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Allogeneic hematopoietic cell transplantation (HCT) is a well-established therapeutic 
modality effective for a variety of hematological malignancies but, unfortunately, is 
associated with significant morbidity and mortality related to cancer relapse as well as 
to transplant-related complications including graft-versus-host-disease (GvHD). Natural 
killer (NK) cells are the first donor-derived lymphocyte subset to recover after HCT, and 
their crucial role in protection against cancer relapse and infections is well established. 
Conversely, the role played by NK cells in GvHD is still controversial. Early studies sug-
gested a participation of NK  cells in GvHD induction or exacerbation. Subsequently, 
experimental evidence obtained in mice as well observational studies performed in 
humans led to a model in which NK cells play a regulatory role in GvHD by repressing 
alloreactive T cell responses. This widely accepted model has been recently challenged 
by clinical evidence indicating that NK cells can in some cases promote GvHD. In this 
review, we summarize available knowledge about the role of NK cells in GVHD patho-
genesis. We review studies uncovering cellular mechanisms through which NK  cells 
interact with other immune cell subsets during GvHD leading to a model in which 
NK cells naturally suppress GvHD through their cytotoxic ability to inhibit T cell activation 
unless exogenous hyperactivation lead them to produce proinflammatory cytokines that 
can conversely sustain T cell-mediated GvHD induction.

Keywords: natural killer cells, graft-versus-host-disease, bone marrow transplantation, HSCT, tolerance

inTRODUCTiOn

Natural killer (NK) cells are the first donor-derived lymphocyte subsets to recover after hematopoietic  
cell transplantation (HCT), preceding by several months the reconstitution of adaptive T and B 
lymphocytes. NK cells have been the focus of significant attention in the HCT field over the last four 
decades. Studies of the role of NK cells in bone marrow engraftment demonstrated that host NK cells 
persisting after conditioning can contribute to graft rejection (1) while donor NK cells can promote 
hematopoietic engraftment (2). At the same time, several preclinical and clinical studies focusing on 
NK cell alloreactivity in anticancer responses identified donor NK cells as crucial players in prevent-
ing cancer relapse after HCT for hematologic malignancies (3, 4). Less well established, however, is 
the role of NK cells in graft-versus-host-disease (GvHD), a major complication of HCT. While the 
classical model of GvHD pathogenesis includes, together with donor-derived T cells, donor-derived 
NK  cells in the immune-pathological activation leading to GvHD (5), evidence from preclinical 
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models as well as from studies in human HCT recipients led to 
a more complex picture where NK cells could either promote or 
prevent GvHD.

In this review, we summarize the available knowledge about 
the role of NK  cells in GvHD pathogenesis. After reviewing 
preclinical and clinical studies uncovering cellular mechanisms 
through which NK cells interact with other immune cell subsets 
during GvHD, we propose a new model in which distinct effec-
tor mechanisms determine the pathogenic or regulatory role of 
NK cells in promotion or control of GvHD, respectively. Finally, 
we discuss the impact that GvHD can in turn have on NK cell 
biology and the potential consequences in the context of HCT.

eARLY STUDieS

The first study suggesting a relationship between NK  cells and 
GvHD development was reported by Lopez and coworkers from 
the Sloan Kettering Cancer Center showing a significant asso-
ciation between GvHD development and pre-transplant levels of 
NK cell activity, as measured by cytotoxic assays performed using 
herpes simplex virus type 1-infected fibroblast as target cells, 
in peripheral blood of a small and heterogeneous cohort of 13 
patients undergoing different protocols of HCT (6). Importantly, 
most of the patients included in the series underwent HCT after 
myeloablative conditioning, and no information was provided 
about NK  cell activity after transplantation. Shortly thereafter, 
Livnat et al. (7) and Dokhelar et al. (8) addressed the same issue 
assessing NK cell activity against the K562 leukemic cell line both 
before and after HCT and obtained contradictory results finding 
either no relationship (7) or a positive association (8) between 
early posttransplant NK  cell activity and GvHD development. 
Despite the contradictory conclusions obtained and the limita-
tions of the studies including the heterogeneity of the patients 
cohorts as well as of the analytical methods employed, these early 
studies opened the way to numerous studies addressing the role 
of NK cells in GvHD.

