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a b s t r a c t

Binding affinity prediction (BAP) using protein–ligand complex structures is crucial to computer-aided
drug design, but remains a challenging problem. To achieve efficient and accurate BAP, machine-
learning scoring functions (SFs) based on a wide range of descriptors have been developed. Among those
descriptors, protein–ligand interaction fingerprints (IFPs) are competitive due to their simple representa-
tions, elaborate profiles of key interactions and easy collaborations with machine-learning algorithms. In
this paper, we have adopted a building-block-based taxonomy to review a broad range of IFP models, and
compared representative IFP-based SFs in target-specific and generic scoring tasks. Atom-pair-counts-
based and substructure-based IFPs show great potential in these tasks.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Attributed to the advances in high-resolution structure deter-
mination [1] and computational methodologies for structural anal-
ysis and molecular design [2,3], structure-based drug design
(SBDD) has developed into a robust and promising technique for
drug discovery [4,5]. As an important participant in SBDD, molec-
ular docking has proven to be a valuable tool for identifying novel
hit compounds from a large chemical library for a particular target
[6]. Binding affinity prediction (BAP) for putative protein–ligand
complexes is essential in this process, and is generally achieved
through scoring functions (SFs) [7–11]. An SF can be evaluated
according to its performance in multiple tasks, including docking
(identifying near-native binding modes), screening (distinguishing
active binders from decoys), ranking (correctly ranking the binding
affinities of the ligands for a given target) and scoring (achieving a
linear correlation between the predicted binding scores and exper-
imental binding data). Different applications of SFs emphasize one
or more of these tasks, such as virtual screening (docking and
screening) and lead optimization (ranking and scoring). Classical
SFs generally prioritize the rapid screening speed over accurate
prediction of binding affinity, and thus hardly performwell in scor-
ing and ranking tasks [12–14]. Improving the scoring and ranking
powers is a requisite to the development of SFs, but remains to be a
challenge in SBDD.

In recent years, the extensive use of machine learning has been
refocused from quantitative structure–activity relationship (QSAR)
studies [15] onto structure-based predictive modeling [16–18]. The
increasingly available structural and binding-affinity data of pro-
tein–ligand complexes, which allow the training of BAP models,
have led to a surge in machine-learning SFs [19]. These SFs can
handle a large volume of structural data, and have been demon-
strated to outperform classical SFs in scoring works [20,19].
Feature engineering is crucial to the construction of a machine-
learning SF. This process translates a complex structure into a
series of descriptors, and is often guided by the knowledge of
biologically relevant interactions such as hydrogen bonds,
hydrophobic contacts, ionic interactions (salt bridges), p-stacking
and p-cation interactions [21]. Recently, interaction fingerprints
(IFPs) have become a study focus of SF descriptors, due to the sim-
ple representations and elaborate profiles of key interactions.
Given a protein–ligand complex structure (Fig. 1A), IFPs are gener-
ally defined based on protein–ligand interacting atoms (Fig. 1A),
and stored as 1-dimensional vectors or matrices of Booleans, inte-
gers or floating-point numbers. In earlier works, structural IFPs
have only been classified roughly, such as keyed fingerprints vs.
feature collections [22] and ligand descriptors vs. protein descrip-
tors [20]. Moreover, the heterogeneity in benchmark data, pre-
processing procedures, implementations and evaluation metrics
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Fig. 1. Example of a protein–ligand complex and the interacting atoms. (A) Complex of HIV-1 protease and its inhibitor (PDB ID:2QNQ). (B) Protein–ligand interacting atoms
defined by a distance threshold (4:5A�).
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results in the incomparability among IFP-based scoring works.
Accordingly, in this paper we have reviewed a broad range of IFP
models according to a building-block-based taxonomy, and
compared the SFs incorporating representative IFP models in sev-
eral scoring tasks (target-specific or generic). SFs based on other
descriptors or IFP applications in tasks other than scoring (such
as screening) are out of scope of this review and can be found in
previous reviews [23,24].

2. Protein–ligand IFPs

Building blocks vary from one type of IFPs to another. They pri-
marily include structural elements (protein residues, protein
atoms and molecular substructures) and intermolecular interac-
tions (atom pairs and interaction pairs/triplets). Accordingly, we
classify a variety of IFP models based on their building blocks,
and review them as follows.

