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Abstract: The marine environment is highly diverse, each living creature fighting to establish and
proliferate. Among marine organisms, cyanobacteria are astounding secondary metabolite producers
representing a wonderful source of biologically active molecules aimed to communicate, defend
from predators, or compete. Studies on these molecules’ origins and activities have been systematic,
although much is still to be discovered. Their broad chemical diversity results from integrating
peptide and polyketide synthetases and synthases, along with cascades of biosynthetic transforma-
tions resulting in new chemical structures. Cyanobacteria are glycolipid, macrolide, peptide, and
polyketide producers, and to date, hundreds of these molecules have been isolated and tested. Many
of these compounds have demonstrated important bioactivities such as cytotoxicity, antineoplas-
tic, and antiproliferative activity with potential pharmacological uses. Some are currently under
clinical investigation. Additionally, conventional chemotherapeutic treatments include drugs with
a well-known range of side effects, making anticancer drug research from new sources, such as
marine cyanobacteria, necessary. This review is focused on the anticancer bioactivities of metabolites
produced by marine cyanobacteria, emphasizing the identification of each variant of the metabolite
family, their chemical structures, and the mechanisms of action underlying their biological and
pharmacological activities.

Keywords: angiogenesis inhibitor; antiproliferative activity; apoptosis; bioactive metabolites;
cytoskeleton disruptor; histone deacetylase inhibitor

1. Introduction

Marine ecosystems are reservoirs of biologically active metabolites producers. Many
organisms, especially those without physical protection, such as hard shells or spines, have
evolved chemical weapons for defense or competition purposes, and some of them are
little-known bioactive substances with pharmacological potential as anticancer agents [1].
Among the primary producers in aquatic environments, the functional group “microalga”
(which includes cyanobacteria and photosynthetic protists) is the basis of all sea life. These
microscopic organisms are responsible for producing, through photosynthesis, biomass
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and oxygen, among other important primary metabolites, such as carbohydrates, proteins,
and lipids.

Currently, more than 1600 molecules from cyanobacteria have been isolated and
grouped in 260 families of metabolites, of which 148 (53%) belong to marine environ-
ments [2]. Their wide structural diversity is the result of their ability to integrate non-
ribosomal peptide synthetases with polyketide synthases, as well as several enzymes
responsible for other biosynthetic transformations, originating chemically diverse natu-
ral products such as glycolipids, macrolides, peptides (depsipeptides and lipopeptides),
and polyketides, among others [3–7]. Recently, these metabolites have been recognized
as important sources of new chemical structures with potential therapeutic uses due to
their biological properties. Particularly, secondary metabolites from cyanobacteria have
attracted scientific attention due to their cytotoxicity on several cancer-derived cell lines:
up to 110 families of metabolites (42%), out of the 260 reported, are cytotoxic [2]. Sev-
eral cyanobacteria-derived or -inspired therapeutic agents are currently under clinical
investigation [8].

Cyanobacteria Stanier ex Cavalier-Smith is an important phylum of the kingdom Eu-
bacteria with a single taxonomic class (Cyanophyceae Schaffner). The class Cyanophyceae
contains, until now, five subclasses and 12 orders [9], but their taxonomy is under constant
revision and modification. These organisms are slow-growing photosynthetic prokary-
otes, and the phylum includes more than 5000 species [9], distributed in a wide range
of ecosystems worldwide. Besides the members of the kingdoms Plantae (plants) and
Chromista (eukaryotic microalgae), cyanobacteria are also responsible for producing at-
mospheric oxygen and play a substantial role in generating a strikingly different group of
secondary metabolites.

Many of the secondary metabolites from marine cyanobacteria whose cytotoxic activi-
ties have been studied and reported belong predominantly to two orders: Oscillatoriales
and Synechococcales.

From the order Oscillatoriales, members of the families Oscillatoriaceae, Microcoleaceae,
Gomontiellaceae, Vermifilaceae and Coleofasciculaceae, and from the order Synechococ-
cales, members of the families Procholortrichaceae, Leptolyngbyeaceae, Prochloraceae,
Merismopediaceae, and Synechococcales familia incertae sedis have been studied
(Tables 1 and 2). Cyanobacteria from the order Oscillatoriales are amongst the most pro-
ductive group when referring to cytotoxic metabolites, and members of the genus Lyngbya
produce many of them. From the cytotoxic metabolites reviewed here, only one metabolite
family is common to more than one cyanobacterial order: the aplysiatoxins.

Additionally, it is well-known that molecules from the dolastatin family have been iso-
lated from cyanobacteria from the order Oscillatoriales. However, dolastatin 12, somamide
A, and somamide B, members of the dolastatin family, have been isolated from Lyngbya
majuscula/Schizothrix sp. assemblages [10,11]. These cyanobacteria belong to the orders
Oscillatoriales and Synechococcales, respectively. Therefore, there is no concrete evidence
of dolastatins isolated from cyanobacteria of the order Synechococcales, but there is a
possibility that some molecules may be produced by cyanobacteria of this order. Therefore,
further research is needed to determine the true biosynthetic origin of these molecules.

To the best of our knowledge, this is the second review focusing on anticancer proper-
ties that group cyanobacterial compounds into families of metabolites. Additionally, this
review has performed a meticulous analysis focused on identifying each variant belonging
to each family of metabolites and the cyanobacterial strains they come from (Supplementary
Table S1 presents all the information regarding these variants). This information provides a
general perspective to better understand the biosynthetic and taxonomic origins of these
molecules and their bioactive properties, since, until now, many of them have also been
identified in other marine organisms and/or cyanobacteria from different taxonomic orders.
In addition, it is expected in the near future that new cyanobacterial molecules will be
identified and grouped into families of metabolites. Therefore, this review is a valuable
scientific source of knowledge regarding the bioactive properties, suggested mechanisms
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of action, producing cyanobacterial strains, and potential structural changes that could
modulate the cytotoxic properties of these new molecules.

Table 1. Chemical families of cyanobacterial metabolites.

Chemical Family Metabolites

Glycolipids Bartolosides

Macrolides Caylobolides
Swinholide-type compounds

Peptides
Bisebromoamides
Carmaphycins
Dolastatin 10 *

Subfamily: Depsipeptides
Linear depsipeptides
Cyclic depsipeptides

Anaenamides
Apratoxins
Aurilides
Cocosamides
Coibamide A
Largazole
Dolastatins 15 and 16 *

Subfamily: Lipopeptides
Linear lipopeptides
Cyclic lipopeptides

Almiramides
Microcolins
Wenchangamides
Hectochlorins

Peptolide †
Lyngbyabellins

Majusculamides
Patellamides #

Polyketides Aplysiatoxins
Caldorazole

Metabolites from other chemical families Iezoside
Santacruzamate A

* These are described together in a single section. † Peptolide: cyclic or heteromeric depsipeptide. # Members of
the cyanobactin superfamily.

Table 2. Metabolites produced by members of orders Oscillatoriales and Synechococcales.

Order Family Genera Metabolites Selected References

Oscillatoriales

Oscillatoriaceae

Lyngbya, Oscillatoria,
Moorea, Okeania,
Phormidium
Neolyngbya

Almiramides, anaenamides,
aplysiatoxins, apratoxins,
aurilides, bisebromoamides,
carmaphycins, caldorazole,
caylobolides, cocosamides,
dolastatins, hectochlorins,
iezoside, largazole,
lyngbyabellins,
majusculamides, microcolins,
santacruzamate A,
swinholide-type,
wenchangamides

[2,12–15]

Coleofasciculaceae Geitlerinema

Gomontiellaceae Hormoscilla

Microcoleaceae
Trichodesmium,
Symploca, Caldora

Vermifilaceae Leptochromothrix

Synechococcales

Procholortrichaceae Nodosilinea
Aplysiatoxins, bartolosides,
coibamide A, dolastatins,
patellamides

[10,16–18]
Leptolyngbyeaceae Leptolingbya
Prochloraceae Prochloron
Merismopediaceae Synechocystis
Schizotrichaceae Schizothrix

Metabolites reported in more than one cyanobacterial order are in bold. Most of the compounds have been
reported only from one genus.

This review is focused on the cytotoxic, antiproliferative, and antineoplastic effects
of metabolites produced by marine cyanobacteria, emphasizing the identification of each
variant of the metabolite family, their chemical structures, and the mechanisms of action
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underlying their biological and pharmacological activities. Information on the cell lines’
origins can be found in Supplementary Table S2.

