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Odorant binding proteins (OBPs) are proposed to be directly required for odorant

discrimination and represent potential interesting targets for pest control. In the

notoriously agricultural pest Adelphocoris lineolatus, our previous functional investigation

of highly expressed antennal OBPs clearly supported this viewpoint, whereas the findings

of the current study by characterizing of AlinOBP11 rather indicated that OBP in

hemipterous plant bugs might fulfill a different and tantalizing physiological role. The

phylogenetic analysis uncovered that AlinOBP11 together with several homologous

bug OBP proteins are potential orthologs, implying they could exhibit a conserved

function. Next, the results of expression profiles solidly showed that AlinOBP11 was

predominantly expressed at adult mouthparts, the most important gustatory organ of

Hemiptera mirid bug. Finally, a rigorously selective binding profile was observed in the

fluorescence competitive binding assay, in which recombinant AlinOBP11 displayed

much stronger binding abilities to non-volatile secondary metabolite compounds than

the volatile odorants. These results reflect that AlinOBP11, even its orthologous proteins

across bug species, could be associated with a distinctively conserved physiological role

such as a crucial carrier for non-volatiles host secondary metabolites in gustatory system.

Keywords: Adelphocoris lineolatus, odorant binding protein, expression profiles, phylogenetic analysis,

Fluorescence competitive binding assay

INTRODUCTION

Smell is undoubtedly the most important sensory for insects survival and reproduction (Li and
Liberles, 2015; Groot et al., 2016). Olfactory system that can sensitively and selectively detect
biologically active odorants attracts great attention from researchers who attempt to explore
alternative environment-friendly pest management strategy. In insect olfactory signal transduction
pathway, several classes of membrane-bound proteins such as odorant receptor (ORs), ionotropic
receptors (IRs), and sensory neuron membrane proteins (SNMPs) have been proven to play
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central roles in facilitating the conversion of the chemical
message to an electrical signal, while the carrier proteins like
odorant binding proteins (OBPs) or chemosensory proteins
(CSPs) are proposed to bind, deliver and even recognize
specific pheromones and odorants to their relevant receptors
(Jacquin-Joly and Merlin, 2004; Leal, 2013). For decades, various
functional studies toward important olfactory protein families
such as OBPs or ORs actually lead to a quick discovering of some
high-efficiency pest repellents or attractants (Tanaka et al., 2009;
Sun Y. F. et al., 2012; Sun L. et al., 2013). For instance, in the
alfalfa plant bug, A. lineolatus, behavioral active compounds were
successfully screened via ligand binding assay of an antennae
highly expressed AlinOBP10 (Sun L. et al., 2013). Synthetic
compounds targeting OBP3 or OBP7 which was proven to be
responsible for (E)-ß-farnesene perception elicited significantly
behavioral responses in aphids (Sun Y. F. et al., 2012).

Insect OBPs which were first identified in antennal sensillum
of silk moth, Antheraea polyphemus (Vogt and Riddiford, 1981)
belong to the superfamily of small acidic soluble carrier proteins
and could be recognized by six highly conserved cysteines (Leal
et al., 1999; Sandler et al., 2000; Tegoni et al., 2004; Pelosi et al.,
2014). Studies of both immunocytochemical localization and
in situ hybridization revealed that OBPs were synthesized by
non-neuronal auxiliary cells (trichogen and tormogen cells) and
secreted into the sensillum lymph with a very high concentration
(up to 10mM) (Steinbrecht et al., 1995; Hekmat-Scafe et al.,
1997; Michael, 2000; De Santis et al., 2006; Sun Y. P. et al., 2013;
Sun et al., 2014a). So far, various investigations elucidated that
antennal sensillum enriched OBPs indeed played essential roles
in recognition of physiologically relevant odorants (Jacquin-
Joly et al., 2000; Pophof, 2004; Große-Wilde et al., 2006; He
et al., 2010). For example, one subclass of OBP families named
pheromone binding proteins, PBPs, was highly abundant in
long trichoid sensilla and showed significantly specific binding
affinities to insect sex pheromones (Vogt and Riddiford, 1981;
Krieger et al., 1996; Leal et al., 1999; Klusák et al., 2003; Pophof,
2004; Große-Wilde et al., 2006; De Santis et al., 2006). Sensilla
basiconica expressed OBPs were proposed to be involved in
terpenoids or other plant volatiles detection (Feng and Prestwich,
1997). Meanwhile, in two Lepidopteran species, the cotton
leafworm Spodoptera littoralis (Poivet et al., 2012) and the
diamondback moth Plutella xylostella (Zhu et al., 2016), OBPs
were even demonstrated to be associated with the interesting
behavior why larvae are attracted by conspecific moth sex
pheromone.