2.1. IFPs based on protein residues

Structural interaction fingerprint (SIFt) was a pioneer study in
representing and analyzing 3D protein–ligand binding interactions
[25]. Each SIFt is a simple 1D binary string generated by identifying
a common panel of binding-site residues, using seven bits to repre-
sent each residue in the panel, and concatenating the bit strings of
all residues (Fig. 2A). The bit string for each residue covers different
types of interactions, including (1) contact with the ligand, (2)
binding with any protein main-chain atom, (3) binding with any
protein side-chain atom, (4) polar interaction, (5) nonpolar interac-
tion, (6) hydrogen bond with acceptor in protein, and (7) hydrogen
bond with donor in protein. Accordingly, a SIFt can be denoted as

S ¼ ðS1R1 ; . . . ; S
7
R1
; S1R2 ; . . . ; S

7
R2
; . . . ; S1Rn ; . . . ; S

7
Rn Þ ð1Þ

where SjRi is 0 or 1, and denotes whether an interaction of type j

exists between protein residue Ri and the ligand. Based on SIFt, a
number of extensions have been developed. PyPLIF adopts an anal-
ogous list of protein–ligand interactions (apolar, aromatic, hydro-
gen bond and electrostatic) to generate IFPs [26]. In r-SIFt, each
bit indicates whether a specific R group or core fragment of the
ligand interacts with a specific protein residue [27]. Three addi-
tional interactions (hydrophobic, aromatic and charged) to those
of SIFt were considered in [28]. Marcou et al. defined 11 types of
protein–ligand interactions based on a list of atom flags and geo-
metric criteria, including hydrophobic, aromatic (face-to-face), aro-
matic (edge-to-face), hydrogen bond (acceptor in ligand), hydrogen
bond (donor in ligand), ionic bond with ligand negatively charged,
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ionic bond with ligand positively charged, weak hydrogen bond (ac-
ceptor in ligand), weak hydrogen bond (donor in ligand), p-cation
and metal complexation [29]. By default, their IFP model only con-
siders the first seven interactions (most frequent) for each protein
residue, but the remaining interactions (weak hydrogen bonds,
p-cation interactions and metal complexation) can be easily
incorporated. Weighted SIFt (w-SIFt) introduces a weight to each
interaction bit to capture the relative importance of each bit for
binding, with the weights determined by stochastic optimization
techniques or as simple averages at each bit position [30]. A w-
SIFt model has been proposed in [31], which assigns the weights
for electrostatic interactions (positive charge, negative charge and
metal-binding interactions) as 2 and the weights for the rest
(hydrogen-bond donor/acceptor, p� p stacking and hydrophobic
interactions) as 1. Wojcikowski et al. filled each IFP position with
continuous features, ranging from van der Waals potential
(Opls2005 force field), hydrogen bonds and halogen bonds
(donor-hydrogen distance and donor/acceptor counts), salt bridges,
p-interactions and p-cation interactions between a protein residue
and the ligand [32].

Aside from the aforementioned models, another type of
residue-based IFPs employ molecular interaction energy compo-
nents (MIECs) for each position. By combining the molecular
dynamics (MD) simulation techniques and MM-GB/SA free energy
decomposition approach, Sun et al. developed an MIEC-based IFP
[33]. Autodock was used in their work to produce the initial pro-
tein–ligand complex structures, which were further optimized
through explicit-solvent MD simulations (three stages, total 5
picoseconds). Based on each optimized complex structure, the
MM-GB/SA approach was employed to calculate residue-ligand
binding free energy and its components (MIECs, Eq. 2).

DGresidue�ligand
bind ¼ DGvdWbind þ DGele

bind þ DGGB
bind þ DGSA

bind ð2Þ

where DGvdWbind ;DG
ele
bind;DG

GB
bind and DGSA

bind denote van der Waals interac-
tion, electrostatic interaction, and the polar/non-polar parts of sol-
vation free energy, respectively. Ligand-binding residues were

selected according to the ranking of average DGresidue�ligand
bind , and dif-

ferent MIECs of these residues constitute the IFPs, such as

SMIEC ¼ ðDGvdWR1
;DGele

R1
;DGGB

R1
;DGSA

R1
; . . . ;DGvdWRn ;DGele

Rn ;DG
GB
Rn ;DG

SA
RnÞ

ð3Þ
Later, the same group proposed a similar IFP model, which

combines Glide docking, implicit-solvent MD simulations, MM-GB
(PB)/SA approach for energy decomposition and threshold-based
identification of ligand-binding residues [34]. Protein–ligand
Empirical Interaction Components (PLEIC) method [35] identifies



Fig. 2. Interpretations of the construction processes of representative IFPs. (A) SIFt. (B) CHIF. (C) Atom-pair counts used by RF-Score. (D) APIF. (E) SPLIF.

D.D. Wang, Moon-Tong Chan and H. Yan Computational and Structural Biotechnology Journal 19 (2021) 6291–6300
a panel of residues according to three types of interactions with the
ligand (van der Waals interaction, hydrophobic contact and hydro-
gen bond), and empirically calculated such MIECs as follows.

