure 1 reveals the framework of the modified two-stage dynamic undesirable data envelopment
DEA model of inter-temporal efficiency measurement and variables in this study.
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Figure 1. Two-stage undesirable dynamic data envelopment analysis (DEA) model.

4. Empirical Study

4.1. Data Sources and Description

This study explores the energy and health efficiencies with the inclusion of technological innovation
in 30 provinces of China from 2013 to 2016. We employ patent data from the National Intellectual
Property Administration to construct the stock of technological innovation. Other data, if not mentioned
specially, are collected from the Statistical Yearbook of China. All details are as follows.

In this study, the input and output variables are shown in Table 1. The first stage is production
with three input variables and one output variable. The second stage is health treatment with one
input variable and two output variables.
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Table 1. Input and output variables.

Input Variables Output Variables Link Carry-Over

Stage 1

Labor

GDP

CO2

Fixed assets

Energy consumption PM2.5
Stock of energy conservation knowledge PM10

Stage 2
Medical institution assets Mortality rate

Stock of respiratory medical treatment
knowledge

Respiratory disease
rate

4.1.1. First Stage: Production

Input Variables

Labor: the number of employees in each province at the end of each year. Unit: 10,000 persons.
Energy consumption: energy consumption in each province each year. Unit: 10,000 tons standard

coal equivalent.
Stock of energy conservation knowledge: the knowledge stock of energy conservation calculated

from energy conservation patent.
Some scholars use research and development (R&D) investment data to calculate the stock of

knowledge by the perpetual inventory method. Two disadvantages in this method should be noted.
Firstly, R&D investment stands for the input of technology innovation and not technology itself. Thus,
the connection between R&D investment and the knowledge stock is not as close as a patent. Secondly,
knowledge stock is different from capital stock. The maximum value of a new invention is not in the
current year when the invention is created, because it takes time for the new knowledge to spread
widely throughout the economy. The knowledge embodied in a patent also becomes obsolete over time,
because new and better inventions are created quickly and frequently. Considering these two issues of
decay and diffusion of a patent and following Popp [43–45], the stock of knowledge is measured by:

Kt =
∞∑

s=0

e−β1(s)
(
1− e−β2(s+1)

)
PATt−s (24)

where β1 is a rate of decay to capture the obsolescence of old patents, and β2 is a rate of diffusion to
capture the spread of knowledge. The rate of diffusion is multiplied by s + 1 to avoid being zero in the
current year. According to Popp [43], the decay rate and the diffusion rate are appointed to be 0.1 and
0.25, respectively, implying that the maximum effect of a new patent on the knowledge stock occurs
about four years after it is granted, as commonly found in the literature on technological innovation
(for example, Aghion [46]; Griliches [47]).

It is a vital issue to define the IPC codes for energy conservation technology. According to
Green Inventory published by WIPO in 2010, we define IPC codes for energy conservation technology
and collect patent panel data from the National Intellectual Property Administration, PRC (CNIPA)
database. We use annual applications of inventions in each province from 2000 to 2016 to construct the
stock of knowledge.

Output Variables

GDP: GDP in each province each year. Unit: 100 million Chinese yuan(CNY).

4.1.2. Second Stage: Health Treatment

Input Variables

Medical institution assets: capital stock of medical institutions in each province at the end of each
year. Unit: 100 million Chinese yuan (CNY).
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Stock of respiratory medical treatment knowledge: the knowledge stock of respiratory medical
treatment is calculated by using patent data. The calculation method is the same as knowledge stock
of energy conservation. A patent of respiratory medical treatment technology is defined as the patents
in A61 in the IPC codes with key words asthma, bronchitis, chronic cough, and respiratory disease.
The data source is the CNIPA database.

Output Variables

Mortality rate: mortality rate in each province each year. Unit: percent.
Respiratory disease rate: number of respiratory patients per 100,000 people. Unit: person.

4.1.3. Variables Linking Production Stage and Health Treatment Stage

CO2: carbon dioxide emissions in each province each year. Unit: ton.
PM2.5: the measured PM2.5 in each province each year. Unit: micrograms per cubic meter.
PM10: the measured PM10 in each province each year. Unit: micrograms per cubic meter.

4.1.4. Carryover

Fixed assets: capital stock in each province is calculated by the perpetual inventory method, using
fixed assets investment in each province each year. Unit: 100 million RMB.