However, the functions of insect OBPs may be more
complicated and could not be restrict within olfactory cue
recognition. In Drosophila melanogaster, most OBPs were
detected in both gustatory and olfactory sensilla and some
numbers were even expressed exclusively in taste organs (Galindo
and Smith, 2001). Jeong et al. (2013) proposed that feeding
behavior of D. melanogaster can be suppressed by a gustatory
organ expressed OBP49a responding to bitter compounds.
Two OBP genes, Obp57d and Obp57e in D. sechellia have
been demonstrated to be involved in the evolution of taste
perception and host-plant preference (Matsuo et al., 2007).
Particularly, expressions of Aedes aegypti OBP22 in antennae

and reproductive organs indicated its multiple functions (Li
et al., 2008). Likewise, physiological roles of male reproductive
organs expressed orthologous OBP10 in two sibling moth species
has been proposed to act as a specific carrier for female
oviposition deterrents that could helpHelicoverpa offspring avoid
cannibalism (Sun Y. L. et al., 2012).

The alfalfa plant bug, A. lineolatus, a typical polyphagous
insect pest outbreaks frequently in cotton field since the
transgenic Bacillus thuringiensis cotton largely cultivation in
China (Lu et al., 2010). Worse still, flight behavior enable it to
migrate among different host plants (Lu et al., 2009), and many
other important crops like alfalfa (Medicago sativa L.), green bean
(Phaseolus vulgaris), and tea plant (Camellia sinensis) suffer from
its serious destroy (Lu and Wu, 2008). Evidence suggested that
this bug heavily relies on chemical cues for host plant location
and migration (Lu and Wu, 2008). Thus, studies aiming at the
physiological and molecular basis of insect chemosensation may
help explore an alternatively effective pest control method.

Previously, 14 OBP transcripts of A. lineolatus were
identified (Gu et al., 2011a) and functional studies of several
antennae highly expressed OBPs such as AlinOBP1, AlinOBP5,
AlinOBP10, and AlinOBP13 indicated their potential olfactory
roles (Gu et al., 2011b; Sun L. et al., 2013; Wang et al., 2013;
Sun et al., 2014a). Subsequently, Hull et al. (2014) identified
33 putative OBP transcripts in the tarnished plant bug, Lygus
lineolaris, and suggested that several OBP genes included
LylinOBP19 can be expressed in gustatory organs, implying they
may be related to taste compound detected. However, whether
OBPs could express at taste organs and fulfill potential gustatory
functions in A. lineolatus remains largely unknown. In the
current study, we mainly focus our attention on AlinOBP11, a
putative orthologous OBP gene of LylinOBP19 in A. lineolatus
and our current results of tissue distribution pattern, ligand
binding assay, and phylogenetic analysis would provide detail
cues for its functional discussion.

MATERIALS AND METHODS

Insect Rearing and Tissue Collection
A. lineolatus adults were collected from alfalfa fields at
the Langfang Experimental Station of Chinese Academy of
Agricultural Sciences, Hebei Province, China. The laboratory
colony was established in plastic containers (20 × 13 × 8 cm),
which were maintained at 29 ± 1◦C, 60 ± 5% relative humidity,
and 14 h light:10 h dark cycle. The adults and newly emerged
nymphs were reared on green beans and 10% honey. Different
tissues fromA. lineolatus adults of both sexes including antennae,
mouthparts, heads (without antennae andmouthparts), thoraxes,
abdomens, legs, and wings were collected for qRT-PCR. Each
tissue was collected from three biological pools and all the
specimens were immediately stored in−80◦C for further process.