VDWi ¼
Xligand
j

Xres
k

½ðd0djkÞ
8 � 2� ðd0djkÞ

4 �

HCi ¼
Xligand
j

Xres
k

f ðdjkÞ

HBi ¼
Xligand
j

Xres
k

ð 1
1þðdjk=2:6Þ6

=0:58Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

with f ðdÞ ¼
1:0;d 6 d0 þ 0:5A�

d0þ2:0�d
1:5 ;d0 þ 0:5A�<d 6 d0 þ 2:0A�

0;d > d0 þ 2:0A�

8><
>:

ð4Þ

where VDWi;HCi and HBi represent the three types of interaction
energies between residue i and the ligand, djk is the distance
between atom j in the ligand and atom k in residue i;d0 denotes
the sum of atomic radii of j and k, and only hydrogen-bond donors
and acceptors in the ligand and residue i are considered when cal-
culating HBi. Similarly, Glide was adopted for docking each ligand to
the target and estimating the MIECs between the ligand and protein
residues (within 12A�from the ligand center) in Yasuo et al.’s work
[36], where van der Waals interactions, electrostatic interactions
and hydrogen bonds were considered as MIECs. Ji et al. adopted dif-
ferent protocols of MD simulations for pre-processing each Glide-
docked complex structure, and constructed IFPs (Eq. 3) based on
MM-GB/SA free-energy-decomposition calculations for the key resi-

dues (DGresidue�ligand
bind < �0:1kcal=mol) [37].
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2.2. IFPs based on protein atoms

Analogous to SIFt, knowledge-based IFP (KB-IFP) was proposed
as a similarity-search tool for reference-based scoring [38]. It is a
bit string as long as the number of binding-site heavy atoms, and
generated based on the interactions detected by pairwise inter-
atomic parameters (distance d and Hydrogen-bond angle a). Inter-
actions of hydrogen bonds (d 6 3A�and a < 90�) and close contacts
(d < sum of vdW radii) are identified first, and a bit in KB-IFP is set
to 1 if the corresponding heavy atom (Ai) forms an interaction with
an atom in the ligand (Eq. 5).

S ¼ ðSA1 ; SA2 ; . . . ; SAn Þ ð5Þ
These IFPs are named as HIF (hydrogen bond-based), CIF

(close contact-based) or CHIF (considering both types of interac-
tions, Fig. 2B). A similar atom-based IFP model considers the
properties of hydrogen bonds within a binding site (strength,
accessibility of hydrogen-bond groups and geometric arrange-
ment) [39]. In addition, some atom-based IFPs consider the
energy terms related to each binding-site atom. A protein per
atom score contribution derived interaction fingerprint (PADIF)
for protein–ligand complexes [40] characterizes the protein
binding-site atoms using the per atom contributions of the
GOLD Score, which involves a hydrogen-bonding term and mul-
tiple linear potentials to model van der Waals and repulsive
terms [41].
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2.3. IFPs based on atom-pair counts

Atom-pair counts (intermolecular interaction features) were
used to construct RF-Score, which is arguably the first machine-
learning SF [42]. Among protein–ligand atom pairs that interact
within a certain distance range (< 12A�), the counts of specific pairs,
classified by the atom types, are the main SF-descriptors. Specifi-
cally, atom types of fC;N;O; Sg for protein atoms and
fC;N;O; F; P; S; Cl;Br; Ig for ligand atoms were considered, consti-
tuting 36 descriptors (e.g. C � C;C � N; . . . ; S� I). This list of
descriptors can also be regarded as an integer IFP (Fig. 2B) and
expressed as
S ¼ ðS1; S2; . . . ; S36Þ ð6Þ
where Si represents the number of interactions of type i (e.g.
C � C;C � N; . . . ; S� I). These simple descriptors can be easily calcu-
lated and often lead to fast scoring works.

CScore was proposed later [43], to further subdivide the interac-
tions into repulsive and attractive types by introducing two fuzzy
membership functions. Atom type of H was additionally consid-
ered in this work, yielding the following integer IFP,
S ¼ ðSrepulsive1 ; Sattractive1 ; Srepulsive2 ; Sattractive2 ; . . . ; Srepulsive50 ; Sattractive50 Þ ð7Þ
OnionNet is a recent SF that employs atom-pair counts as

descriptors and uses deep-learning models for affinity prediction
[44]. This method starts from each ligand atom, and defines a ser-
ies of distance bins for the atom (bin1 � binN:
ð0; d0Þ; ½d0;d0 þ dÞ; ½d0 þ d;d0 þ 2dÞ; . . . ; ½d0 þ ðN � 2Þd;d0 þ ðN � 1ÞdÞ). Con-
sidering eight element types (fC;N;O;H; P; S;HAX;DUg;HAX: halogen atoms
fF;Cl;Br; Ig;DU: remaining types) for protein and ligand atoms, atom-pair
counts within the N distance bins form a 2D integer IFP as
S ¼

Sbin11 . . . SbinN1

Sbin12 . . . SbinN2

..

. ..
. ..

.

Sbin164 . . . SbinN64

2
666664

3
777775

ð8Þ
where S
binj
i counts the atom pairs of type i (e.g.