4.2. Input and Output Variables’ Statistical Analysis

Figure 2 illustrates a statistical picture of the overall variables in stage 1 and stage 2 of the 30
provinces from 2013 to 2016. The average values of labor (L), CO2, and mortality rate (MR) do not show
an obvious change. The average values of medical institution assets(MIA), knowledge stock of energy
conservation(ECT), knowledge stock of respiratory medical treatment(RMT), energy consumption
(EC) and GDP increase year after year. The average values of PM2.5 and PM10 decrease year by year.
The average values of respiratory disease rate (RDR) move upward first and downward after 2014.
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Figure 2. Statistics of input and output variables.

The maximum values of PM2.5 and PM10 decrease significantly. The maximum values of other
variables except labor (L) and mortality rate (MR) increase year by year. The minimum values of all
variables do not change too much except for respiratory disease rate.

4.3. Overall Efficiencies and Ranking with and without Technological Innovation

Table 2 shows the overall efficiencies and ranking of the 30 provinces with and without technologies
as input variables. According to economic level and geographic location, we divide the 30 provinces into
two parts: eastern region and non-eastern region. The eastern coastal provinces in China have higher
economic levels than the non-east region provinces do. The mean of overall efficiencies and ranks with
and without technologies in the eastern region are significantly higher than those in the non-eastern
region. However, the improvement of efficiency with the inclusion of technological innovations in the
east region is lower than that of the non-east region. Relative to excluding technological innovations,
the mean overall efficiency score with the inclusion of technological innovations in the eastern region
increases slightly from 0.8237 to 0.8898. The mean overall efficiency in the non-eastern region increases
from 0.6340 to 0.8037. The mean of the ranking improvement in the non-eastern region also rises
higher than that in the eastern region. This indicates the improvements of overall energy and health
efficiencies in the economically backward area are higher when including technological innovations.

Table 2. Overall efficiency scores and ranking with and without innovations.

Region DMU Score
(w)

Rank
(w)

Score
(w/o)

Rank
(w/o)

Rank
Improvement

non-east Anhui 0.6867 25 0.6391 18 −7
east Beijing 1 1 1 1 0
east Fujian 1 1 1 1 0

non-east Gansu 0.7328 24 0.5433 25 1
east Guangdong 1 1 1 1 0
east Guangxi 0.7804 22 0.5561 23 1
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Table 2. Cont.

Region DMU Score
(w)

Rank
(w)

Score
(w/o)

Rank
(w/o)

Rank
Improvement

non-east Guizhou 0.8152 21 0.4625 29 8
east Hainan 1 1 1 1 0
east Hebei 1 1 0.5440 24 23

non-east Henan 0.9419 16 0.4506 30 14
non-east Heilongjiang 0.5504 29 0.4928 28 −1
non-east Hubei 0.8291 20 0.5278 27 7
non-east Hunan 0.6419 27 0.6170 19 -8
non-east Jilin 0.9451 15 0.8077 13 −2

east Jiangsu 0.8941 18 0.9051 11 −7
non-east Jiangxi 0.8503 19 0.6461 17 −2

east Liaoning 0.5080 30 0.5574 21 −9

non-east Inner
Mongolia 1 1 1 1 0

non-east Ningxia 1 1 1 1 0
non-east Qinghai 1 1 1 1 0

east Shandong 1 1 1 1 0
non-east Shanxi 1 1 0.5566 22 21
non-east Shaanxi 0.5740 28 0.6162 20 −8

east Shanghai 1 1 1 1 0
non-east Sichuan 0.7762 23 0.5358 26 3

east Tianjin 1 1 1 1 0
non-east Xinjiang 1 1 0.8260 12 11
non-east Yunnan 1 1 0.7229 15 14

east Zhejiang 0.6783 26 0.6585 16 −10
non-east Chongqing 0.9149 17 0.7749 14 −3

Average of the east 0.9051 8.6667 0.8517 8.5 −0.1667

Average of the non-east 0.8476 15 0.6788 16.6667 2.6667

MEAN 0.8706 0.7480

4.4. Annual Overall Efficiencies

Table 3 shows the overall efficiencies in each province from 2013 to 2016. The average efficiencies
of all DMUs are increasing slowly. Some DMUs’ efficiencies fluctuate intensely. The average annual
efficiencies in the eastern region are higher than those in the non-eastern region in all four years.
Those on the efficiency frontier in all four years are Beijing, Fujian, Guangdong, Hainan, Hebei,
Inner Mongolia, Ningxia, Qinghai, Shandong, Shanxi, Shanghai, Tianjin, and Yunnan. The annual
efficiencies in Guangxi and Chongqing increase from about 0.8 in 2013 to 1 in 2016. The efficiencies
in Henan increase from 0.87 in 2013 to 1 after 2015. The overall efficiencies in Guizhou, Jiangxi, and
Zhejiang improve in the four years, but still have not reached the frontier yet. This indicates the overall
efficiencies in most provinces have improved. However, the overall efficiency in Sichuan decreases
from 1 in 2013 to 0.78 in 2016. The overall efficiencies in Liaoning and Heilongjiang are around 0.5 in
all four years. This means these two provinces lag behind in overall efficiency and show no signs of
improvement. This also coincide with the economic slowdown in these two provinces.
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Table 3. Overall efficiency score with innovation during 2013–2016.