RNA Isolation and cDNA Synthesis
Total RNA of each sample was isolated using the Trizol reagent
(Invitrogen, Carlsbad, CA, USA), and the first-strand cDNA was
synthesized by FastQuant RT-kit with gDNA Eraser (TianGen,
Beijing, China) according to the manufacturer’s instructions.
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qRT-PCR
qRT-PCR assay regarding different developmental stages and
tissues were carried out using an ABI 7500 Real-Time PCR
System (Applied Biosystems, Carlsbad, CA). Two house-keeping
genes Alinβ-actin (GenBank No.GQ477013) and AlinElongation
factor (GenBank No.AEY99651) were used as endogenous
controls to normalize the target gene expression and correct
for sample-to-sample variation. Taqman primers of Alinβ-
actin and AlinOBP11 cited Gu et al. (2011a) and primers of
AlinElongation factor were designed using Primer Express 3.0
(Applied Biosystems) and listed in Table S1. For the qRT-PCR
reaction, the cDNA was diluted to concentration of 200 ng /µL.
Each reaction was performed in a 25µL mixture of 12.5µL
of Premix Ex Taq (TaKaRa), 1µL of each primer (10mM),
0.5µL probe (10mM), 0.5µL of Rox Reference Dye II, 1µL of
sample cDNA (200 ng), and 8.5µL of sterilized H2O. Negative
controls were non-template reactions (H2O instead of cDNA).
The reaction cycling parameters were as follows: 95◦C for 10 s, 40
cycles at 95◦C for 20 s, 60◦C for 34 s. For the data reproducibility,
qRT-PCR reaction for each sample was performed in three
technical replicates and three biological replicates. Since our
preliminary experiment demonstrated that the amplification
efficiency between targeted genes and reference gene was similar
(data not shown), the comparative 2−11CT method was used to
calculate the relative quantification between tissues (Livak and
Schmittgen, 2001).

The comparative analyses of target gene among different
tissues and developmental stages were determined using a one-
way nested analysis of variance (ANOVA), followed by Tukey’s
honestly significance difference (HSD) test using the software
SPSS Statistics 18.0 (SPSS Inc., Chicago, IL, USA).

Phylogenetic Construction and Selective
Pressure Analysis
The 92 OBP sequences of five mirid bug species (GenBank
accession numbers and references can be seen in Table S2) were
used to infer the evolutionary history with the software MEGA
6.0 with a p-distance model and a pairwise deletion of gaps
(Tamura et al., 2013). The bootstrap support of tree branches
was assessed by re-sampling amino acid positions 1000 times.
Estimation of the non synonymous (dN) to synonymous (dS)
substitution rate (ω) was performed by the maximum likelihood
method (Anisimova et al., 2001) using the Codeml program in
the PAML 4.6 package (Yang, 1997).

Western Blot Assay
The polyclonal antiserum against the recombinant AlinOBP11
was produced by injecting robust adult rabbits subcutaneously
and intramuscularly with the highly purified recombinant
protein. Recombinant protein was emulsified with an equal
volume of Freund’s complete adjuvant (Sigma, St. Louis,
MO, USA) for the first time injection (500µg) and then
with incomplete adjuvant for the three additional injections
(300mg each time). The interval between each injection was
approximately half a month, and blood was collected 7 days after
the last injection and centrifuged at 6000 rpm for 20min. The
serum was purified based on a MAb Trap kit (GE Healthcare)

following the manufacturer’s instructions. The rabbits were
maintained in large cages at room temperature, and all of the
operations were performed according to ethical guidelines to
minimize the pain and discomfort of the animals.

Crude extracts from different tissues of female and male
adult bugs included the antennae, mouthparts, legs, wings, and
bodies (without aforesaid parts) were separated on 15% SDS-
PAGE, respectively. Samples were transferred to a polyvinylidene
fluoride membrane (PVDF, Millipore, Carrigtwohill, Ireland) at
the condition of 200mA for 50min, and then membrane was
blocked using 5% dry skimmed milk (BD Biosciences, San Jose,
CA, USA) in phosphate-buffered saline (PBS) containing 0.1%
Tween-20 (PBST) for 2 h at room temperature. After washing
three times with PBST (10min each time), the blockedmembrane
was incubated with purified rabbit anti-AlinOBP11antiserum
(dilution 1:2000) for 1 h. Three times washing with PBST again,
the membrane was incubated with anti-rabbit IgG horseradish
peroxidase (HRP) conjugate and HRP-streptavidin complex
(Promega, Madison, WI, USA) at a dilution of 1:10000 for
1 h. The membrane was then incubated with the western blot
substrates of the enhanced chemiluminescence western blot
kit (CoWinbiotech, China), and the bands were visualized by
exposing to X-OMATBT films (Kodak, New York, USA).