2. Marine Cyanobacterial Metabolites with Cytotoxic, Antiproliferative, and
Antineoplastic Effects
2.1. Glycolipids
Bartolosides

Bartolosides (Figure 1) are chlorinated aromatic glycolipids recently discovered from
the marine cyanobacteria Nodosilinea sp. and Synechocystis salina [18,19]. These molecules
were evaluated against three cancer cell lines showing mild cytotoxicity.
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Bartoloside A exhibited IC50 values of 22, 40, and 23 µM against MG-63, RKO, and
T-47D cells, respectively, while bartoloside E exerted IC50 values of 39, 40, and 22 µM,
respectively. When the T-47D cell line was exposed to bartoloside I, it revealed a cytotoxic
effect with an IC50 of 59.8 µM [19].

2.2. Macrolides
2.2.1. Caylobolides

Caylobolides are macrolactones (Figure 2) isolated from the cyanobacteria Lyngbya
majuscula and Phormidium spp. and constitute a family of metabolites that exhibit cytotoxic
activities against several neoplastic cell lines.

Caylobolide A exerted cytotoxicity against HCT-116 human colon tumor cells with
an IC50 value of 9.9 µM [20]. In comparison, caylobolide B exhibited cytotoxic activity
against HT-29 colorectal adenocarcinoma cells and HeLa cervical carcinoma cells with IC50
values of 4.5 and 12.2 µM, respectively [21]. On the other hand, nuiapolide exhibited anti-
chemotactic activity against Jurkat cells with an IC50 value below 1.3 µM and induced cell
arrest in the G2/M phase of the cell cycle [22]. Due to their related structural characteristics,
the effects of nuiapolide on Jurkat cells suggest that caylobolids A and B could exert their
cytotoxicity through a similar mechanism, causing various cellular responses leading to
cell death.

2.2.2. Swinholide-Type

Members of the swinholide-type family are macrolides with a unique dimeric 44-
membered or larger lactone ring (Figure 3) that are potent cytotoxins capable of disrupting
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the actin cytoskeleton [23]. One dimeric macrolide binds simultaneously to two molecules
of G-actin, forming a tertiary complex with the two side chains of the macrolide, thus
inhibiting polymerization by the sequestration of G-actin [24,25].
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The first member of this family, swinholide A, was first discovered in the mid-1980s from
the marine sponge Theonella swinhoei by the Carmely, et al. [24] research group. Subsequently,
Andrianasolo, et al. [13] isolated swinholide A and two new related molecules, ankaraholides
A and B, from the cyanobacteria Symploca sp. and Geitlerinema sp., respectively.

Swinholide A exhibited cytotoxic properties against several tumor cell lines (Table 3),
HT-1080 fibrosarcoma cells being the most sensitive, with an IC50 of 0.017 µg mL−1, while
PC-3 lung adenocarcinoma cells were the most resistant, with an IC50 of 6 µg mL−1 [26,27].
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Table 3. Cytotoxic activity of the swinholide family on cancer cell lines. IC50 values.

Cell Line
Molecule

References
Swinholide A Ankaraholide A Samholide A–I

L1210 0.03

[13,23,26,27]

KB 0.04
SW-480 0.07
KATO-III 0.05
HT-1080 0.017
T-24 0.046
PC-3 6.0
PC-8 0.12
PC-9 0.13
PC-10 0.11
PC-13 0.10
QG-56 0.04
Daudi 0.036
NCI-H460 119 * 170–910 *
Neuro-2a 262 *
MDA-MB-435 8.9 *

All IC50 values are reported in µg mL−1, except for *, which are reported in nM.

On the other hand, ankaraholide A inhibited the proliferation of the NCI-H460, Neuro-
2a, and MDA-MB-435 cell lines, with IC50 values of 119, 262, and 8.9 nM, respectively [13].

Recently, Tao, et al. [23] evaluated the cytotoxicity of nine new swinholide-type com-
pounds, samholide A–I, isolated from the marine cyanobacterium Phormidium sp., which
were potently active against H-460 human lung cancer cells, with IC50 values ranging
between 170 and 910 nM.

2.3. Linear Peptides
2.3.1. Bisebromoamides

Bisebromoamides (Figure 4) are linear peptides that impair actin dynamics and exert
antiproliferative activity at the nanomolar level. These molecules have been isolated from
the cyanobacterium Lyngbya sp. The molecule bisebromoamide has shown an IC50 of 40 nM
against HeLa S3 cells and an average GI50 of 40 nM against a panel of 39 human cancer
cell lines (JFCR39). In comparison, norbisebromoamide exerted an IC50 of 45 nM against
HeLa S3 cells [28,29]. Bisebromoamide exhibited a potent inhibition of ERK in NRK cells,
in addition to inducing apoptosis through the inhibition of ERK, AKT, and mTOR in 769-P
and 786-O kidney cancer cells [30].

Bisebromoamide was the first linear peptide acting as a stabilizer of actin filaments,
leading to the synthesis and evaluation of four thiazoline analogs that demonstrated
nanomolar cytotoxic activity against HCT-116 human colon tumor cells through an apop-
totic mechanism. These compounds exerted half-maximal effective concentration (EC50)
values ranging between 45 and 483 nM. Among these analogs, synthetic derivatives (1) and
(2) were the most cytotoxic, with an EC50 of 45 and 71 nM, respectively. The study revealed
that the C|terminus could be altered without significantly affecting the activity. Still, that
alteration of N-terminal residues or replacement of the N-terminal pivalate cap removes all
cytotoxic activity. Analogs 1 and 2 (Figure 4) also caused similar morphological changes to
those previously reported for bisebromoamide in HeLa cells, including a clear disruption
and aggregation of the F-actin filaments and reduced cell–substrate adhesion. In addition,
a reverse-phase protein array (RPPA) profiling analysis suggested a specific mode of action
for these analogs, which resulted in the reduced activity of PKC and reduced expression of
insulin receptor substrate 1 (IRS-1) [31].
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2.3.2. Carmaphycins

Carmaphycins A and B (Figure 5) are linear peptides and a new class of marine-
derived epoxyketone 20S proteasome inhibitors. These molecules are isolated from the
marine cyanobacterium Symploca sp. In their structures, these compounds contain an α,β-
epoxyketone warhead derived from a leucine directly connected to a methionine sulfoxide
or methionine sulfone bound to a valine and an alkyl chain terminal tail [32]. These
molecules showed potent cytotoxicity against NCI-H460 human lung adenocarcinoma
cells, HCT-116 colon cancer cells, and the NCI-60 panel of tumor cell lines, with GI50 values
between 1 and 50 nM [33]. This mechanism of action and proven cytotoxic activity has
led to the conjugation of these molecules and their analogs with antibodies to design
antibody–drug conjugates (ADCs) as new anticancer drugs. Using a highly toxic derivative
of carmaphycin as the warhead of ADCs could provide the necessary potency and achieve
a better selectivity profile [34]. Additionally, inhibition of the proteasome, a proteolytic
complex responsible for the degradation of ubiquitinated proteins, has emerged as a potent
strategy in treating cancer [35].
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2.4. Depsipeptides
Anaenamides

Anaenamides A and B (Figure 6) are linear depsipeptides and geometric isomers
recently isolated from the green filamentous cyanobacterium Hormoscilla sp. (VPG16-5).
These compounds contain two α-hydroxy acid residues, flanked by an alkylated salicylic
fragment and an unusual α-chlorinated α,β-unsaturated (E/Z) ester, which is new to
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cyanobacterial natural products. Anaenamides A and B exerted moderate cytotoxicity
against the cancer cell line HCT-116 with IC50 values of 4.5 and 8.7 µM, respectively [15].
Based on their structural features, the study revealed that the halogenated α,β-unsaturated
ester moiety serves as the pharmacophore for the cytotoxic activity.
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Similarly, anaenamides C and D were isolated from a novel Hormoscilla sp. (VPG16-58).
These compounds retain the isomeric (Z/E) chlorinated α,β-unsaturated unit reported in
anaenamides A and B but differ by the presence of a primary amide instead of the methyl
ester. Interestingly, anaenamides C and D showed cytotoxicity only at 100 µM against
the cancer cell line HCT-116; however, both compounds activated the ARE-luciferase
reporter by 15- and 17-fold, respectively, at 32 µM, without affecting the cell viability in
the stable HEK293 cell line [36]. As the authors mention, these data suggest that modified
pharmacophores in anaenamides lead to different targets, and cytotoxic activity can be
separated from Nrf2 induction.