Region DMU 2013 2014 2015 2016 MEAN

non-east Anhui 0.6996 0.6942 0.6937 0.6764 0.6910
east Beijing 1 1 1 1 1
east Fujian 1 1 1 1 1

non-east Gansu 0.6253 0.6822 0.9370 0.7004 0.7362
east Guangdong 1 1 1 1 1
east Guangxi 0.6299 0.6934 0.8313 1 0.7886

non-east Guizhou 0.5833 1 1 0.7586 0.8355
east Hainan 1 1 1 1 1
east Hebei 1 1 1 1 1

non-east Henan 1 0.7903 1 1 0.9354
non-east Heilongjiang 0.5236 0.5803 0.5959 0.5281 0.5570
non-east Hubei 0.7722 0.8142 1 0.7489 0.8338
non-east Hunan 0.6060 0.6561 0.7054 0.6709 0.6596
non-east Jilin 1 0.7965 1 1 0.9491

east Jiangsu 1 1 0.6075 1 0.9019
non-east Jiangxi 0.7071 0.7501 0.9688 1 0.8565

east Liaoning 0.5460 0.5404 0.5575 0.4521 0.5240

non-east Inner
Mongolia 1 1 1 1 1

non-east Ningxia 1 1 1 1 1
non-east Qinghai 1 1 1 1 1

east Shandong 1 1 1 1 1
non-east Shanxi 1 1 1 1 1
non-east Shaanxi 0.5876 0.6255 0.5741 0.5329 0.5800

east Shanghai 1 1 1 1 1
non-east Sichuan 1 1 0.6030 0.6187 0.8054

east Tianjin 1 1 1 1 1
non-east Xinjiang 1 1 1 1 1
non-east Yunnan 1 1 1 1 1

east Zhejiang 0.6469 0.6077 0.6230 0.8497 0.6818
non-east Chongqing 0.6797 1 1 1 0.9199

Average of the east 0.9019 0.9035 0.8850 0.9418 0.9080
Average of the non-east 0.8214 0.8550 0.8932 0.8464 0.8540

MEAN 0.8536 0.8744 0.8899 0.8846 0.8756

4.5. Two-Stage Dynamic Efficiencies
Table 4 shows the energy and health efficiencies in each stage from 2013 to 2016. The results

present a rich diversity of performance in all DMUs. The average efficiencies in the production stage
(stage 1) are higher than those in the health treatment stage (stage 2). There are 14 provinces whose
energy and health efficiencies equal 1 in all four years: Beijing, Fujian, Guangdong, Hainan, Hebei,
Inner Mongolia, Ningxia, Qinghai, Shandong, Shanxi, Shanghai, Tianjin, Xinjiang, and Yunnan. Some
provinces have efficiencies of 1 in the first stage in all four years, but have efficiency loss in the second
stage, such as Guangxi, Henan, Hubei, Hunan, Jiangxi, Zhejiang, and Chongqing. This indicates these
provinces should focus on improving health efficiency relative to energy efficiency. The efficiencies
in Guangxi, Henan, and Chongqing in the second stage increase quickly and equal 1 in 2016. The
efficiencies in Hunan, Jiangxi, and Zhejiang in the second stage increase slowly and do not achieve
efficiencies of 1 until 2016. This means the health efficiency in these six provinces has improved. Hubei
is the only one whose efficiencies decrease in the second stage, with efficiencies of 1 in the first stage.
This indicates Hubei is on the production frontier but is facing public health problems. Therefore,
Hubei has a significant need to improve its health efficiency. The energy efficiencies in Heilongjiang
and Liaoning are above 0.7 for most years, but their health efficiencies are around 0.3. This indicates
that low health efficiency is the root of low overall efficiency in these two provinces.
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For all DMUs, both the energy and health efficiencies increase on average during 2013–2016,
although some fall back in certain years. The average energy and health efficiencies in the eastern
region are both higher than those in the non-eastern region in all four years. The efficiency gap between
the eastern and non-eastern regions in the first stage is small. The efficiency gap between the eastern
and non-eastern regions in the second stage rises from 0.08 to 0.12 during 2013–2016, because the
average efficiency score in the non-eastern region in the second stage has no obvious improvement
relative to the eastern region. Therefore, the economically backward area should take more measures
on improving health efficiency relative to energy efficiency.