C � C;C � N; . . . ;DU � DU) and within binj. Such IFPs (Onionnet set-
ting: N ¼ 60;d0 ¼ 1A�;d ¼ 0:5A�) were extracted and fed into deep
convolutional neural networks (CNNs) for affinity prediction.
Recently, the same group has proposed the OnionNet-2 model,
which modifies the original atom pairs into pairs of a protein resi-
due and a ligand atom [45]. Specifically, 21 residue types (20 stan-
dard types and an expanded type) were considered, and the
residue-atom distance was calculated as the distance between the
ligand atom and the nearest heavy atom in the residue.

As another extension of RF-Score, extended connectivity inter-
action features (ECIFs) model employs six atomic properties (atom
type, explicit valence, connections to heavy atoms, connections to
hydrogens, aromaticity and ring membership) to define the types
of atom pairs [46]. For example, ‘O;2;1;0;0;0’indicates an oxygen
atom with an explicit valence of 2, connected to 1 heavy atom, and
having no aromaticity nor a ring membership. Accordingly,
‘O;2;1;0;0; 0’-‘N;3;2;1; 0;0’represents a specific type of atom
pairs. These descriptors lead to an integer IFP with a length of
1540. In this study (GBDT-based), a series of distance cutoffs
(4:0A�to 15:0A�with an interval of 0:5A�) were used to generated
ECIFs, and the cutoff of 6A�was reported to result in the best
predictions.
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2.4. IFPs based on pairs or triplets of interactions

Atom-pair-based interaction fingerprints (APIF) consider inter-
actions between pairs of protein and pairs of ligand atoms[47].
An APIF is generated in four steps: identification of the active site
(threshold of 10A�), detection of protein–ligand interactions (hydro-
gen bonds and hydrophobic contacts), classification of pairwise
interactions and construction of the final IFP (Fig. 2D). Six types
of pairwise protein–ligand interactions can be detected [47]. For
each pairwise interaction, the distance between the two protein
atoms (d1) and that between the two ligand atoms (d2) are each
mapped into 7 distance bins
(bin1 � bin7 : 0� 2:5A�;2:5� 4A�;4� 6A�;6� 9A�;9� 13A�;13� 18A�
and > 18A�). The final APIF is a string of 6� 7� 7 ¼ 294 bits as
expressed in Eq. 9,

S ¼ ðSbin1�bin1
1 ; Sbin1�bin2

1 ; . . . ; Sbin7�bin7
1 ; . . . ; Sbin1�bin1

6 ; Sbin1�bin2
6 ; . . . ; Sbin7�bin7

6 Þ
ð9Þ

where S
binj�bink
i indicate the occurrence of type-i pairwise interac-

tions with d1 in binj and d2 in bink.
Pharmacophore-based interaction fingerprints (Pharm-IF) are

similar to APIF, but characterize each pairwise interaction using
the distance and pharmacophore features of the two ligand atoms
[48]. To generate Pharm-IF, protein–ligand interactions (hydrogen
bond, ionic and hydrophobic) are identified. Pairwise interactions
are formed by combining these individual interactions, such as
hydrophobic � hydrophobic. Then the Pharm-IF of a protein–ligand
complex is constructed as the matrix,

Htp;br ¼
X
p2Itp

AbrðpÞ ð10Þ

where tp is the type of pairwise interaction, p is a pairwise interac-
tion of tp; br indicates the boundaries of distance bins for the ligand
atoms in p (e.g. 1A�;2A�;3A�; . . .), and AbrðpÞ is defined as:

AbrðpÞ ¼
0; if jbr � dpj P 1
1� jbr � dpj; otherwise

�
ð11Þ

where dp is the distance between the two ligand atoms in p.
Triplets of interactions to construct IFPs (TIFPs) [20] were iden-

tified based on specific pharmacophoric properties (hydrophobic,
aromatic, hydrogen-bond donor/acceptor, ionic and metal) and
geometric criteria, with each interaction represented by an interac-
tion pseudoatom (IPA). Then triplets of IPAs are characterized by
the pharmacophoric properties of the IPAs and their related dis-
tances (binned into 0� 4A�;4� 6A�;6� 8A�;9� 13A�;13� 17A�; >
17A�). These triplets can be pruned into 210 integers (a TIFP string)
by removing redundancy and validating the geometry, with each
integer registering the count of IPA triplets occurring at the binned
distances.