Fluorescence Competitive Binding Assay
The recombinant protein expression and purification was
performed according to our previous protocols (Sun L. et al.,
2013; Sun et al., 2014a). Briefly, the plasmid containing
AlinOBP11 gene was constructed and transformed into
Escherichia coli BL21 (DE3) competent cells for recombinant
protein expression, and the protein was largely induced with
1mM isopropyl ß-D-1-thiogalactopyranoside (IPTG) at 37◦C
for 3–6 h. The purification was performed using two rounds
of Ni ion affinity chromatography (GE-Healthcare), and the
His-tag was removed with recombinant enterokinase (Novagen).
The highly purified proteins were desalted through extensive
dialysis, and then the size and purity of the recombinant proteins
were verified by 15% SDS-PAGE.

For the ligand binding assays, 45 compounds include 41
volatiles and four non-volatiles were selected based on previously
reported isolation from A. lineolatus host plants (Meisner et al.,
1977; Halloin, 1982; Aldrich, 1988; Loughrin et al., 1995; Röse
and Tumlinson, 2004; Millar, 2005). The binding assay was
performed on an F-380 fluorescence spectrophotometer (Tianjin,
China) at room temperature (25◦C) with a 1-cm light path
quartz cuvette and 10-nm slits for both excitation and emission.
The excitation wavelength was 337 nm, and the emission
spectrum was recorded between 390 and 460 nm. Firstly, the
constant of AlinOBP11 with the fluorescent probe N-phenyl-
1-naphthylamine (1-NPN) was measured, a final concentration
of 2µM protein solution in 50mM Tris-HCl (pH 7.4) was
titrated with aliquots of 1mM 1-NPN dissolved in methanol
to final concentrations ranging from 1 to 16µM. Then the
affinities of other ligands were tested through competitive
binding assays using 1-NPN as the fluorescent reporter at a
concentration of 2µM, and the concentration of each competitor
ranged from 2 to 30µM. The fluorescence intensities at the
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maximum fluorescence emission between 390 and 460 nm were
plotted against the free ligand concentration to determine
the binding constants. The bound chemical was evaluated
based on its fluorescence intensity with the assumption that
the protein was 100% active with a stoichiometry of 1:1
(protein: ligand) saturation. The binding curves were linearized
using a Scatchard plot, and the dissociation constants of
the competitors were calculated from the corresponding IC50

values based on the following equation: Ki= [IC50] / (1+
[1-NPN]/K1−NPN), where [1-NPN] is the free concentration of
1-NPN and K1−NPN is the dissociation constant of the complex
protein/1-NPN.

RESULTS

Phylogenetic Tree Construction and
Selective Pressure Analysis
A phylogenetic tree of 92 OBPs was constructed using the
neighbor-joining method to analyze evolutional relationships
between AlinOBP11 and other OBPs of different mirid species.
Figure 1 revealed a divergent OBP repertoire. AlinOBP11 and
four other OBPs i.e., AlucOBP36, AfasOBP11, AsutOBP11,
and LylinOBP19 from each bug species clustered into one
same clade with bootstrap support value up to 74 (Figure 1A).
Sequence alignment analysis showed AlinOBP11 has 94, 95, 94,
and 60% identity to AsutOBP11, AlucOBP36, AfasOBP11, and
LylinOBP19, respectively (Figures 1B,C). These results reflect
AlinOBP11 and these four OBPs form a clear orthologous group
across bug species.

To evaluate potential selective pressure acting on this OBP11
orthologous cluster, we calculated the ratio of non synonymous
to synonymous substitutions (dN/dS or ω) of this cluster with
branch models using PAML and compared the log likelihoods
(lnL) for the one ratio model M0 (assuming one ω ratio for all
branches) and the free ratio model M1 (assuming one ω ratio
for each branch) in likelihood ratio tests. The results uncovered
that the one ratio model (M0) could not be rejected (p >

0.01) and all branches shared a normalized ω ratio of 0.2954
(Figure 1A), implying that purifying selection was acting on
this cluster and AlinOBP11 would share a relatively conserved
physiological function with its orthologous genes (Qiao et al.,
2009; Zhou et al., 2010; Vandermoten et al., 2011).