Table 4. Two-stage dynamic DEA efficiency scores.

DMU 2013
Stage1

2013
stage2

2014
Stage1

2014
stage2

2015
Stage1

2015
stage2

2016
Stage1

2016
stage2

Anhui 0.9048 0.4945 0.8814 0.5070 0.8295 0.5579 0.8204 0.5324
Beijing 1 1 1 1 1 1 1 1
Fujian 1 1 1 1 1 1 1 1
Gansu 0.7265 0.5242 0.7093 0.6550 0.8740 1 0.7119 0.6889

Guangdong 1 1 1 1 1 1 1 1
Guangxi 1 0.2598 1 0.3869 1 0.6626 1 1
Guizhou 0.7222 0.4445 1 1 1 1 1 0.5171
Hainan 1 1 1 1 1 1 1 1
Hebei 1 1 1 1 1 1 1 1
Henan 1 1 1 0.5806 1 1 1 1

Heilongjiang 0.7510 0.2962 0.7492 0.4113 0.8109 0.3809 0.7105 0.3456
Hubei 1 0.5444 1 0. 6284 1 1 1 0.4979
Hunan 1 0.2120 1 0.3123 1 0.4109 1 0.3419

Jilin 1 1 1 0.5930 1 1 1 1
Jiangsu 1 1 1 1 1 0.2150 1 1
Jiangxi 1 0.4142 1 0.5002 1 0.9376 1 1

Liaoning 0.7780 0.3140 0.7971 0.2837 0.8390 0.2762 0.6181 0.2861
Inner

Mongolia 1 1 1 1 1 1 1 1

Ningxia 1 1 1 1 1 1 1 1
Qinghai 1 1 1 1 1 1 1 1

Shandong 1 1 1 1 1 1 1 1
Shanxi 1 1 1 1 1 1 1 1

Shaanxi 0.7921 0.3832 0.7626 0.4884 0.7787 0.3694 0.7650 0.3008
Shanghai 1 1 1 1 1 1 1 1
Sichuan 1 1 1 1 1 0.2061 1 0.2373
Tianjin 1 1 1 1 1 1 1 1

Xinjiang 1 1 1 1 1 1 1 1
Yunnan 1 1 1 1 1 1 1 1
Zhejiang 1 0.2939 1 0.2154 1 0.2460 1 0.6994

Chongqing 0.9700 0.3894 1 1 1 1 1 1

MEAN 0.9548 0.7523 0.9633 0.7854 0.9711 0.8088 0.9542 0.8149
EAST 0.9815 0.8223 0.9831 0.8238 0.9866 0.7833 0.9682 0.9155

NONEAST 0.9370 0.7057 0.9501 0.7598 0.9607 0.8257 0.9449 0.7479

4.6. Input Variables’ Efficiencies

Table 5 shows the efficiencies for input variables. They are labor, energy consumption, and
medical institution assets. Fourteen DMUs maintain the efficiency frontier for the three input variables
from 2013 to 2016: Beijing, Fujian, Guangdong, Hainan, Hebei, Inner Mongolia, Ningxia, Qinghai,
Shandong, Shanxi, Shanghai, Tianjin, Xinjiang, and Yunnan. This means almost half the provinces in
China are at the efficiency frontier for the three input variables. The efficiencies for labor and energy
consumption in Guangxi, Henan, Hubei, Hunan, Jilin, Jiangsu, Jiangxi, Sichuan, and Zhejiang equal 1
in all four years. Gansu, Heilongjiang, and Shaanxi have slowly improved their efficiencies for labor
and energy consumption but are still below the average in 2016. These three provinces lag behind and
urgently need to improve their efficiencies for labor and energy consumption. Liaoning is the only
province whose efficiencies for labor and energy consumption fall quite distinctly.
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Table 5. Labor (L), energy consumption (EC), and medical institution assets (MIA) efficiency scores.