A first approach has been to investigate the presence of 
NK  cells in GvHD target organs. In the mouse parent-into-F1 
(P > F1) model of GvHD, increased NK cell activity measured 
against YAC lymphoma target cells was detected in spleen (9–11), 
lymph nodes (9, 10), thymus (9, 12), and intestinal intraepithelial 
lymphocytes (10) from mice with active GvHD. Similarly, in 
murine minor mismatch HCT models, large granular lympho-
cytes displaying an immunophenotype characteristic of NK cells 
infiltrated the skin (13), liver, and intestine (14) from animals with 
acute GVHD. Importantly, the use of congenic markers demon-
strated that these cells were of donor origin (14). Accordingly, 
the study of biopsies obtained from skin (15–17), liver (18, 19), 
and intestinal (20) of patients with acute GvHD showed the 
presence of NK cells among the lymphoid population infiltrating 
these GvHD target tissues. The study of biopsies obtained from 
female patients transplanted with male donor grafts confirmed in 
humans the donor origin of the NK cells infiltrating tissues dur-
ing GvHD (16). The target tissues infiltration by NK cells during 
GvHD, both in mice and humans, supported a model in which 
NK cells may induce, or at least contribute to, GvHD development. 
Attempts were, therefore, made to obtain experimental evidence 

supporting this hypothesis, first by using NK  cell depleting 
antibodies directed against the cell surface glycolipid asialo GM1 
or to the cell surface NKR-P1 family receptor NK1.1. However, 
results from reports employing this approach were inconsistent, 
few studies suggested a reduction of GvHD upon treatment of 
recipients (21–23) while most studies employing antibody deple-
tion on donor cells showed only minimal if any impact on GvHD 
development (23–27). This discrepancy suggested that depleting 
antibodies exerted their effect through the depletion of an effec-
tor cell population appearing after HCT rather then by depleting 
NK cells contained in the graft. Further, the epitopes recognized 
by anti-asialo GM1 and anti-NK1.1 antibodies are expressed 
by several immune cell subsets other than NK  cells, including 
activated T cells involved in GvHD development (28–30), making 
it impossible to distinguish between an NK and a T cell directed 
effect. Ghayur et  al. used a complimentary approach employ-
ing beige mice carrying a homozygous bg mutation that leads 
to severe deficiency in NK  cell function. Adoptive transfer of  
bg/bg splenocytes failed to induce GvHD in a P > F1 model, while 
transfer of heterozygous +/bg induced hepatic GvHD, suggesting 
that donor NK cells were responsible for GvHD induction (31). 
However, even in this model, a functional deficit in adaptive 
T  cells from beige mice complicates the interpretation of the 
results (32, 33).

nK CeLL CYTOTOXiC FUnCTiOnS  
AnD GvHD PRevenTiOn

While murine models based on antibody depletion or genetic 
alteration of NK cells failed to provide consistent evidence for a 
role of NK cells in GvHD pathogenesis, the adoptive transfer of 
NK cells offered unexpected insights. In an attempt to promote 
bone marrow engraftment in a major mismatch murine model, 
Murphy and coworkers adoptively transferred NK cells purified 
from C.B-17 severe combined immunodeficiency (SCID) (H-2d) 
mice into lethally irradiated C57BL/6J (H-2b) mice together with 
non-T-cell depleted bone marrow cells from BALB/cJ (H-2d) 
mice with or without splenocytes (2). In mice not receiving 
splenocytes, transferred NK  cells did not induce GvHD, thus 
questioning the NK GvHD-inducing potential suggested by 
antibody depletion studies. More interestingly, in mice receiving 
splenocytes, activated NK  cells prevented the development of 
GvHD that invariably lead to death of mice injected with BM cells 
and splenocytes alone. This unexpected result revealed not only 
that NK cells can be adoptively transferred safely in this major 
mismatch model without inducing GvHD but also that they 
can prevent T cell-mediated GvHD development. The results of 
this first study were confirmed during the years by several other 
reports (3, 34–39) and numerous studies in humans suggested 
that higher numbers of NK  cells (40–47) and the presence of 
NK cell alloreactivity (3, 4, 48–50) reduce GvHD development.