2.5. IFPs based on molecular substructures

Molecular substructures or fragments are frequently used to
cluster compounds and for ligand-based virtual screening
[49,50]. Structural fingerprints like the extended connectivity fin-
gerprints (ECFPs) [51] are representatives who employ these
descriptors. The ECFP of a molecule is a folded string of integer
identifiers, which are iteratively assigned to circular atom environ-
ments (substructures) up to a pre-defined bond radius (R). Initially,
each heavy atom (r ¼ 0) is assigned with an identifier based on a
group of properties (e.g. mass, charge or connections), and such
identifiers are iteratively updated to cover larger atom environ-
ments (r ¼ 1; . . . ;R). For a heavy atom a in a molecule, suppose
fniji ¼ 1; . . . ;ng are its neighboring atoms, fbiji ¼ 1; . . . ;ng are the
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bonds connecting a and its neighbors, and idf r�1
x is the identifier of

the environment centered at x and with a radius of r � 1. Then the
identifier of the atom environment with center a and radius r is

derived by combining idf r�1
a ; fbiji ¼ 1; . . . ;ng and idf r�1

ni
through a

hash procedure. Most substructure-based IFPs are based on ECFPs,
and can be classified as ligand-centric or interaction-centric.

As an early ligand-centric, substructure-based IFP, the Interac-
tion Annotated Structural Features (IASF) method [22] calculates
atom-based energy scores based on the FlexX scoring function,
which considers neutral hydrogen bonds, salt bridges, aromatic
interactions, lipophilic contacts and van der Waals contacts [52].
The substructures (circular atom environments) at the binding-
site region are generated by the ECFP4 (R ¼ 2) algorithm and anno-
tated with cumulative atom-based energy scores. The scores of the
substructures (Ui) can be organized as an IFP (Eq. 12) or accumu-
lated as the full score for the host-ligand interaction.

S ¼ ðSU1 ; SU2 ; . . . ; SUn Þ ð12Þ
Different types of molecular fragments, including interacting

fragments (IFs), random fragments (RFs) and interaction-
compromised fragments (ICFs), have been defined for protein–li-
gand complexes [53] and can be mapped to fingerprints according
Table 1
An overview of different IFP models and the related scoring tasks.

Category IFP Ref Format Target

Binary Integer Floating
number

Target

Residue-based SIFt, r-SIFt [25,29,28,26,27]
p

–
w-SIFt [30,31]

p
p38a

Continuous
IFP

[32]
p

HIV-1
protea

MIEC-IFP [33–37]
p

5HT2A
CB1,
M1R,
VEGF
ERK2
A2AR

Atom-based KB-IFP [38]
p

–
PADIF [40]

p
–

Atom-pair-counts
-basedc

APC
(RF-Score)

[42]
p

–

EAPC
(CScore)

[43]
p

subse
PDBbi
(v200

APCiDB
(OnionNet)

[44]
p

–

RAPCiDB
(OnionNet-
2)

[45]
p

–

ECIF [46]
p

–

Multi-interaction
-based

APIF [47]
p

–
Pharm-IF [48]

p
–

TIFP [20]
p

–
Substructure

-based
IASF [22]

p
–

SPLIF [57]
p p

–
PLEC FP [58]

p p
–

PrtCmm IFP [59]
p p

–

aGBDT: gradient boosting decision tree, RF: random forest, NN: neural network, CNN: c
bR: Pearson’s correlation between predicted and experimental affinities, RMSE: root-me
bAPC: atom-pair counts, EAPC: evolved APC, APCiDB: atom-pair counts in distance bins,
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to MACCS structural keys [54]. Here the IFs include ligand atoms
involved in hydrogen bonds, ionic interactions or van der Waals
interactions with the protein [53]. As an extension of IFs, atom-
centered interaction fragments (AIFs) have been used to construct
IFPs for similarity searches [55]. The AIF of each atom in an IF can
be formed by combining it with its direct neighbors based on a pre-
defined bond radius (2, 4 or 6 in [55]), analogous to ECFP substruc-
tures. AIFs form a library of unique descriptors, which can be used
to encode a binary or integer fingerprint.

Differing from IFPs that are based on a specific list of interaction
types, interaction-centric, substructure-based IFPs implicitly
account for all types of local interactions and do not require pre-
defined geometric criteria to identify interactions [56]. Structural
protein–ligand interaction fingerprints (SPLIF), a pioneer study,
explicitly encode interacting substructures of a protein–ligand
complex [57]. A SPLIF can be generated by identifying interacting
atoms (distance within 4:5A�), extracting circular substructures
and folding the information of pairwise substructures (Fig. 2E).
These substructures are centered on interacting atoms and
detected by the ECFP2 (R ¼ 1) algorithm. Each position in a SPLIF
(Si) indicates the existence or occurrence of a specific pair of sub-
structures. Protein–ligand extended connectivity fingerprints
(PLEC FP) consider protein–ligand contact substructures with mul-
-specific scoring Generic scoring (evaluated on PDBbind
Core Set)

Machine
learning
algorithm a

Evaluation b Version Machine
learning
algorithma

Evaluation b

– – – – –
[30] – R ¼ 0:604 [30] – – –

se
GBDT R ¼ 0:77þ 0:007/

RMSE ¼ 1:48þ 0:02

– – –

R,

R2,
,
[37]

multiple �R2 ¼ 0:53/
�RMSE ¼ 1:40 [37]