NO DMU 2013L 2014L 2015L 2016L 2013EC 2014EC 2015EC 2016EC 2013MIA 2014MIA 2015MIA 2016MIA

1 Anhui 0.9706 0.9089 0.8722 1 0.9481 1 1 1 0.4754 0.3981 0.4357 0.4296
2 Beijing 1 1 1 1 1 1 1 1 1 1 1 1
3 Fujian 1 1 1 1 1 1 1 1 1 1 1 1
4 Gansu 0.7358 0.6651 0.7218 0.6697 0.8204 0.7875 1 0.8293 0.4767 0.6249 1 0.5718
5 Guangdong 1 1 1 1 1 1 1 1 1 1 1 1
6 Guangxi 1 1 1 1 1 1 1 1 0.2378 0.3231 0.5654 1
7 Guizhou 0.7551 1 1 1 0.5197 1 1 1 0.3958 1 1 0.6652
8 Hainan 1 1 1 1 1 1 1 1 1 1 1 1
9 Hebei 1 1 1 1 1 1 1 1 1 1 1 1
10 Henan 1 1 1 1 1 1 1 1 1 0.5454 1 1
11 Heilongjiang 0.7890 0.7413 0.7595 0.8073 0.7491 0.8025 0.8067 0.6795 0.3078 0.3858 0.4085 0.3913
12 Hubei 1 1 1 1 1 1 1 1 0.3678 0.3823 1 0.4822
13 Hunan 1 1 1 1 1 1 1 1 0.2797 0.3021 0.3914 0.4594
14 Jilin 1 1 1 1 1 1 1 1 1 0.6866 1 1
15 Jiangsu 1 1 1 1 1 1 1 1 1 1 0.3236 1
16 Jiangxi 1 1 1 1 1 1 1 1 0.5220 0.5598 0.8752 1
17 Liaoning 0.9693 0.9474 0.9304 0.7322 0.7743 0.8331 0.8349 0.7605 0.4911 0.4742 0.4976 0.5233
18 Inner Mongolia 1 1 1 1 1 1 1 1 1 1 1 1
19 Ningxia 1 1 1 1 1 1 1 1 1 1 1 1
20 Qinghai 1 1 1 1 1 1 1 1 1 1 1 1
21 Shandong 1 1 1 1 1 1 1 1 1 1 1 1
22 Shanxi 1 1 1 1 1 1 1 1 1 1 1 1
23 Shaanxi 0.8259 0.9069 0.7561 0.8638 0.9614 0.8516 1 0.9385 0.5298 0.6358 0.5023 0.3976
24 Shanghai 1 1 1 1 1 1 1 1 1 1 1 1
25 Sichuan 1 1 1 1 1 1 1 1 1 1 0.2907 0.2633
26 Tianjin 1 1 1 1 1 1 1 1 1 1 1 1
27 Xinjiang 1 1 1 1 1 1 1 1 1 1 1 1
28 Yunnan 1 1 1 1 1 1 1 1 1 1 1 1
29 Zhejiang 1 1 1 1 1 1 1 1 0.2943 0.2912 0.3383 0.6350
30 Chongqing 0.9780 1 1 1 0.94757 1 1 1 0.5187 1 1 1

MEAN 0.9675 0.9723 0.9680 0.9691 0.9573 0.9758 0.9881 0.9736 0.7633 0.7870 0.8210 0.8266
EAST 0.9974 0.9956 0.9942 0.9777 0.9812 0.9861 0.9862 0.9800 0.8589 0.8604 0.8362 0.9282

NONEAST 0.9475 0.9568 0.9505 0.9634 0.9414 0.9690 0.9893 0.9693 0.6995 0.7380 0.8108 0.7589
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The efficiencies for medical institution assets in Anhui, Heilongjiang, Hunan, Hubei, Jilin, Jiangsu,
and Liaoning fluctuate intensely. The highest efficiencies in these DMUs in the four years is 1, and the
lowest score is only 0.22. Five provinces have improved their efficiencies for medical institution assets.
Guangxi, Henan, and Chongqing achieve a huge improvement in the four years and finally get an
efficiency score of 1 in 2016. Jiangxi and Guizhou have improved a lot in their efficiencies for medical
institution assets but have not yet reached the efficiency frontier. Shaanxi and Sichuan are the only two
provinces whose efficiencies for medical institution assets show an obvious drop in the four years.

The average efficiencies for labor and energy consumption have maintained a high level, but the
average efficiencies for medical institution assets still have broad room to improve, although they
have been getting better. The efficiency gaps in labor and energy consumption between the eastern
and non-eastern regions are smaller than the efficiency gap in the medical institution assets. The
former is decreasing, while the latter is increasing slowly except in 2015. This indicates the economic
backward area also lags behind in the efficiencies for the three input variables, especially the efficiency
for medical institution assets.