Specific Tissue and Developmental
Expression Profiles of AlinOBP11
The results of our western blot assay showed that clear protein
bands could be found at mouthparts, legs, antennae as well as
other tissues, which seems that AlinOBP11 can be ubiquitously
expressed at adult tissues of both sexes (Figure 2). To compare
the expression levels of AlinOBP11 among different tissues,
we then conducted the qRT-PCR assay. Interestingly, unlike
previously reported uniformly antennae predominant expressed
AlinOBPs (Gu et al., 2011a; Sun L. et al., 2013; Sun et al.,
2014a), our current results revealed that AlinOBP11 was strongly
expressed at mouthparts, and slightly expressed at legs, antennae,
and other tissues (Figure 3). Meanwhile, AlinOBP11 transcript
abundance varied among different developmental instars and

FIGURE 1 | Sequence alignment and phylogeny of AlinOBP11 with other OBPs identified in five bug species. (A) Neighbor-joining phylogenetic tree was

constructed used MEGA 6.0 with a p-distance model and a pairwise deletion of gaps; The non-synonymous (dN) to synonymous (dS) substitution rate (ω) of OBP11

orthologs was labeled beside its cluster. (B) Sequence alignment was performed using the program ClustalX 2.1 with default gap penalty parameters of gap opening

10 and extension 0.2, and was edited using the GeneDoc 2.7.0 software. (C) The percent identity matrix of OBP11 orthologs is calculated using Vector NTI 10.0.
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FIGURE 2 | SDS-PAGE and AlinOBP11 expression profiles among

different adult tissues of both sexes assessed by western blot

analysis. The results showed that AlinOBP11 was detected at both male and

female adult mouthparts, legs, antennae, and weakly or even undetectably at

other tissues.

significantly higher expression level was observed in adult bugs
(Figure 3).

In vitro Expression and Purification of
AlinOBP11
The recombinant AlinOBP11 was successfully expressed using
a bacterial system. Induced targeted recombinant appeared at
both supernatant and insoluble inclusion bodies and the former
was selected to be purified using two rounds of Ni ion affinity
chromatography (GE Healthcare, Little Chalfont, UK). The
finally purified AlinOBP11 recombinant protein on the sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
analysis displayed a single band (Figure S1).

Ligand-Binding of Recombinant AlinOBP11
Before the ligand-binding analysis, we measured the binding
affinities of fluorescence probe 1-NPN with purified AlinOBP11.
The results showed AlinOBP11 could solidly bind to 1-NPN with
binding affinity of 5.86 ± 0.47µM (Figure 4A). Consequently,
the binding properties of AlinOBP11 to compounds with
different functional groups were analyzed and the results
suggested it had a relatively narrow binding profile. Notably,
all the tested non-volatile compounds showed strong binding

abilities to AlinOBP11, and quercetin was the best ligand (Ki =

2.63 ± 0.23µM), followed by gossypol (Ki = 3.43 ± 0.32µM),
rutin hydrate (Ki = 7.78 ± 1.23µM), and (−)-catechin (Ki

= 15.26 ± 0.70µM). Additionally, the tested host volatiles
such as aliphatic alcohols, aldehydes, ketones, esters, aromatics
could hardly bind to recombinant AlinOBP11, except of three
terpenoids α-phellandrene, nerolidol, and trans, trans-farnesol,
which can bind to AlinOBP11 and their binding constant Ki was
20.07 ± 0.41, 20.76 ± 0.55, and 19.26 ± 1.78µM, respectively
(Figures 4B,C; Table 1).

DISCUSSION

Insect OBPs may serve as important molecular target for
designing and screening new effectively behavioral blocking
agents used in the application of eco-friendly pest management
strategies as they are considered to be strongly expressed in
antennal sensillum lymph and are involved in olfactory cues
discrimination, binding and transduction (Qiao et al., 2009;
He et al., 2011; Sun Y. F. et al., 2012; Pelosi et al., 2013,
2014; Sun L. et al., 2013; Sun et al., 2014a). However, a
plenty of studies suggested that OBPs’ expression patterns are
not restricted in olfactory organs and thus their physiological
functions would be more complex and diversified (Park et al.,
2000; Foret and Maleszka, 2006; Li et al., 2008; Sun Y. F.
et al., 2012; Yuan et al., 2015). To confirm whether OBPs
in the Hemiptera mirid bug species could fulfill putative
gustatory function, in the present study we especially focus on
a putative non-olfactory organ biased OBP gene, the OBP11 in
A. lineolatus.