2.5. Cyclic Depsipeptides
2.5.1. Apratoxins

The family of apratoxins is formed by cyclic depsipeptides with cytotoxic and antipro-
liferative activities at the nanomolar level (Table 4).

Table 4. Apratoxin analog activities on cancer cell lines.

Apratoxin
Analog

Cell Line (IC50/* GI50 Values in nM) Selected
ReferencesKB LoVo NCI-H460 HT-29 HeLa U20S HCT-116 NCI-60 1 Neuro-2a Panel HCCL 2

A 0.52 0.36 2.5 1.4 10 10 1.21 1–3 * 1000 4.9–41 *

[37–42]

A SO * 89.9
B 21.3 10.8
C 1 0.73
D 2.6
E 21 72 59
F 2 36.7
G 14
H 3.4

1 Most affected cells from the NCI-60 panel: HT-29, RPMI-8226, SR, and LOX IMVI. 2 Panel of human cancer cell
lines: BxPC-3, A549, HuH-7, MKN74, U87-MG, SK-OV-3, HEC-6, and 786-O. A SO *: apratoxin A sulfoxide.

Apratoxins B and C exhibited cytotoxicity against KB and LoVo cells with IC50 values
ranging from 0.73 to 21.3 nM [37]. At the same time, apratoxins D, F, G, and H and apratoxin
A sulfoxide exerted cytotoxic activity against NCI-H460 cells, with IC50 values between
2 and 89.9 nM [38–40]. Similarly, apratoxins E and F showed cytotoxicity against several
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cancer cell lines (HT-29, HeLa, U20S, and HCT-116), with IC50 values ranging from 21 to
72 nM [41].

Apratoxin A (Figure 7a) is undoubtedly the most-studied molecule of the apratoxin
family in terms of cytotoxic activity. This molecule was tested against the NCI-60 panel of
tumor cell lines showing differential cytotoxicity. However, it was not selective for cancer
cell lines derived from any particular tissue or tumor type (Table 4) [42]. This compound
exerts its antiproliferative activity through: (1) the induction of G1 cell cycle arrest and
an apoptotic cascade, which is initiated at least partially through the antagonism of fi-
broblast growth factor (FGF) signaling via STAT3 [42], and (2) downregulating numerous
cancer-associated receptors and their growth factors, including multiple receptor tyrosine
kinases (RTKs) [43,44]. These antitumor effects are mediated through the inhibition of the
Sec61 protein translocation channel, which blocks co-translational translocation within
the secretory pathway and prevents the biogenesis of secreted protein factors and integral
membrane proteins, as well as the rapid proteasomal degradation of several proteins by
preventing their N-glycosylation [43,45,46].
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On the other hand, administering apratoxin A against in vivo tumor models has shown
variable activity, exerting marginal antitumor activity against a mice model of early-stage
colon adenocarcinoma [47] and promising therapeutic effectiveness against human HCT-
116 colon cancer in SCID mice [39]. Nevertheless, in both studies, this compound proved to
be toxic.

The potent cytotoxic activity against tumor cells and their novel chemical structures
makes the apratoxin family an interesting depsipeptides family for potentially effective
antineoplastic drug development. This interest has led to the generation of several syn-
thetic derivatives with improved antineoplastic and antitumor activities and lower toxic-
ity [48–50], apratoxin S10 (Figure 7b) being a promising one in terms of potency, stability,
and synthetic accessibility [51]. This molecule inhibited angiogenesis in vitro through down-
regulation of the expression of vascular endothelial growth factor receptor 2 (VEGFR2)
on endothelial cells and blocking the secretions of vascular endothelial growth factor A
(VEGFA) and interleukin 6 (IL-6) from highly vascularized cancer cells (A498, HuH-7, and
NCI-H727) [51]. In addition, apratoxin S10 also inhibited the proliferation of cancer cells
from highly vascularized tumors through the downregulation of RTKs, including VEGFR2,
epidermal growth factor receptor (EGFR), met proto-oncogene (hepatocyte growth factor
receptor) (MET), insulin-like growth factor 1 receptor β (IGF1Rβ), and fibroblast growth
factor receptor 4 (FGFR4) [51]. Furthermore, this compound inhibited the growth of EC68,
EC46 (primary pancreatic cancer cells), and PANC-1 (exocrine pancreatic cancer cells)
cells at a low nanomolar GI50 range and exerted antitumor effects in a pancreatic cancer
patient-derived xenograft mouse model through reduced cellular proliferation without
causing weight loss [52].
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2.5.2. Aurilides

Aurilides are members of a family of cyclic depsipeptides showing an α-hydroxy
acid residue, a polyketide segment containing three or four stereogenic centers and a
pentapeptide [53]. The first member of this family, the aurilide, was isolated in the 1990s
from the sea hare Dolabella auricularia. This molecule exhibited potent cytotoxicity against
the cancer cell line HeLa S3 with an IC50 of 0.011 µg mL−1 [54]. This family of molecules has
been isolated and identified in different marine cyanobacteria of the order Oscillatoriales.

Aurilides have attracted the attention of researchers for their potent cytotoxic and
antiproliferative properties. Han, et al. [55] evaluated the cytotoxicity of aurilides B and
C, isolated from the marine cyanobacterium Lyngbya majuscula, against NCI-H460 lung
carcinoma and Neuro-2a mouse neuroblastoma cells. Aurilide B showed the highest
cytotoxicity, with lethal concentration (LC50) values of 10 and 40 nM for Neuro-2a and
NCI-H460 cells, respectively, while aurilide C presented LC50 values of 50 and 130 nM,
respectively. Considering these results, aurilide B was evaluated in the NCI-60 panel of tumor
cell lines and showed a high level of growth inhibition on leukemia, renal, and prostate
cancer cell lines, with a cell growth inhibition concentration (GI50) of less than 10 nM. In
this sense, other family members have also exhibited interesting cytotoxic activities against
neoplastic lines. Palau’amide showed potent cytotoxicity against KB cells with an IC50
value of 13 nM [56]; meanwhile, odoamide exhibited cytotoxicity against the HeLa S3 and
A549 cell lines, with IC50 values of 26.3 nM and 4.2 nM, respectively [57,58]. Similarly,
lagunamides showed potent cytotoxicity against several cell lines (P388, BJ, BJ Shp 53,
PC3, SK-OV-3, HCT8, and A549) with IC50 values that ranged between 1.6 and 68.2 nM
(Table 5) [59–62].

Table 5. Aurilide analog activities on cancer cell lines.

Molecule
Cell Line (IC50 / LC50 Values in nM)

References
HeLa S3 P388 BJ BJ Shp 53 PC3 SK-OV-3 HCT8 Neuro-2a NCI-H460 KB A549

Aur B 10 * 40 *

[55–61]

Aur C 50 * 130 *
Palau 13
Odo 26.3 4.2
Lag A 6.4 20.2 58.8 2.5 3.8 1.6 2.9
Lag B 20.5 5.2
Lag C 24.4 2.6 4.5 2.1 2.4
Lag D 7.1
Lag ’ 68.2

Aur = Aurilide, Palau = Palau’amide, Odo = Odoamide, and Lag = Lagunamide. * LC50

Several aurilide analogs have been developed to identify possible antineoplastic drug
candidates, which have already been described in detail [53]. The structures of aurilide, the
first member of this family, and aurilide B are shown in Figure 8.
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Although aurilide, the first member of this family, has not yet been isolated from
cyanobacteria, its cytotoxic mechanism of action has been the most studied in this family.
This molecule selectively binds to prohibitin 1 (PHB1) in mitochondria, leading to mitochon-
drial fragmentation through the proteolytic processing of optic atrophy 1 (OPA1), resulting
in a loss of membrane potential and the induction of apoptotic cell death [63]. These data
could suggest that, due to their related structural characteristics, the mechanisms underly-
ing the cytotoxic activities of the aurilides family could be due to the induction of apoptosis
mediated by the mitochondrial function. In fact, biochemical studies using HCT8 and
MCF7 cancer cells suggested that the cytotoxic effect of lagunamides A and B might act via
the induction of mitochondrial-mediated apoptosis [61]. In addition, the downregulation
of the ATP1A1 gene, which encodes a catalytic α subunit of Na+/K+ ATPase, confers a
significant sensitivity of cancer cells to aurilide B [64]. These data suggest that changes in
ATP1A1 gene expression could also be involved in the mechanism of cell death induced by
these molecules in the cancer cell lines.