4.7. Technological Innovation Efficiencies for Energy Conservation and Respiratory Medical Treatment

The technological innovation efficiencies for energy conservation and respiratory medical treatment
have different performances, as shown in Table 6. The technological innovation efficiencies for energy
conservation in most DMUs equal 1 in all four years. They include Beijing, Fujian, Guangdong,
Guangxi, Hainan, Hunan, Hubei, Henan, Hebei, Jilin, Jiangsu, Jiangxi, Inner Mongolia, Ningxia,
Qinghai, Shandong, Shanxi, Shanghai, Sichuan, Tianjin, Xinjiang, Yunnan, and Zhejiang. Guizhou
and Chongqing have efficiencies of 1 after 2014. The technological innovation efficiencies for energy
conservation in Anhui, Heilongjiang, Liaoning, and Shaanxi decrease a lot, and the lowest efficiency
is just 0.3265. There is significant need to promote technological innovation efficiencies for energy
conservation in these provinces.

Only fifteen DMUs’ technological innovation efficiencies for respiratory medical treatment equal
1 in all four years. They are Beijing, Fujian, Guangdong, Hainan, Hebei, Inner Mongolia, Ningxia,
Qinghai, Shandong, Shanxi, Shanghai, Tianjin, Xinjiang, and Yunnan. Jiangxi, Zhejiang, Guangxi, and
Chongqing have improved their technological innovation efficiencies for respiratory medical treatment.
Heilongjiang, Liaoning, and Shaanxi’s efficiencies stay at a low level in all four years, and the average
efficiencies are just 0.3634, 0.1518 and 0.1997. This indicates these three provinces lag behind in both
technological innovation efficiencies.

The average technological innovation efficiencies for respiratory medical treatment are lower
than that for energy conservation but show an obvious increasing trend. The average technological
innovation efficiencies for energy conservation in the eastern region are similar to those in the
non-eastern region without a great gap. The difference in average technological innovation efficiencies
for respiratory medical treatment between the eastern and non-eastern regions are larger than that for
energy conservation. Therefore, economic backward areas need to catch up with the eastern region in
technological innovation, especially for respiratory medical treatment.
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Table 6. Technology innovation efficiencies for energy conservation (EC) and respiratory medical (RM).

NO. DMU 2013
EC

2014
EC

2015
EC

2016
EC

2013
RM

2014
RM

2015
RM

2016
RM

1 Anhui 0.7956 0.7353 0.6164 0.4612 0.5398 0.6578 0.8208 0.6714
2 Beijing 1 1 1 1 1 1 1 1
3 Fujian 1 1 1 1 1 1 1 1
4 Gansu 0.7725 0.6753 0.9003 0.6366 0.6644 0.7990 1 0.8637
5 Guangdong 1 1 1 1 1 1 1 1
6 Guangxi 1 1 1 1 0.3253 0.47968 0.8476 1
7 Guizhou 0.8917 1 1 1 0.6753 1 1 0.6667
8 Hainan 1 1 1 1 1 1 1 1
9 Hebei 1 1 1 1 1 1 1 1
10 Henan 1 1 1 1 1 0.7627 1 1
11 Heilongjiang 0.7149 0.7039 0.8664 0.6447 0.2990 0.5111 0.4109 0.3693
12 Hubei 1 1 1 1 0.7253 0.9460 1 0.5897
13 Hunan 1 1 1 1 0.1745 0.4201 0.5616 0.2757
14 Jilin 1 1 1 1 1 0.6063 1 1
15 Jiangsu 1 1 1 1 1 1 0.1457 1
16 Jiangxi 1 1 1 1 0.3631 0.4973 1 1
17 Liaoning 0.5905 0.6109 0.7516 0.3617 0.1739 0.2181 0.1716 0.1163

18 Inner
Mongolia 1 1 1 1 1 1 1 1

19 Ningxia 1 1 1 1 1 1 1 1
20 Qinghai 1 1 1 1 1 1 1 1
21 Shandong 1 1 1 1 1 1 1 1
22 Shanxi 1 1 1 1 1 1 1 1
23 Shaanxi 0.5891 0.5293 0.5800 0.4925 0.2948 0.4057 0.2833 0.2380
24 Shanghai 1 1 1 1 1 1 1 1
25 Sichuan 1 1 1 1 1 1 0.2272 0.2881
26 Tianjin 1 1 1 1 1 1 1 1
27 Xinjiang 1 1 1 1 1 1 1 1
28 Yunnan 1 1 1 1 1 1 1 1
29 Zhejiang 1 1 1 1 0.2935 0.1436 0.1806 0.7643
30 Chongqing 0.9864 1 1 1 0.3199 1 1 1