– – –

– – – – –
– – – – –
– – v2007 RF R ¼ 0:776/

SD ¼ 1:58
t of
nd
9)

NN R ¼ 0:8237/
RMSE ¼ 1:0872

v2009 NN R ¼ 0:7768/
RMSE ¼ 1:4540

– – v2016
v2013

CNN R ¼ 0:816/
RMSE ¼ 1:278
R ¼ 0:78/
SD ¼ 1:45

– – v2016
v2013

CNN R ¼ 0:864/
RMSE ¼ 1:164
R ¼ 0:821/
RMSE ¼ 1:357

– – V2016 GBDT R ¼ 0:857/
RMSE ¼ 1:193

– – – – –
– – – – –
– – – – –
– – – – –
– – – – –
– – v2016

v2013
NN R ¼ 0:82

R ¼ 0:77
– – v2019 RF R ¼ 0:793/

RMSE ¼ 2:014

onvolutional neural network.
an-square error, SD: standard deviation.
RAPCiDB: residue-atom-pair counts in distance bins.
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tiple pairs of radii or depths (e.g. Rprotein ¼ 5 and Rligand ¼ 1), and
hash these substructure pairs to specific fingerprint positions
[58]. Proteo-chemometric IFPs (PrtCmm IFPs) [59] can be gener-
ated by separately encoding interacting substructures (produced
by the ECFP algorithm) of the protein and ligand, and concatenat-
ing the two fingerprints.
Table 3
Datasets in PDBbind database for scoring tasks.

Task Target protein Number of
protein–

Affinity
range
3. Comparison of IFP Scores

Machine-learning SFs that absorb IFPs as descriptors, IFP Scores
for short, play an important role in BAP problems. A scoring task in
BAP can be either target-specific (multiple ligands for the same tar-
get) or generic (multiple targets). An overiew of the aforemen-
tioned IFPs and the related IFP Scores is presented in Table 1.
Here the IFPs for RF-Score, CScore, OnionNet and OnionNet-2 are
named as atom-pair counts (APC), evolved atom-pair counts
(EAPC), atom-pair counts in distance bins (APCiDB) and residue-
atom-pair counts in distance bins (RAPCiDB), respectively. The
reported performances of the IFP Scores, mostly on well-
acknowledged benchmarks (PDBbind Core Sets), are also listed.
Unfortunately, these scoring works are hardly comparable, due to
the disagreement in training/benchmark data (different databases
or different versions of the same database), data pre-processing
procedures, machine-learning models, implementation details
and evaluation metrics. Meanwhile, only few toolkits have been
released to offer the use of IFPs (Table 2), the majority of which
are the extensions of SIFt. This makes the comparison among IFPs
in BAP more difficult. In this work, we used Python to re-program
representative IFP models and attempted to provide a comparison
among the related SFs, using a uniform setting. Specifically, we use
the raw data (no further processing) in PDBbind v2019 [60] for
training and validating SFs. The PDBbind database, which covers
the structural and affinity data of a variety of protein–ligand com-
plexes (around 18,000), has been extensively used in BAP works.
The developers have further filtered these complexes by multistep
quality control (Refined Set and Core Set), which kept the ligands of
interest and maximumly guaranteed the diversity of ligands for
each target. Several classic machine-learning models (RFs, GBDTs
and regression trees) were adopted in SF construction, and Pear-

son’s correlation coefficient (corr ¼
Pn

i¼1
ðypred

i
��ypredÞðyexp

i
��yexpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðypred

i
��ypredÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyexp

i
��yexpÞ2

q )

and root-mean-square error (RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðypred

i
�yexp

i
Þ2

n

r
) between

the predicted and experimental binding affinities were used as
the evaluation metrics.
ligand

complexes

(-logKd/Ki)

Target-specific
scoring

HIV-1 protease 301 ½3:9;12:7�
BETA-SECRETASE 1 326 ½2:4;10:77�
BROMODOMAIN-
CONTAINING PROTEIN 4

176 ½2:22;9:15�

Generic scoring Multiple (refined set) 4852 ½2:0;11:92�
Multiple (Core Set) 285 ½2:07;11:82�
3.1. Target-specific scoring

Several frequently studied targets (Table 3) were selected from
PDBbind for target-specific scoring (details of data sets in Supple-
mentary file). IFP Scores were constructed through the consocia-
tion between IFP models and machine-learning algorithms.
Table 2
Several toolkits offering the use of IFPs.