2.5.3. Cocosamides

Cocosamides A and B (Figure 9) are cyclic depsipeptides that induce mild cytotoxicity
against MCF7 breast cancer cells and HT-29 colon cancer cells. These compounds have
demonstrated cytotoxic activity against HT-29 cells with IC50 values of 24 and 11 µM,
respectively. MCF7 cells were slightly less susceptible to both compounds, with IC50 values
of 30 and 39 µM, respectively [65].
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2.5.4. Coibamide A

Coibamide A (Figure 10a) is a cyclic depsipeptide with cytotoxic activities against
several cell lines derived from human neoplasms.
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This molecule showed potent cytotoxicity against NCI-H460 lung cancer cells and
Neuro-2a mouse neuroblastoma cells, with LC50 values lower than 23 nM, showing arrest
in the G1 phase of the cell cycle [17]. In addition, coibamide A was evaluated against
several tumor cell lines, including the NCI-60 panel of cancer cell lines, showing promising
cytostatic and cytotoxic effects, with GI50 values ranging between 0.4 and 7.6 nM, being the
MDA-MB-468 line being the most sensitive (Table 6) [17,44,66].

Table 6. Coibamide A activity on cancer cell lines.

Tested Cell Lines LC50/EC50/GI50 Values (nM) Cellular Effects References

NCI-H460 and LC50 ≤ 23

Arrest in the G1 phase
of the cell cycle;
mTOR-independent
autophagy; apoptosis;
decreased protein
expression due to the
inhibition of Sec9

[17,44,67,68]

Neuro-2a
MDA-MB-231 GI50 = 1–7.4
LOX IMVI GI50 = 7.4
HL-60 GI50 = 7.4
SNB-75 GI50 = 7.6
U87-MG EC50 = 28.8
SF-295 EC50 = 96.2
A549 GI50 = 5.4
PANC-1 GI50 = 3.1
MDA-MB-436 EC50 = 0.9
MDA-MB-468 EC50 = 0.4
HS578T EC50 = 4.0
BT474 EC50 = 0.8

Hau, et al. [69] evaluated this molecule in human glioblastoma cells U87-MG and
SF-295, observing a concentration- and time-dependent cytotoxicity with EC50 of 28.8 and
96.2 nM, respectively. According to that study, coibamide A can induce apoptosis by
activating caspase-3 in SF-295 cells. Still, it can also trigger autophagy through an mTOR-
independent pathway in U87-MG cells, indicating that this molecule induces biochemically
different kinds of cell death, depending on the cell type.

Additionally, coibamide A has shown a variety of other anticancer activities, such as:
(1) the inhibition of autophagy by blocking autophagosome–lysosome fusion due to the
alteration of protein glycosylation of the lysosome membrane LAMP1 and LAMP2 in MDA-
MB-231 cells [70], (2) a decreased expression of VEGFR2 and inhibition of VEGFA secretion
in U87-MG and MDA-MB-231 cells [71], and (3) a decreased expression of the HER receptor
family in breast cancer cells and non-small cell lung cancer cells [44]. Furthermore, this
compound suppressed tumor growth in glioblastoma xenografts [71]. Coibamide A medi-
ates its anticancer activity by inhibiting Sec61 translocon, leading to the downregulation of
various proteins, including receptors and their growth factors [72].

Similar to apratoxin A, coibamide A showed toxicity against in vivo tumor models [71].
Nevertheless, due to their powerful antiproliferative effects, mechanism of action, and
novel chemical structure, several analogs have recently been synthesized to develop more
effective and selective antineoplastic drugs that reduce the exhibited toxicity. However,
coibamide A has a well-defined conformational structure and is very sensitive to backbone
modifications, resulting in analogs with significantly decreased activities [66,67]. Among
these derivatives, a simplified analog, [MeAla3-MeAla6]-coibamide (3) (Figure 10), showed
an inhibition of growth similar to coibamide A against MDA-MB-231, A549, and PANC-
1 cancer cells, with GI50 values of 5.1, 7.3, and 7 nM, respectively. In addition, analog
(3) inhibited tumor growth in the human MDA-MB-231 xenograft mouse model without
presenting significant weight loss or side effects at the dose evaluated [66]. Furthermore, a
stimuli-responsive peptide–drug conjugate (PDC) composed of a tumor-homing peptide
with the cRGDyK sequence (cyclic RGD), the synthetic derivative (3), and a reduction-
cleavable disulfide linker suppressed tumor growth in the A549 xenograft mouse model
with negligible toxicity [68].
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2.5.5. Largazole

Largazole (Figure 11), originally isolated from a cyanobacterium of the genus Symploca
(later reclassified as Caldora penicillata [73]), is a potent and selective class I histone deacety-
lase (HDAC) inhibitor. This cyclic depsipeptide is a prodrug activated by removing the
octanoyl residue from the 3-hydroxy-7-mercaptohept-4-enoic acid moiety to generate the
active metabolite largazole thiol, which binds to the catalytic Zn2+ ion of HDAC enzymes
to exert its inhibitory effects [74].
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Largazole exerts highly differential growth inhibitory activity, preferentially target-
ing cancer cells over non-transformed cells and showing antiproliferative activity at the
nanomolar level. This activity has been tested on several neoplastic cell lines with mixed
results (Table 7) [75].

Table 7. Largazole biological activity on cancer cell lines.

Tested Cell Lines GI50 or IC50 Values (nM) Cellular Effects References

MDA-MB-231 GI50 = 7.7

Histone deacetylases
inhibitor; apoptosis;
modulation of the levels
of cell cycle regulators;
antagonism of the AKT,
KRAS, and HIF
pathways; reduction of
the epidermal growth
factor receptors levels;
inhibition of
ubiquitin-activating
enzyme (E1);
proteasomal degradation
of E2F1; antiangiogenic
activity; upregulation of
the Pax6 gene

[74–85]

U2OS GI50 = 55
HT-29 GI50 = 12
IMR-32 GI50 = 16
HCT-116 GI50 = 80
A549 GI50 = 320
SK-OV-3 IC50 = 250
HeLa IC50 = 170
Eca-109 IC50 = 100
Bel 7402 IC50 = 170
U937 IC50 = 20
797 IC50 = 24
10326 IC50 = 25
PC3 IC50 ≤ 500
LNCap IC50 ≤ 500
Panel of melanoma cell
lines IC50 = 45–315

NCI-H1975 IC50 = 83
NCI-H460 IC50 = 120
GLC-82 IC50 = 190
L78 IC50 = 570
SPC-A1 IC50= 140
95D IC50 = 420
NCI-H466 IC50 = 520
SW620 IC50 = 26.5
MiaPaCa IC50 = 206.4
SH-SY5Y IC50 = 102
SF-268 IC50 = 62
SF-295 IC50 = 68
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Similarly, largazole exerted cytotoxic activity against NUT midline carcinoma cell
lines [76], a panel of chemo-resistant melanoma cell lines [74], prostate cancer cell lines [77],
and lung cancer cells [78], with IC50 values ranging between 24 and 570 nM (Table 7),
showing strong increases in the acetylation of histone H3 and upregulating the expression
of tumor suppressor p21 in prostate cancer cell lines PC3 and LNCaP [77] and A549 lung
cancer cells [78].

Liu, et al. [82] demonstrated that exposure of HCT-116 colorectal carcinoma cells to
largazole induces dose-dependent cell cycle arrest, with low concentrations (1–3.2 nM)
causing G1 phase arrest, while high concentrations (10 nM) cause G2/M phase arrest, in
addition to triggering apoptosis. This antiproliferative activity was correlated with the
hyperacetylation of histone H3 (Lys9/14), leading to changes in the expression of genes
that regulate the cell cycle, proliferation, and apoptosis. Moreover, largazole strongly
stimulated histone hyperacetylation, induced apoptosis, and exhibited efficacy in inhibiting
tumor growth in the human HCT-116 xenograft mouse model without toxicity. This
activity was mediated by modulation of the cell cycle regulation levels, antagonism of
the AKT pathway through the downregulation of IRS-1, and reduction of the epidermal
growth factor receptors levels. Furthermore, Law, et al. [86] demonstrated that a combined
treatment between largazole and dexamethasone reduced the invasiveness of MDA-MB-231
breast cancer cells in orthotopic xenograft tumors by inducing E-cadherin re-localization
from cytoplasmic vesicles to the plasma membrane, where it facilitates cell–cell adhesion
and attenuates invasion.