Mean 0.9447 0.9418 0.9572 0.9199 0.7616 0.8149 0.8216 0.8281
EAST 0.9659 0.9676 0.9793 0.9468 0.8192 0.8216 0.7915 0.9067

NONEAST 0.9306 0.9247 0.9424 0.9019 0.7232 0.8105 0.8417 0.7757

4.8. Output Variables’ Efficiencies

Table 7 shows the efficiencies for GDP, respiratory disease rate, and mortality rate from 2013 to
2016. Obviously, the efficiency scores of GDP in all DMUs are 1 in all four years, with no efficiency
loss. This coincides with the GDP oriented development in China’s provinces. The numbers of DMUs
who have efficiency of 1 for respiratory disease rate and mortality rate in all four years are 16 and 14
respectively. This indicates mores provinces have space to improve their efficiency in mortality and
respiratory disease rate.
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Table 7. GDP, respiratory disease rate (RP) and mortality rate (MR) efficiencies.

2013
GDP

2014
GDP

2015
GDP

2016
GDP

2013
RP

2014
RP

2015
RP

2016
RP

2013
MR

2014
MR

2015
MR

2016
MR

1 Anhui 1 1 1 1 0.9469 0.9173 0.9034 0.9320 1 1 0.8442 1
2 Beijing 1 1 1 1 1 1 1 1 1 1 1 1
3 Fujian 1 1 1 1 1 1 1 1 1 1 1 1
4 Gansu 0.9359 1 1 1 0.8231 0.8261 1 0.9163 1 1 1 1
5 Guangdong 1 1 1 1 1 1 1 1 1 1 1 1
6 Guangxi 1 1 1 1 0.8799 0.9905 1 1 0.9530 0.934838 0.8676 1
7 Guizhou 1 1 1 1 0.8185 1 1 0.8677 0.7717 1 1 0.5565
8 Hainan 1 1 1 1 1 1 1 1 1 1 1 1
9 Hebei 1 1 1 1 1 1 1 1 1 1 1 1

10 Henan 1 1 1 1 1 0.8826 1 1 1 0.864367 1 1
11 Heilongjiang 1 1 1 1 0.9489 0.9326 0.8932 0.8958 1 0.88695 0.9555 0.9034
12 Hubei 1 1 1 1 0.9920 0.8863 1 0.9531 1 1 1 0.8938
13 Hunan 1 1 1 1 0.8578 0.8219 0.8615 0.9299 1 0.865312 0.8192 0.9198
14 Jilin 1 1 1 1 1 0.9188 1 1 1 0.90114 1 1
15 Jiangsu 1 1 1 1 1 1 0.8176 1 1 1 1 1
16 Jiangxi 1 1 1 1 0.8633 0.8867 1 1 1 1 1 1
17 Liaoning 1 1 1 1 0.8819 0.8713 0.8011 0.8344 1 0.688193 0.7758 1

18 Inner
Mongolia 1 1 1 1 1 1 1 1 1 1 1 1

19 Ningxia 1 1 1 1 1 1 1 1 1 1 1 1
20 Qinghai 1 1 1 1 1 1 1 1 1 1 1 1
21 Shandong 1 1 1 1 1 1 1 1 1 1 1 1
22 Shanxi 1 1 1 1 1 1 1 1 1 1 1 1
23 Shaanxi 1 1 1 1 0.8480 0.8676 0.8734 0.8868 1 1 1 1
24 Shanghai 1 1 1 1 1 1 1 1 1 1 1 1
25 Sichuan 1 1 1 1 1 1 0.7847 0.8209 1 1 0.7019 0.8553
26 Tianjin 1 1 1 1 1 1 1 1 1 1 1 1
27 Xinjiang 1 1 1 1 1 1 1 1 1 1 1 1
28 Yunnan 1 1 1 1 1 1 1 1 1 1 1 1
29 Zhejiang 1 1 1 1 1 1 1 0.9993 1 0.981276 0.8909 1
30 Chongqing 1 1 1 1 0.8467 1 1 1 1 1 1 1

Mean 0.9979 1 1 1 0.9569 0.9601 0.9645 0.9679 0.9908 0.9707 0.9618 0.9710
EAST 1 1 1 1 0.9788 0.9798 0.9682 0.9861 1 0.9725 0.9722 1

NON EAST 0.9964 1 1 1 0.9423 0.9469 0.9620 0.9557 0.9847 0.9696 0.9549 0.9516
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The efficiencies for respiratory disease rate in Anhui, Jiangsu, Zhejiang and Chongqing maintain
in frontier except in 2015. This indicates these four provinces should pay attention to the problems of
respiratory disease. Guangxi, Jilin, Henan, Hunan, Jiangxi and Liaoning experience some efficiency
decrease in 2014 or 2015 but return to frontier in 2016.