Previously, Gu et al. identified 14 putative OBP genes from the
antennal cDNA library of A. lineolatus and suggested AlinOBP11
was strongly expressed at adult legs of both sexes (Gu et al.,
2011a). Subsequently, a large number of potential OBP genes
were identified in the tarnished plant bug, L. lineolaris and the
green plant bug, Apolygus lucorum via transcriptome strategy,
and more OBP transcripts were found to be expressed at
gustatory organs such as legs and mouthparts (Hull et al., 2014;
Yuan et al., 2015). Therefore, we firstly re-confirmed the tissue
expression profiles of AlinOBP11 after taking mouthparts into
account, the most important gustatory organs of Hemiptera
species. The results of our western blot analysis revealed that
clear single bands could be seen at mouthparts, legs as well
as antennae of both male and female adult bugs (Figure 2).
Interestingly, we found that relative mRNA level of AlinOBP11
was extraordinarily higher at adult mouthparts of both sexes
than that of previous reported legs and other tissues (Figure 3).
In addition, higher expression level was also observed in adult
bugs than different instars of nymph (Figure 3). If we considered
the tissue distribution patterns of all the 14 identified OBP
genes, according to the inference that mRNA expression is
indicative of physiological function of its encoded protein, a
putative functional subdivision of different OBP genes in the
same species of A. lineolatus would occur and the mouthparts-
biased AlinOBP11 could be separated from other OBPs such
as AlinOBP1, 10, 13 which have been demonstrated strongly
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FIGURE 3 | The relative transcript levels of AlinOBP11 at different developmental stages and adult tissues of both sexes analyzed by qRT-PCR. All data

were normalized to endogenous house-keeping genes Alinβ-actin (GenBank No. GQ477013) and relative fold changes are normalized to transcript level of the first

instar nymph or abdomen. The error bars represents the standard errors, and the different letters a, b, c, and d indicate significant differences (p < 0.05) among

different samples. The similar results were obtained with AlinElongation factor (GenBank No. AEY99651) as internal control (Figure S2).

FIGURE 4 | Fluorescence competitive binding assay. (A) Binding curve and relative Scatchard plot of 1-NPN to AlinOBP11. The dissociation constant of the

AlinOBP11/1-NPN complex was calculated as 5.86 ± 0.47µM. (B) Competitive binding curves of selected host plant compounds to AlinOBP11. (C) The reverse

values of the dissociation constants (Ki) measured with putative ligands of AlinOBP11. A mixture of the recombinant AlinOBP11 protein and

N-phenyl-1-naphthylamine (1-NPN) in 50mM Tris-Hcl buffer (pH 7.4) both at the concentration of 2 µM was titrated with 1mM solutions of each competing ligand to

the final concentration range of 2 to 30 µM. Fluorescence intensities are reported as percent of the values in the absence of competitor. Data are represented as

means of three independent experiments.
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TABLE 1 | Binding affinities of all of the selected compounds to the

recombinant AlinOBP11 protein.

Ligand CAS Number AlinOBP11

IC50 (µM) Ki (µM)

GENERAL ODORANTS

2-Hexanol 626-93-7 u.d. u.d.

Pentanol 71-41-0 u.d. u.d.

Valeraldehyde 110-62-3 u.d. u.d.

Hexanal 66-25-1 u.d. u.d.

Heptanal 111-71-7 u.d. u.d.

Octanal 124-13-0 u.d. u.d.

Nonanal 124-19-6 u.d. u.d.

2-Hexanone 591-78-6 u.d. u.d.

2-Heptanone 110-43-0 u.d. u.d.

2-Octanone 111-13-7 u.d. u.d.

3-Hexanone 589-38-8 u.d. u.d.

6-Methyl-5-hepten-2-one 110-93-0 u.d. u.d.

Amyl acetate 628-637-7 u.d. u.d.

Nonyl acetate 1143-13-5 u.d. u.d.