Additionally, largazole showed a variety of other anticancer effects, such as: (1) the
inhibition of ubiquitin-activating enzyme (E1), which mediates ubiquitin conjugation to
p27 and TRF1 [80], (2) sensitization of EBV+ lymphoma cells to the anti-herpes drug
ganciclovir [87], (3) induction of the proteasomal degradation of E2F1 in lung cancer
cells [78], (4) tumor growth inhibition in the A549 non-small cell lung carcinoma xenograft
model [83], (5) inhibition of the oncogenic KRAS and HIF pathways in colorectal cancer
cells and antiangiogenic activity in human cells and zebrafish [79], and (6) upregulation of
the Pax6 gene, which elicits the suppressed proliferation and invasion of the glioblastoma
multiforme (GBM) [75].

To date, several analogs of this compound have been synthesized, and their biological
activities have been evaluated [88]. A synthetic derivative termed OKI -179 was currently
evaluated in a phase I clinical trial to treat advanced solid tumors. It was concluded that it
has a manageable safety profile and a favorable pharmacokinetic profile and demonstrated
on-target pharmacodynamic effects at tolerable doses [89]. Owing to the exceptional activity
of largazole, it is expected that new synthetic analogs with higher potency and selectivity
will be produced to develop anticancer drugs.

2.6. Cyclic Peptides and Depsipeptides
Dolastatins

Dolastatins represent a large family of active compounds that show a high heterogene-
ity, since they include linear and cyclic peptides and depsipeptides, peptides containing
thiazole and oxazole heterocycles, and macrolides [90]. Although dolastatins have long
been consolidated as a single family of metabolites, several authors have suggested that
these compounds cannot be studied as a single group due to their significant structural
variability and their marked differences in biological activities. However, the discus-
sion in detail is beyond the scope of this review, but the reader can refer to the work by
Ciavatta, et al. [90], where the origin, structure, and bioactivity of dolastatins are discussed.

These compounds were initially isolated from the sea hare Dolabella auricularia and,
later, from various marine cyanobacteria (Table 2). Among these highly diverse compounds,
dolastatin 10 and 15 (Figure 12) show the most remarkable anticancer activities in the in vitro
and in vivo models.
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Members of this family (dolastatins 10 and 15) are potent microtubule depolymerizers
that induce cell cycle arrest in the G2/M phase and trigger apoptosis in several tumor cell
lines (Table 8). Dolastatin 10 is a linear peptide originally isolated from a cyanobacterium
of the genus Symploca, later reclassified as Caldora penicillata [73]. This molecule exerted
cytotoxic activity against KB, LoVo, A549, and DU-145 cells, with IC50 values of 0.052, 0.076,
0.97, and 0.5 nM, respectively [91–93]. Similarly, dolastatin 10 exhibited cytotoxic activity
against human lymphoma cell lines, small-cell lung cancer cells, human colon cancer cells,
and ovarian tumor cells, with IC50 values ranging from 0.00013 to 1.8 nM [94–96].

Table 8. Dolastatins and symplostatins activities on the cancer cell lines.

Cell Line (IC50
Values in nM)

Dolastatin (D) or Symplostatin (Sy)
References

D10 D15 Sy1 Sy3

KB 0.052 0.15–0.20 3.9

[91–99]

LoVo 0.076 0.34–0.50 10.3
A549 0.97 0.74
MDA-MB-435 0.15
SK-OV-3 0.09
NCI/ADR 2.9
DB, HT, RL, SR 0.00013–0.13 0.0013 to 0.13
H82, H446, H69,
H510 0.032–0.184

BE, HT-29, MAWI,
SW480, SW620 0.018–0.16 0.12–2.24

A2780, CHI, 41M,
HX/62 0.046–1.8 0.061–10

L1210 0.4 3
DU-145 0.5
HCT-116 2.2
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Dolastatin 10 also displays in vivo cytotoxic activity against several models, including
NCI-H446 [95] and ovarian carcinoma xenografts [96]. Owing to its mechanism of action
and cytotoxic potency at the nanomolar level, dolastatin 10 entered phase I and II clini-
cal trials for the treatment of cancer. Still, it was considered ineffective as an anticancer
agent due to dose-limiting side effects, such as neuropathy, and its clinical development
stopped [8,100,101]. Afterward, due to structure–activity relationship (SAR) analyses, a
series of analogs named auristatins were developed; however, these also proved ineffec-
tive in clinical trials due to their toxicity. To reduce the toxicity derived from their low
selectivity, auristatins were joined to a linker to facilitate their conjugation to monoclonal
antibodies, leading to the generation of ADCs and the development of the Food and Drug
Administration (FDA)-approved ADC brentuximab vedotin (Adcetris) and polatuzumab
vedotin (Polivy). Currently, brentuximab vedotin is used to treat Hodgkin’s lymphoma and
anaplastic large cell lymphoma [102,103], and polatuzumab vedotin is used in combination
with bendamustine and a rituximab product for the treatment of relapsed or refractory dif-
fuse large B-cell lymphoma [104]. These drugs consist of monomethyl auristatin E (MMAE)
chemically conjugated to the antiCD30 and antiCD79b antibodies, respectively, which
target tumor cells and selectively deliver MMAE to induce apoptosis. Consequently, de-
signing and utilizing the auristatin family members within ADCs has been an active area of
investigation, given its role in delivering the drug to antigen-positive tumor cells [105–107].

Dolastatin 15, a linear depsipeptide initially isolated from the sea hare Dolabella au-
ricularia and recently from the marine cyanobacteria VPG14-73 and VPG16-8 [97] exerted
cytotoxic activity against HCT-116 and A549 cancer cells with IC50 values of 2.2 and 0.74 nM,
respectively [92,97]. This molecule also exhibited cytotoxic activity against human lym-
phoma, colon cancer, and ovarian tumor cells, with IC50 values ranging between 0.0013 and
10 nM [94,96]. Dolastatin 15 was slightly inferior to dolastatin 10 in terms of anticancer
activity against the human ovarian carcinoma xenografted model [96]. Similar to dolastatin
10, dolastatin 15 and a series of analogs have been evaluated in clinical trials for the treat-
ment of cancer, synthadotin (ILX-651) being a promising synthetic derivative for locally
advanced or metastatic melanoma, since it showed low toxicity and has completed phase I
and II clinical research [108,109]. Nevertheless, dolastatin 15 and other analogs have not
succeeded beyond phase II clinical trials for their lack of efficacy [6,8].

Other dolastatins isolated from cyanobacteria also show cytotoxic activity at the
nanomolar level (Table 8). Dolastatin 16, a cyclic depsipeptide isolated from Lyngbya ma-
juscula and Symploca cf. hydnoides, exerted cytotoxic activity against NCI-H460, KM20L2,
SF-295, and SK-MEL-5 cells, with IC50 values of 0.96, 1.2, 5.2, and 3.3 ng mL−1, respec-
tively [110]. Similarly, symplostatin 1 and 3 exhibited cytotoxic activity against several cell
lines (KB, LoVo, MDA-MB-435, SK-OV-3, and NCI/ADR), with IC50 values ranging from
0.09 to 10.3 nM [91,98,99]. Moreover, symplostatin 1 proved its potent antitumor activity
against a drug-insensitive mammary tumor and a drug-insensitive colon tumor but also
showed high toxicity [91].