Toolkit Online address

IChem http://bioinfo-pharma.u-strasbg.fr/labwebsite/download.html
OEChem https://www.eyesopen.com/oechem-tk
PyPLIF http://code.google.com/p/pyplif
MOE https://www.chemcomp.com/Products.htm
ODDT https://github.com/oddt/oddt
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1. Representative IFPs from the five classes (Section 2) were inves-
tigated. Each type of IFPs was generated for protein–ligand
complexes in each target-specific scoring task. When it comes
to generating IFPs, interacting atoms are first detected by a dis-
tance threshold (tint), and different thresholds were used in the
original IFP works (Table 4). Then pharmacophoric properties of
these interacting atoms and specific geometric criteria were
used to identify key interactions for IFP construction. Residue-
based and atom-based IFPs were generated as binary strings,
while the others as integer vectors.

2. The above IFPs were fed into three classic machine-learning
algorithms (RFs [64], GBDTs [65] and regression trees [66]) to
build IFP Scores. For each target, the corresponding dataset
was randomly partitioned into training, test and validation sets
(70%:15%:15%). Training and test sets were used for model
training and parameter tuning, and the best model was further
evaluated on the validation set. Due to the random partitions,
this process was repeated five times and the average perfor-
mance (corr and RMSE) was reported. In the model-training
stage, key parameters were tuned as follows.

� Substructure-based IFPs: the length of the fingerprint 2l

from 23 to 212 (l ¼ 3;4; . . . ;12),
� RFs: the number of tree members ntree from 5 to 100 at a step

of 5,
� GBDTs: the boosting stages nstage from 5 to 100 at a step of 5,
� Regression trees: the maximum depth d from 2 to 50 at a

step of 2.
These parameters led to models not too complex for the small

target-specific datasets.

The performances of different IFP Scores in the three target-
specific tasks are displayed in Fig. 3. The scoring performances vary
with different target proteins. Better performances have been
observed on the ‘BETA-SECRETASE 10 dataset, and worse perfor-
mances on the ‘BROMODOMAIN-CONTAINING PROTEIN 40 dataset.
This implies the dependence of machine-learning modeling on suf-
ficient training data, as the ‘BETA-SECRETASE 10 dataset has more
protein–ligand complexes and the ‘BROMODOMAIN-CONTAINING
PROTEIN 40 dataset less complexes. On the other hand, the perfor-
mances vary with different machine-learning methods. RFs and
IFP type Ref BAP works

Residue-based [61] -
Residue-based [29] -
Residue-based [26] -
Residue-based [62] -
Substructure-based
(PLEC FP)

[63] [58]



Table 4
IFPs for constructing target-specific scoring functions.

IFP tintðA�Þ Key interactions pharmacophoric
properties &

geometric criteria

SIFt1 4.5 Contact, main-chain atom, side-
chain atom, polar, nonpolar,

hydrogen-bond donor/acceptor

[20,25]

SIFt2 4.5 Hydrogen-bond donor/acceptor,
hydrophobic, polar, nonpolar,

aromatic (face-to-face), aromatic
(edge to face), metal-acceptor

[20,25]

HIF 10 Hydrogen bonds [20,38]
CIF 10 Close contacts [20,38]
CHIF 10 Hydrogen bonds and close contacts [20,38]
APC 12 Atom-pair counts [42]
APCiDB 30.5 Atom-pair counts in distance bins [44]
ECIF 6 Extended connectivity interaction

features
[46]

APIF 10 Pairwise interactions (hydrophobic,
hydrogen-bond donor/acceptor)

[20,47]

SPLIF 4.5 Implicitly encodes all possible local
interactions (Rprotin ¼ Rligand ¼ 1)

[57]

PLEC FP 4.5 Implicitly encodes all possible local
interactions (Rprotin ¼ 5, Rligand ¼ 1)

[58]

PrtCmm
IFP

4.5 Implicitly encodes all possible local
interactions (Rprotin ¼ Rligand ¼ 1)

[59]
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GBDTs perform better than regression trees, and this partly
explains the extensive use of these two methods in earlier scoring
works [32,37,42,46,59].

As shown in Fig. 3, given a target protein and a machine-
learning method, the performances of IFP Scores largely depend
on the IFP models. Generally, IFP Scores originating from atom-
pair-counts-based and substructure-based IFPs perform better in
these tasks. By averaging the results for the three tasks, we derived
Fig. 4. Here the atom-pair-counts-based and substructure-based
IFP Scores perform the best, followed by the APIF-based,
Fig. 3. Performances of IFP Scores in three target-specific tasks (targets: HIV-1 proteas
were constructed by associating an IFP model (SIFt1, SIFt2, CIF, HIF, CHIF, APC, APCiDB, EC
or regression trees). Performances are evaluated using Pearson’s correlation (upper pan
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SIFts-based and atom-based IFP Scores. Compared via Pearson’s
correlations among each type of machine-learning models, PLEC
FP-RF Score ( �corr ¼ 0:68; �RMSE ¼ 1:10), ECIF-GBDT Score
( �corr ¼ 0:67; �RMSE ¼ 1:05) and APC-TREE Score ( �corr ¼ 0:57;
�RMSE ¼ 1:28) perform the best.
3.2. Generic scoring