Undecane 1120-21-4 u.d. u.d.

Indole 120-72-9 u.d. u.d.

Benzaldehyde 100-52-7 u.d. u.d.

3,4-Dimethyl-benzaldehyde 5973-71-7 u.d. u.d.

Acetophenone 98-86-2 u.d. u.d.

Methyl salicylate 119-36-8 u.d. u.d.

GREEN LEAF VOLATILES

1-Hexanol 111-27-3 u.d. u.d.

cis-3-Hexen-1-ol 928-96-1 u.d. u.d.

trans-2-Hexenal 6278-26-3 u.d. u.d.

cis-3-hexenyl acetate 3681-71-8 u.d. u.d.

TERPENOIDS

E-β-Ocimene 3016-19-1 u.d. u.d.

Limonene 5989-27-5 u.d. u.d.

α-Phellandrene 99-83-2 26.16 ± 0.52 20.07 ± 0.41

β-Pinene 18172-67-3 u.d. u.d.

(+)-α-Pinene 7785-70-8 u.d. u.d.

β-Ionone 79-77-6 u.d. u.d.

Myrcene 123-35-3 u.d. u.d.

Nerolidol 7212-44-4 27.23 ± 0.71 20.76 ± 0.55

β-Caryophyllene 87-44-5 u.d. u.d.

α-Humulene 6753-98-6 u.d. u.d.

trans-β-Farnesene 18794-84-8 u.d. u.d.

trans,trans-Farnesol 106-28-5 25.21 ± 2.36 19.26 ± 1.78

PUTATIVE SEX PHEROMONES

Hexyl butyrate 2639-63-6 u.d. u.d.

Hexyl hexanoate 6378-65-0 u.d. u.d.

Butyl butyrate 109-21-7 u.d. u.d.

Ethyl butyrate 105-54-4 u.d. u.d.

trans-2-hexenyl butyrate 53398-83-7 u.d. u.d.

HOST PLANT SECONDARY METABOLITES

(−)-Catechin 18829-704 19.26 ± 0.93 15.26 ± 0.70

Rutin hydrate 207671-50-9 9.89 ± 1.61 7.78 ± 1.23

Quercetin 117-39-5 3.36 ± 0.30 2.63 ± 0.23

Gossypol 303-45-7 4.45 ± 0.34 3.43 ± 0.32

U.d. means that the IC50 value exceeds 30µM and thus that the binding affinities (Ki) of

the candidate competitive ligand were not calculated in this study.

expressed at antennae sensillum and fulfilled vital roles in
bug olfactory cue perception (Gu et al., 2011b; Sun L. et al.,
2013; Sun et al., 2014a). Indeed, unlike the antennae which are
equipped with various olfactory sensilla (Chinta et al., 1997;
Sun et al., 2014b), mouthparts of Hemiptera bug species consist
of piercing-sucking stylets and labium, the former is used to
eject saliva for food ingestion and is considered to be directly
related to oviposition behavior (Romani et al., 2005), while
the latter has 11–12 uniporous gustatory sensilla which are
responsible for assessing the suitability of food substrates (Ave
et al., 1978; Hatfield and Frazier, 1980). Our current results
of tissue expression pattern merely confirmed that AlinOBP11
was preferentially expressed at A. lineolatus adult mouthparts.
Although it is not known whether AlinOBP11 was expressed in
stylets or the gustatory sensillum of labium, we can conceivably
speculate that this provocatively specific expression profile would
benefit the alfalfa plant bugs, to a great extent, in many
importantly behavioral performances such as egg laying, host
plants selection, and even of toxic substances avoidance.