2.7. Linear Lipopeptides
2.7.1. Almiramides

Almiramides are lipopeptides isolated from the cyanobacteria Lyngbya majuscula
and Oscillatoria nigroviridis. These compounds have exhibited toxic properties in various
organisms. However, these properties also allow them to exert cytotoxicity against several
tumor cell lines. In this sense, almiramides B and D (Figure 13) exhibited cytotoxic effects
against the human tumor cell lines A549, MDA-MB-231, HT-29, HeLa, and PC3, with
concentrations ranging from 13 to 107 µM. MDA-MB-231 cells were the most sensitive line
to almiramide B, with an IC50 of 13 µM, whereas the HeLa cell line was the most susceptible
to almiramide D, with an IC50 of 17 µM [111].
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2.7.2. Microcolins

Microcolins are lipopeptides isolated from the cyanobacteria Moorea producens and
Lyngbya polychroa (Figure 14).
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Microcolins A–M induce significant cytotoxicity against NCI-H460 human lung cancer
cells, with IC50 values ranging from 6 nM to 1 µM, microcolin A being the most cytotoxic
molecule of this family against this cell line [112]. On the other hand, microcolins A and B
and deacetylmicrocolin B inhibit HT-29 and IMR-32 cell growth, with IC50 values ranging
between 0.28 and 14 nM [113].
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2.7.3. Wenchangamides

Wenchangamide A (Figure 15a) is a lipopeptide recently isolated from the marine
filamentous cyanobacteria Neolyngbya sp. Wenchangamide A showed growth inhibitory
activity against HCT-116 human colorectal cancer cells with IC50 values of 38 µM. This
effect was related to cell cycle arrest at the G2/M phase and the induction of apoptosis.
However, the same cell cycle arrest or apoptosis pattern was not observed in normal human
dermal fibroblasts (NHDF), suggesting a specificity to cancer cells [14]. Wenchangamide A
has a structural resemblance to minnamide A (Figure 15b), a cyanobacterial natural product
of Okeania hirsute. However, the main structural differences are the length polypeptide
core scaffold and the longer fatty acid tail. Minnamide A has an N-Me-Val–Ser–N-Me-Val
moiety instead of the N-Me-Phe group present in Wenchangamide A. Similarly, minnamide
A showed cytotoxic activity in HeLa with an IC50 value of 0.17 µM, inducing necrosis
through the generation of lipid ROS [114].
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2.8. Cyclic Lipopeptides
Hectochlorins

Hectochlorins are cyclic lipopeptides that have demonstrated strong abilities to pro-
mote actin polymerization, and their structure resembles the lyngbyabellins class of com-
pounds. Hectochlorin (Figure 16a) showed cytotoxic activity against CA46, KB, and NCI-
H187 cells, with IC50 values of 0.02, 0.86, and 1.2 µM, respectively. It also caused the arrest
in the G2/M phase of the cell cycle in CA46 cells [115,116]. Hectochlorin was also tested
on the NCI-60 panel of cancer cell lines and showed the highest potency against the colon,
kidney, and melanoma cancer cell lines, with an average GI50 of 5.1 µM [115]. On the other
hand, hectochlorin B (deacetylhectochlorin), originally isolated from the sea hare Bursatella
leachii and, later, from the marine cyanobacterium Moorea producens [117], exerted cytotoxic
activity against the KB and NCI-H187 cell lines, with IC50 values of 0.31 and 0.32 µM,
respectively [116].
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2.9. Peptolides
2.9.1. Lyngbyabellins

Lyngbyabellins are cyclic or heteromeric depsipeptides and lipopeptides isolated from
various marine cyanobacteria that display thiazole rings, hydroxy acid residues, and an
acyl group with distinctive chlorination at the penultimate carbon atom [118] (Figure 17).
Several lyngbyabellins have been reported to exhibit cytotoxicity against various cancer
cell lines by disrupting the actin cytoskeleton [119,120].
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Lyngbyabellins A–D exhibited moderate cytotoxicity against KB and LoVo cells, with
IC50 values below 5.3 µM [119,121–123]. Similarly, lyngbyabellins E–I showed cytotoxicity
against NCI-H460 human lung tumor cells and Neuro-2a mouse neuroblastoma cells, with
LC50 values ranging between 0.2 and 4.8 µM [120]. On the other hand, Choi, et al. [118]
evaluated the cytotoxicity of lyngbyabellins K–N against HCT-116 and NCI-H460 cancer
cells, lyngbyabellin N being the only molecule that presented cytotoxicity with an IC50 value
of 40.9 nM for HCT-116 and values between 0.0048 and 1.8 µM for NCI-H460. Meanwhile,
lyngbyabellins A, B, H, J, and P and 27-deoxylyngbyabellin A were evaluated against
several cancer cell lines (HT-29, HeLa, MCF7, and CA46) and showed cytotoxic activity
with IC50 values that oscillated between 7.3 nM and 9 µM, 27-deoxylyngbyabellin A being
the most potent molecule against the HT-29 and HeLa lines, lyngbyabellin H against MCF7
cells, and lyngbyabellin B against CA46 cells (Table 9) [115,124–126].

Table 9. Lyngbyabellin analog activities on cancer cell lines.

Lyngbyabellin Cell Line
ReferencesHT-29 HeLa KB LoVo NCI-H460 Neuro-2a HCT-116 MCF7 CA46

A 0.047 * 0.022 * 0.03 ** 0.5 **

[115,118–120,122–126]

27-Deoxy A 0.012 * 0.0073 * 0.31 *
B 1.1 * 0.71 * 0.1 ** 0.83 ** 0.1 *
C 2.1 5.3
D 0.1
E 0.4 ‡ 1.2 ‡

F 1 ‡ 1.8 ‡

G 2.2 ‡ 4.8 ‡

H 0.2 ‡ 1.4 ‡ 0.07 *
I 1 ‡ 0.7 ‡

J 0.054 * 0.041 *

N 0.0048–1.8
* 0.0409 *

P 9 *

* IC50 Values in µM; ** IC50 Values in µg mL−1; ‡ LC50 Values in µM.

2.9.2. Majusculamides

Majusculamides are cyclopeptolides isolated from the marine cyanobacterium Lyngbya
majuscule with important cytotoxic properties (Figure 18).
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Majusculamides C and D exhibited cytotoxic activity against several cell lines, with
IC50 values ranging from 0.32 nM to 1.3 µM [127,128]. In addition, desmethoxymajuscu-
lamide C exhibited potent cytotoxicity against various cancer cell lines by disrupting the
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cytoskeletal actin microfilament networks, the human colon carcinoma cell line HCT-116
being the most sensitive, with an IC50 value of 20 nM (Table 10 ) [129].

Table 10. Majusculamide analog activities on cancer cell lines.

Cell Line
Molecules

References
Majusculamide C Majusculamide D Desmethoxy C

PANC-1 0.32

[127–129]

U251N 36.8
HepG2 1396
NCI-H125 147
P388 3.3 *
SF-295 33 *
HCT-116 20
H-460 63
MDA-MB-435 220

IC50 values in nM. * GI50 values in ng mL−1.

2.9.3. Patellamides

Patellamides (Figure 19), members of the cyanobactin superfamily, are cyclic oc-
tapeptides that contain oxazolines and thiazoles [130] and are produced by the marine
cyanobacterium Prochloron didemni, the symbiont of ascidian Lissoclinum patella [16,130].
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Patellamides display several biological activities, including cytotoxicity and the ability
to reverse multidrug resistance. Patellamides A–C showed cytotoxic activity against the
L1210 cell line, with IC50 values ranging from 2 to 3.9 µg mL−1. In addition, patellamide
A was active against CEM acute leukemia cells, with an IC50 of 0.028 µg mL−1 [131]. On
the other hand, patellamides B–D acted as resistance-modifying agents in the multidrug-
resistant CEM/VLB100 human leukemic line towards vinblastine, colchicine, and adri-
amycin treatments [132,133].
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2.10. Polyketides
2.10.1. Aplysiatoxins

Aplysiatoxins embody a 45-member family of metabolites, from which eleven have
shown variable cytotoxic effects, while others have even demonstrated tumor growth.