The mortality efficiencies in each DMU are almost not changed from 2013 to 2016 except Jiangsu.
There are 14 DMUs whose mortality rate efficiencies are 1 in all four years. They are Beijing, Fujian,
Guangdong, Hainan, Hebei, Inner Mongolia, Ningxia, Qinghai, Shandong, Shanxi, Shanghai, Tianjin,
Xinjiang and Yunnan. These DMUs also have good performance in respiratory disease rate, indicating
good condition in public health. Guizhou and Liaoning have the low mortality efficiencies in all four
years. Heilongjiang and Sichuan are the only two whose mortality efficiencies decrease dramatically in
the four years. There is improvement space for mortality in these four provinces.

The average efficiencies for respiratory disease rate and mortality rate in the eastern region are all
higher than those in the non-eastern region in all four years. This indicates the economic backward
area also have poor public health.

5. Conclusions and Implications

This study explores energy efficiency and health efficiency with the inclusion of technological
innovation in 30 provinces of from 2013 to 2016. We collect patents in the fields of energy conservation
and respiratory medical treatment for each province from 2000 to 2016 and construct the stock of energy
conservation and respiratory medical treatment knowledge respectively under the consideration of
decay and the diffusion of knowledge. Using a two-stage dynamic undesirable DEA model under
VRS, we calculate the overall efficiencies. We also calculate annual efficiencies in each stage and the
efficiencies for input variables, technological innovations, and output variables from 2013 to 2016. The
main results are as follows:

(1) The mean overall efficiencies and ranks in the eastern region are significantly higher than
those in the non-eastern region, no matter if technological innovations are included or not. The
overall efficiency gap between the eastern and non-eastern regions with the inclusion of technological
innovations shows no sign of narrowing. Liaoning and Heilongjiang lag behind in overall efficiency in
all four years.

(2) Most DMUs’ efficiencies in the production stage are higher than those in the health treatment
stage. The low health efficiency in Liaoning and Heilongjiang is the root of their low overall efficiency.

(3) The average energy and health efficiencies in the eastern region are both higher than those in
the non-eastern region in all four years. The efficiency gaps between the eastern and the non-eastern
regions in the first stage are smaller than those in the second stage.

(4) The efficiencies of labor and energy consumption in most DMUs equal 1 in all four years. More
DMUs experience efficiency loss for medical institution assets. Liaoning is the only province whose
efficiencies for labor and energy consumption fall obviously.

(5) The average technological innovation efficiencies for energy conservation are higher than
those for respiratory medical treatment. The efficiency gaps in the technological innovation of energy
conservation technology between the eastern region and non-eastern region are smaller than that for
respiratory medical treatment.

(6) The efficiencies for GDP in all DMUs equal 1 in all four years. The average efficiencies for
both respiratory disease rate and mortality rate in the eastern region are all higher than those in the
non-eastern region, but the gap is smaller than the efficiencies for input variables.

China’s provincial governments should transform their GDP oriented development to
sustainability-oriented development by implementing health in all policies.

(1) Local governments in China, especially those in the economic lagging behind areas, should
take measures to improve efficiencies, both in the production and health treatment stages. Measures
should be taken to narrow the efficiency gap between the eastern and non-eastern regions.
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(2) Relative to energy efficiency, health efficiency has more space to improve. Governments should
take more measures to improve health efficiency, such as promoting clean energy consumption, etc.

(3) Most provinces need to improve their efficiencies for medical institution assets, and respiratory
disease rate and mortality rate need to be enhanced. The non-eastern region should take more measures
in improving energy and health efficiencies to avoid lagging behind further, and it is more urgent to
improve health efficiencies.

(4) Governments give priority to technology innovation. Technological innovation can provide a
healthier, cleaner living environment efficiently, and its role in the economic backward region is bigger.
Therefore, governments should encourage more technological innovation, especially for respiratory
medical treatment.

(5) Public policies, such as energy policy, industrial policy, and health policy, should coordinate to
improve energy and health efficiencies for sustainability development.

The results show the great gap between the eastern and non-eastern regions. The research
framework herein can be modified to evaluate the technology gap ratio. A meta-frontier DEA of the
eastern and non-eastern regions in China should be addressed in future research. The inclusion of
good outputs (in conjunction with undesirable outputs) in the health treatment stage is an additional
future research line.
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