Our fluorescence competition assay provides further insight
into understanding of physiological roles of AlinOBP11. The
results clearly showed that recombinant AlinOBP11 protein
displayed preferential binding abilities to tested non-volatile host
plant secondary metabolites than all the volatile compounds
(Figures 4B,C; Table 1). These results correspond well to its
specific tissue distribution within mouthparts which could give
a functional implication that AlinOBP11 could function as
carrier in gustatory system for non-volatile compounds detection
when plant bugs begin to search suitable food substrates by
using the mouthparts to rub or tap on plant surfaces or insert
plant tissues. Additionally, plant secondary compounds play key
roles in the long-term evolution of plant-herbivore interactions
(Elsayed, 2011; Mithöfer and Boland, 2012), and the content
level variation of quercetin, gossypol, and rutin hydrate, three
AlinOBP11 best ligands, over the course of host plant maturation
have been demonstrated to be involved in herbivore defense.
In particular, gossypol and rutin hydrate were proposed to
increase the resistance of cotton plants in response to mirid
bug feeding, while the content of quercetin in cotton tended to
perform a negatively correlation between their interactions (Lin
et al., 2011). Thus, A. lineolatus might employ the mouthparts-
biased expressed AlinOBP11 to perceive and discriminate these
functional different non-volatile secondary metabolites; however,
this speculation still needs to be supported by more evidences.

Gene duplication was pointed to be the main mechanism
underlying the fast expansion and functional evolution of
chemosensory genes (Zhou et al., 2010; Zhang and Löfstedt,
2013); nevertheless, physiological functions of putative orthologs
also attract great interest. In aphid species, the distribution
of orthologous OBP genes may reflect their life styles and
host relationships. As an example, homologous OBP3 proteins
of different aphid species were proved to be associated with
recognition of alarm pheromone (E)-ß-farnesene (Qiao et al.,
2009; Vandermoten et al., 2011; Sun Y. F. et al., 2012). We re-
constructed the phylogenetic trees used reported OBPs of several
bug species (Figure 1) and the results clearly suggest AlinOBP11
and AsutOBP11, AlucOBP36, AfasOBP11, and LylinOBP19 fall
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into the same clade and support they are potential orthologs
across bug species which was consistent with Hull’s assumption
(Hull et al., 2014). Selective pressure assess by calculation of
dN/dS or ω = 0.295 (Figure 1) also indicates that genes in
this cluster are under purifying selection and would perform
conserved functions (Qiao et al., 2009; Zhou et al., 2010;
Vandermoten et al., 2011). Meanwhile, we found the AlinOBP11
was predominately expressed at mouthparts similar to tissue
expression profiles of previous reported LylinOBP19 (Hull et al.,
2014) and our further studies of AfasOBP11 and AsutOBP11
(data not shown here). However, Hua et al. (2012) suggested
that AlucOBP36 (named as AlucOBP3 in their study) was
antennae-biased expressed. This could be explained by different
genetic relationships and evolutionary processes of these bugs.
A. lineolatus, A. suturalis, and A. fasciaticollis belong to the same
genus Adelphocoris, while A. lucorum belongs to the other genus
Apolygus. Notably, the in vitro functional studies of antennae
expressed AlucOBP36 resembled our results of AlinOBP11,
which also showed better binding abilities to non-volatile host
plant secondary compounds of rutin hydrate, but not to quercetin
and gossypol (Hua et al., 2012), and this could be attributed to the
mutations of several amino acids in these two proteins’ binding
pockets.

In conclusion, this study characterizes a mouthparts enriched
OBP11 protein in A. lineolatus which preferentially binds
to non-volatile plant secondary compounds; to our current
knowledge, AlinOBP11 represents the first physiological function
of mouthparts highly expressed OBP in Hemiptera species.
As putative orthologous genes probably exhibited conserved
physiological function, orthologous OBP11 could be involved in
mirid bug feeding behaviors and serve as potential molecular
targets for the development of eco-friendly pest management
strategies against mirid bugs’ outbreaks.
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Figure S1 | SDS-PAGE analyses of AlinOBP11 expression and purification.

Protein markers are shown in the left side; −, crude bacterial extract before

induction with IPTG; + crude bacterial extracts after induction with IPTG; Sup,

supernatant of disrupted PET/AlinOBP11; Pel, inclusion body of disrupted

PET/AlinOBP11; P/His-tag, purified AlinOBP11 protein with His-tag; P, finally

purified AlinOBP11 protein obtained after two rounds of purification.

Figure S2 | The relative transcript levels of AlinOBP11 at different

developmental stages and adult tissues of both sexes evaluated by

qRT-PCR with AlinElongation factor (GenBank No.AEY99651) as internal

control. The results clearly showed AlinOBP11 was strongly expressed at adult

mouthparts.

Table S1 | The primers used in this article.

Table S2 | The protein names, GenBank accession numbers, and

references of OBPs used in the phylogenetic analysis.
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