Aplysiatoxin producers are members of the orders Oscillatoriales (Lyngbya majuscula,
Lyngbya sp., Oscillatoria nigroviridis, Oscillatoria sp., Moorea producens, and Trichodesmium
erythraeum) and Synechococcales (Schizothrix calcicola). Some of these molecules strongly en-
hance the protein kinase C (PKC) activity and elicit potent tumor-promoting actions [134,135].
However, other compounds from this family have shown cytotoxic effects against several
cell lines. Notably, eleven aplysiatoxins showed cytotoxic activity against L1210 mouse
leukemia cells at concentrations ranging between 4.6 and 10 µg mL−1 [136–138], oscilla-
toxin I (Figure 20) being the most potent molecule against this cell line, with an IC50 of
4.6 µg mL−1 [139].
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2.10.2. Caldorazole

Caldorazole (Figure 21) is a new polyketide that contains two thiazole rings and an
O-methylenolpyruvamide moiety. This compound was recently isolated from the marine
cyanobacterium Caldora sp. The molecule showed strong growth inhibitory activity against
solid tumor cell lines HeLa, CaSki, and HT-1080, with IC50 values of 0.023, 0.068, and
0.074 µM, respectively. In addition, it exhibited cytotoxic activity against three HeLa cell
lines (HeLa, HeLa S3, and HeLa S3Mer–), with IC50 values ranging between 0.023 and
0.048 µM. Interestingly, caldorazole was shown to inhibit energy metabolism in cancer
cells by blocking mitochondrial complex I activity, leading to selective cytotoxicity against
human solid tumor cell lines under glucose-restricted conditions [140].
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2.11. Metabolites from Other Chemical Families
2.11.1. Iezoside

Iezoside (Figure 22) is a novel peptide–polyketide hybrid glycoside isolated from the
marine cyanobacterium Leptochromothrix valpauliae. According to Kurisawa, et al. [141], this
molecule is the first natural product that contains a 2,3-O-dimethyl-α-l-rhamnose branch
between an α,β,γ,δ-unsaturated amide group and a conjugated diene group. In addition,
this compound includes a main chain composed of an odd number of carbon atoms and a
β-branch methyl group in the polyketide moiety, two unusual structural features.
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This compound showed potent antiproliferative activity against HeLa cells, with an
IC50 value of 6.7 nM, cell cycle delay, and spindle-like morphological changes. Iezoside
exerts its antiproliferative activity by inducing endoplasmic reticulum (ER) stress via the
inhibition of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), a membrane protein on
the ER that transports Ca2+ from the cytosol into the ER, which activates both the cell-cycle
delay and the apoptosis-signaling pathways [141].

2.11.2. Santacruzamate A

Santacruzamate A (Figure 23) is an HDAC inhibitor isolated from the marine cyanobac-
terium cf. Symploca sp. Santacruzamate A (CAY10683) is an organooxygen and organonitro-
gen compound derived from a gamma amino acid. Gromek, et al. [142] depicted that this
compound consists of three structural moieties: an ethyl carbamate terminus, a modified
γ-aminobutyric acid (GABA) linker, and a phenethylamine cap group.
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This molecule was first believed to be a potent and selective HDAC2 inhibitor (IC50
0.019 and 0.112 nM for the natural and synthetic compounds, respectively) and a cytotoxic
agent against HCT-116 colon carcinoma cells and HuT-78 cutaneous T-cell lymphoma
cells [143]. Nevertheless, a later study by the same research group showed that santacruza-
mate A inhibited all 11 HDACs at a concentration of 10 µM, with little to no inhibition at
5 µM, indicating that the IC50 values for these isozymes all are in the 5–10 µM range. In
addition, it was not cytotoxic against HCT-116 and HuT-78 cells [142].

Recently, Zhou, et al. [144] showed that the individual treatment of santacruzamate A
or individual therapy with tacedinaline (selective HDAC1 inhibitor) did not show cytotoxi-
city toward hepatocellular carcinoma cells (HepG2 and Huh7). Interestingly, a combined
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therapy of santacruzamate A with tacedinaline showed growth inhibition, cell cycle pro-
gression changes, and apoptosis induction in the HepG2 and Huh7 cell lines. Additionally,
Zhang, et al. [145] showed that the combined treatment of santacruzamate A with imatinib
exerted a synergistic effect on the inhibition of cell viability, induction of apoptosis, and
cell cycle arrest in the G2/M phase in imatinib-resistant chronic myeloid leukemia (CML)
cells. At the same time, it produced minimal effects on normal CD34+ cells. In addition,
using a xenograft mouse model, the combination treatment suppressed CML proliferation
in vivo, extending the overall survival without causing apparent weight loss or toxicity. The
authors suggested that these effects occur primarily through HDAC2 inhibition, implicating
the modulation of the PI3K/Akt signaling pathway. Interestingly, individual santacruza-
mate A treatment also showed inhibition of the viability and induction of apoptosis in
imatinib-resistant CML cells (LAMA84, K562, and mononuclear cells from patients), as well
as anticancer effects in vivo, but less pronounced than combination therapy. Furthermore,
santacruzamate A reduced the tumorigenic ability of WM451 and A375 cells; increased
their radiosensitivity in the subcutaneous sarcoma mouse model; and decreased the HIF-1α,
Ki67, and LDHA protein levels in tumor tissues of mice [146]. Therefore, it is necessary to
continue exploring the biological origin of these activities to propose their potential efficacy
in cotreatments with antineoplastic drugs.

Despite these contrasts, the investigation of santacruzamate A synthetic derivatives
has shown cytotoxic activity against MCF7 and HCT-116 cells, with IC50 values between
0.476 and 23.7 µM. [142,147]. Among these analogs, the synthetic derivative (4), a tert-
butyldimethylsilyloxy (OTBS) cap group analog with an intact ethyl carbamate and GABA-
derived linker groups, exhibited the most cytotoxic activity against MCF7 cells, with an IC50
of 13.8 µM. In contrast, no cytotoxic activity was found in noncancerous peripheral blood
mononuclear cells (PBMC) [142]. On the other hand, the synthetic derivative (5) containing
a cap group analog with an intact ethyl–carbamate moiety showed the most antiprolifera-
tive activity against HCT-116 cells, with an IC50 of 0.476 µM [147]. In addition, an HDAC
inhibitory activity was not detected in these analogs, suggesting that their cytotoxic activity
is exerted by an HDAC-independent mechanism.

3. Future Perspectives

Despite the research efforts in recent decades, cancer incidence and mortality con-
tinue to rise. According to the World Health Organization (WHO), cancer is one of the
leading causes of death worldwide, with almost 10 million deaths in 2020, generating a
significant public health problem, since it causes great loss of human lives and economic
resources [148,149]. To face this public health problem, a wide range of experimental
approaches have been proposed recently to address the challenges associated with the
development and progression of cancer. Unfortunately, these efforts not only have resulted
in marginal advances, but it is well-known that the drugs currently used for anticancer
therapies have significant side effects in these patients, impacting their quality of life.
This scenery has encouraged scientists to search for new biologically active compounds
that represent promising strategies for developing therapeutic agents used in treating
this disease.

Recently, marine natural products and their derivatives have been recognized as impor-
tant sources of new chemical structures with potential for the development of therapeutic
agents, since, in addition to their structural diversity, they represent novel mechanisms of
action for several biological processes [6,150]. One of the elements associated with the great
variety of activities is the broad spectrum of secondary metabolites in various organisms.
Secondary metabolites fulfill essential functions during interactions between the organ-
ism, other organisms, and their environment as defense compounds or signal molecules.
However, these metabolites could also represent promising chemical strategies for disease
control or eradication. Cyanobacteria have been identified as one of the most promising
organisms, as they are responsible for producing a strikingly distinct group of secondary
metabolites with a wide range of bioactivities. These bioactivities include antiprolifera-
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tive, antimicrobial, antifungal, antituberculosis, antisuppressive, and anti-inflammatory,
as the potential anticancer effects worthy of emphasis [7,32]. Some of the cyanobacte-
rial compounds and their analogs have been successfully used in clinical trials against
cancer [8,151], and to date, more than 1600 molecules of cyanobacterial origin have been
isolated. Most of these compounds (148 families of metabolites, 53% of families of metabo-
lites) are produced by marine cyanobacteria [2]. Nonetheless, aplysiatoxins, aurilides,
dolastatins, patellamides, and swinholide-type compounds have also been isolated from
various marine non-cyanobacterial organisms, such as mollusks [93,152], ascidians [132],
and sponges [153,154], which makes the true biosynthetic origin of this class of natural
products confusing and ambiguous. Although there is much debate in the literature, several
studies have suggested that these compounds are produced by cyanobacteria that act as
symbionts with these organisms or due to the ability of marine organisms to sequester,
store, and use secondary metabolites from cyanobacteria as a chemical defense mechanism
against predators or even to compete for nutrients and space [16,154–156].