Residue-based and atom-based IFPs are not applicable to gen-
eric scoring. Representative IFPs from the other three classes were
adopted in this task, and these IFPs were generated as integer vec-
tors. PDBbind Refined Set was partitioned into training and test sets
(90%:10%) for model training and parameter-tuning, and the best
model was evaluated on the Core Set (Table 4, details of data sets
in Supplementary file). Overlapping complexes with the Core Set
were removed from the refined set to provide a fair validation.
Analogous to target-specific scoring tasks, RFs, GBDTs and regres-
sion trees were employed to construct IFP Scores. However, due
to the increased data, the parameters of these models were tuned
in broader ranges as follows.

� RFs: the number of tree members ntree from 300 to 700 at a step
of 100,

� GBDTs: the boosting stages nstage from 300 to 700 at a step of
100,

� Regression trees: the maximum depth d from 10 to 100 at a step
of 5.

The results are displayed in Fig. 5. As expected, IFP Scores based
on regression trees underperform those based on RFs or GBDTs.
Given a machine-learning method, the IFP Scores originating from
different IFP models behave similarly as in the target-specific scor-
ing tasks. Atom-pair-counts-based and substructure-based IFP
Scores perform better than APIF Score, and the best performances
of these two classes belong to APCiDB-RF Score (corr ¼ 0:81;
RMSE ¼ 1:49) and PrtCmm-RF Score (corr ¼ 0:80;RMSE ¼ 1:40).
e, BETA-SECRETASE 1, BROMODOMAIN-CONTAINING PROTEIN 4). These IFP Scores
IF, APIF, SPLIF, PLEC FP or PrtCmm IFP) and a machine-learning method (RFs, GBDTs
els) and RMSE (lower panels) between the predicted and experimental affinities.



Fig. 4. Average performances of IFP Scores in three target-specific tasks (targets: HIV-1 protease, BETA-SECRETASE 1, BROMODOMAIN-CONTAINING PROTEIN 4). Pearson’s
correlations and RMSEs between the predicted and experimental affinities are presented in the left and right panels, respectively.

Fig. 5. Performances of IFP Scores in the generic scoring task (multiple targets). The performances are evaluated on PDBbind v2019 Core Set, with Pearson’s correlations and
RMSEs between the predicted and experimental affinities presented in the left and right panels.
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4. Summary and outlook

BAP for protein–ligand complexes from their X-ray crystal struc-
tures is an important but challenging problem in computer-aided
drug design. Plentiful descriptors, which differ in granularity and
representation, have been developed and fed into machine-
learning algorithms to form BAP-oriented SFs. Recently, the exten-
sive use of deep-learning techniques in various areas also boosted
the developments of deep-learning SFs. However, these SFs can only
improve the scoring performance marginally, let alone the increas-
ingly complex representations of the descriptors they use [46]. Con-
trarily, IFPs are simple-format descriptors that carry key protein–
ligand interactions, and they can collaborate with classic machine-
learning algorithms to form competitive SFs for BAP. In this paper,
we reviewed a wide range of IFPs following a building-block-based
taxonomy, and compared representative IFP Scores in target-
specific and generic scoring tasks. Validated on PDBbind v2019 data-
sets, atom-pair-counts-based and substructure-based IFP Scores
performed well, demonstrating their potential in BAP problems.

One limitation of IFPmethods is that they rely on the availability
of protein–ligand complex structures [21]. However, with the
structure-determination techniques (experimental or in silico)
becoming more mature, abundant structures have been produced
to support the development of IFP methods. Early IFP methods
(e.g. SIFts, KB-IFPs and APIFs) use pre-defined interaction types
and empirical geometric criteria to detect protein–ligand interac-
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tions, which restricts their ability to cover more interactions.
Substructure-based IFPs can implicitly account for all types of local
interactions, whichmakes themmore competitive in scoringworks.
Meanwhile, the encoding step in IFP methods has evolved from the
interaction-type-based form to a more manageable form, with the
introduction of a hash procedure. Altering the basic atomproperties,
substructure definition and/or encoding ways in these models can
potentially improve the scoring performances further. Atom-pair-
counts-based IFPs are arguably the simplest feature representations
in BAP. They can be easily and rapidly generated, and often lead to
good scoring performances. However, these models rely on prede-
fined interaction types (e.g. C–C, C-O, C-S), which may need to be
adapted for different training data. Besides, refining the interaction
types may promote them to bemore promising in scoring works. At
last, the performances of IFP Scores (machine-learning-based) are
subject to the types and parameters of the involved machine-
learning models. Altering the model types or parameters will prob-
ably results in fluctuations of the scoring performances. Fine-tuning
theparameters inmodel-training stageusingawider rangeof values
may potentially improve the model performance.
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