Despite the large number of compounds reported in the literature, the search for
natural marine products with pharmacological properties still presents some critical chal-
lenges, such as the difficult access to various regions of the ocean, the insufficient quantities
of isolated compounds, and the lack of available information on the genomes of several
producer organisms. The difficulties are likely to be overtaken using innovative technolo-
gies that can assist in obtaining, isolating, evaluating, and identifying compounds and
their producer organisms. These technologies include extreme environment sampling,
hyphenated techniques for structural determination at the nanomole scale, nanomole NMR
techniques, computational chemistry and database, genome mining, molecular networking,
and others [157–159]. These approaches will allow the search for new bioactive marine
compounds more efficiently and will lead to the identification of new molecules, improving
the response to existing antitumor treatments and/or representing an important source of
new chemical structures with importance for the development of antineoplastic drugs.

In this review, an effort has been made to present cytotoxic, antineoplastic, and
antiproliferative compounds of marine cyanobacterial origin, the producing species, and
the reported mechanisms of action underlying their pharmacological activities.

It is essential to emphasize that the metabolites-producing cyanobacteria were refer-
enced in the present review as described in the original articles. The genera Moorea, Okeania,
Limnoraphis, and Microseira, previously grouped in the genus Lyngbya, have been recently re-
assigned based on molecular and phylogenetic analyses, and according to Demay, et al. [2],
some previously morphologically identified marine strains, such as Lyngbya majuscula
and Lyngbya sordida, have been renamed as Moorea producens. In addition, some Lyngbya
bouillonii strains have been renamed Moorea bouillonii [2]. Moreover, marine cyanobacteria
specimens traditionally identified as Lyngbya penicilliformis and Symploca spp. have been
assigned to the new genus Caldora, designating C. penicillata as a generitype [73].

Some of the families of metabolites shown here have exhibited substantial cytotoxicity
and antineoplastic activities against several cancer cell lines at the nanomolar level. Among
these compounds, apratoxins, aurilides, bisebromoamides, carmaphycins, dolastatins,
coibamide A, iezoside, and largazole can be mentioned. The mechanisms involved in
their cytotoxicity are diverse. Still, some families of metabolites exert similar mechanisms
(Figure 24), such as bisebromoamides, hectochlorins, lyngbyabellins, majusculamides, and
swinholide-type, which impair the actin cytoskeleton; largazole and santacruzamate A,
which are HDAC inhibitors; and apratoxins and coibamide A, which inhibit the trimeric
Sec61 translocon, causing diverse cellular responses, depending on the cell type. Further-
more, some families show other interesting mechanisms, such as dolastatins, causing the
depolymerization of microtubules, carmaphycins inhibiting the 20S proteasome, aurilides
binding to PHB1 leading to mitochondrial fragmentation, caldorazole blocking mitochon-
drial complex I activity, iezoside inhibiting SERCA, and patellamides preventing multidrug
resistance. Although the mechanisms of action of many marine cyanobacterial compounds
are unknown, the ability to induce apoptosis has been observed. This effect has been related
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to several apoptotic markers, such as cell cycle arrest, promotion and activation of the
caspase cascade, and modification of the levels of specific proapoptotic proteins [160,161].
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In this review are also included some underreported families of metabolites, such
as anaenamides, bartolosides, caylobolides, cocosamides, almiramides, microcolins, and
aplysiatoxins. In this sense, the lack of interest in these families could be due to their
lower potency (µM range) compared to other families of metabolites (nM range). However,
compounds of these or other underexplored families of metabolites could have unknown
cytotoxic mechanisms of action or could exhibit greater profiles of selectivity towards
cancer cells compared to normal cells. Unfortunately, these parameters have scarcely
been explored in most compounds of cyanobacterial origin. Moreover, most neoplasms
have a marked resistance to chemotherapeutic agents, even in in vitro models, such as
the well-documented case of temozolomide (TMZ) in cells derived from glioblastomas.
A concentration in the range of 500–1000 µM is required to reach an IC50 [162] on these
cells, not to mention that these chemotherapeutic agents, currently used in cancer therapy,
have significant negative impacts on normal cells. Therefore, the fact that these little-
explored families may have new cytotoxic mechanisms of action, mechanisms to avoid
drug resistance, and/or selectivity profiles suitable for the development of new anticancer
agents cannot be ignored, which is further incentive to continue exploring in greater detail
the bioactive properties of the under-explored families of cyanobacteria.

On the other hand, it has been proven that apratoxins and coibamide A can be toxic
against normal cells; however, their high levels of cytotoxicity against tumor cells make
them interesting lead compounds. Therefore, structural modifications are required to
generate analogs with differential cytotoxicity profiles that lead to the development of
more potent and selective anticancer drugs. In fact, several studies have evaluated the
synthetic analogs of these compounds, as mentioned in their respective sections, finding
that some show greater efficacy than the original molecule, in addition to presenting less
toxicity in vivo. Moreover, due to its novel mechanism of action, which downregulates the
receptors and growth factor ligands through the inhibition of the Sec61 protein translocation
channel, it is expected that these compounds may be helpful in the treatment of neoplasms
stimulated mainly by secreted growth factors, such as colorectal, hepatocellular, and
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pancreatic carcinomas [50], and/or for the treatment of highly vascularized tumors, such
as renal, hepatocellular, and neuroendocrine carcinomas [51].

Furthermore, cancer cells show a great diversity of genetic and epigenetic changes
and the capacity to regulate certain protein levels to promote cell survival, proliferation,
and/or to inhibit normal cell death mechanisms [163,164]. Recently, the expression levels
of SERCA isoforms have been an active area for cancer research due to their role in evading
apoptosis and activating metabolic stress, recognizing their regulation as a promising
drug target for cancer treatments [165]. Similarly, due to the reprogramming of energetic
metabolism in cancer cells, many tumors are primarily glycolysis-dependent, attracting
substantial attention to glycolysis inhibition as a new central issue for drug development
against specific tumors [164]. In this sense, it is expected that largazole, iezoside, and
caldorazole may be useful for developing drugs that can assist in treating neoplasms with
these particular hallmarks.

In addition to the anticancer effects in preclinical models, several marine cyanobacterial-
derived compounds have emerged as templates for developing new anticancer drugs. Ex-
amples of these are the FDA-approved brentuximab vedotin (Adcetris) and polatuzumab
vedotin (Polivy), drugs inspired by the compound dolastatin 10. It should be noted that
several synthetic derivatives of the different molecules from the aforementioned families of
metabolites are in clinical studies to treat several types of cancer [8,105], and many more
are expected to enter clinical trials due to new approaches to designing ADCs and PDCs.

Recent advances in molecularly targeted therapies against cancer represent revolu-
tionary approaches to treating these patients. Bioactive antineoplastic molecules isolated
from cyanobacteria constitute an optimistic scenario for the discovery and design of the
so-called “undruggable” anticancer agents. Even when intensive research for the devel-
opment and clinical testing of these innovative molecular agents is needed, the potential
of these targeted treatments might constitute a hallmark of unprecedented progress for
cancer patients with few therapeutic options. One of the main goals in cancer research is
to propose personalized or combined therapies, for which further research to elucidate
the cellular mechanisms or death pathways related to the antineoplastic molecules from
marine cyanobacterial origin is essential.

Finally, there are other major challenges in this area—for instance, (i) the isolation and
identification of new organisms; (ii) having access to these organisms for research purposes;
and (iii) establishing large-scale culture systems to obtain adequate biomass quantities for
extracting, purifying, characterizing, and evaluating new molecules.

4. Conclusions

Nowadays, cancer is one of the most significant challenges in public health. Secondary
metabolites produced by marine cyanobacteria constitute a promising source of compounds
with potential anticancer effects due to their great structural diversity and novel cytotoxic
mechanisms of action. These compounds are outstanding molecules for developing in-
novative antineoplastic drugs with fewer side effects in patients. Most of the available
information on metabolites isolated from marine cyanobacteria is limited to depicting
their cytotoxic activity in preclinical models without ultimately elucidating the underlying
cytotoxic mechanisms. It is necessary then to highlight that many of these molecules have
been pharmacologically underexplored and could be promising candidates waiting for
more intense efforts to reveal their antineoplastic potential. Therefore, it is expected that,
with the continuous progress in their study, the elucidation of the mechanisms of action
involved in their cytotoxic, antiproliferative, and anticancer effects, as well as biosafety, will
be answered, and some of these molecules will soon be proposed as leading compounds of
interest for developing promising chemotherapeutic agents for clinical treatments.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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