In particular, NK  cell alloreactivity has been found to be 
crucial for NK  cell-mediated protection from GvHD. Ruggeri 
et  al. showed in a major mismatch HCT murine model that 
alloreactive Ly49 ligand-mismatched NK  cell infusion pre-
vented T cell-induced GvHD, while administration of even large 
numbers of non-alloreactive Ly49 ligand-matched NK  cells 
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provided no protection (3). These results were subsequently 
confirmed by Lundqvist et al. who further extended this obser-
vation showing that, although inefficient in preventing GvHD, 
Ly49 ligand-matched NK cells displayed an antitumor activity 
similar to Ly49 ligand-mismatched NK cells (35). The need of 
Ly49 ligand-mismatch for GvHD control by NK cells prompted 
some investigators to silence Ly49C to induce alloreactivity 
with promising results (51). Alloreactive NK cells were shown 
to indirectly inhibit T  cell proliferation and GvHD induction 
by depleting antigen-presenting cells (APCs) (3, 38) through 
their cytolytic activity, the c-Kit−CD27−CD11b+ NK cells being 
the most potent in this effect (38). In particular, the expression 
of the activating receptor KIR2DS1, which binds to HLA-C2, 
seems to contribute to the APCs’ killing and it was even able 
to override the inhibition mediated by the expression of the 
inhibitory receptor NKG2A, which binds to HLA-E in humans 
or Qa-1b in mouse (50). Similarly, proportions of donor-derived 
NK  cells expressing the activating receptor CD94/NKG2C, 
which recognize as well HLA-E/Qa-1b, were lower in HLA-
matched and HLA-mismatched HCT recipients with acute or 
chronic GvHD compared with patients without GvHD (52). 
Accordingly, patients with acute or chronic GvHD displayed 
a lower ratio of CD94/NKG2C to CD94/NKG2A on NK  cells 
suggesting a competition for the same ligands between NKG2C 
and NKG2A that would result in NK cell activation or suppres-
sion, respectively (52). Finally, Ghadially et  al. suggested that 
NK cell-mediated killing of APC during GvHD is mediated by 
the stimulation of NKp46 receptor by still unknown ligand(s) 
expressed by dendritic cells (DCs) as the absence of NKp46 on 
donor NK cells leads to increased stimulation of donor T cells by 
DCs (53), resulting in increased tissue damage (54).

In addition to this indirect, APC-killing mechanism, others 
and we have shown that NK cells can suppress GvHD by directly 
lysing activated T cells. In vitro evidence obtained in murine (55) 
and human (56, 57) cells showed that T cells during activation 
upregulate stress molecules acting as ligands for the NK activat-
ing receptor NKG2D, thus becoming targets of NK cell-mediated 
killing. In a major mismatch HCT model, we showed that allo-
geneic T cells upregulate the NKG2D ligand Rae1γ and perhaps 
other molecules during GvHD and thus become susceptible to 
NK cell-mediated killing through a NKG2D-dependent cell lysis 
(37). Noval Rivas and coworkers obtained very similar results in 
a minor mismatch model of chronic GvHD induced by adoptive 
transfer of monoclonal anti-male CD4 T cells into lymphopenic 
male mice (58). Interestingly, we observed in our system an 
increased ratio of splenic donor regulatory T cells (Treg) to total 
donor conventional CD4+ and CD8+ T cells (Tcon) in the pres-
ence of NK cells, suggesting a differential susceptibility of Treg 
and Tcon to NK cell-mediated cell lysis leading to an immune-
regulatory environment that eventually contributes to GvHD 
suppression (37). Direct T cell killing by NK cells can, therefore, 
be considered as a complimentary mechanism of GvHD sup-
pression, in addition to the aforementioned modulation by 
APC-killing, which can be particularly important at GvHD 
tissues sites. Accordingly, we have shown that, after transplanta-
tion, NK cells traffic to GvHD target organs following a spatial 
and temporal distribution very similar to T  cells (59) offering 

them the opportunity to target activated T  cell at the effector 
site. However, in contrast to T cells, NK cells have a more limited 
persistence, which may in part explain their reduced capacity 
for GVHD induction. Interestingly, GvHD prevention by T cell 
killing at tissue sites can be exerted as well by residual tissue 
resident recipient NK cells eventually persisting after condition-
ing depending on conditioning intensity as it has been recently 
shown in a minor mismatch murine model (60). T cell killing by 
NK cells appears to be dependent on both perforin production 
(37, 60) and FAS-mediated induction of apoptosis (37, 58, 61). 
Collectively, these models demonstrated that NK cells can sup-
press GvHD development through their cytotoxic function either 
directly, by depleting activated alloreactive T cells, or indirectly, 
by depleting APC and preventing T cell stimulation (Figure 1, 
left panel).

nK CeLL CYTOKine PRODUCTiOn  
AnD GvHD inDUCTiOn

In addition to their cytolytic potential, NK  cell can modulate 
immune responses through cytokine production. Whether this 
mechanism can participate in GvHD prevention by NK  cells 
is unclear. One of the early studies showed that administration 
of anti-TGFβ monoclonal antibody significantly limited the 
NK cell suppressive effect on GvHD (34). However, no evidence 
was provided that NK cells were indeed the source of TGFβ and 
administration of exogenous TGFβ failed to prevent GvHD 
development, indicating that TGFβ contribution to GvHD 
suppression is only partial and through a mechanism still to be 
completely uncovered.

Although it is unclear if NK  cells production of immune-
suppressive cytokines can prevent GvHD, it is established 
that pro-inflammatory cytokine production by NK  cells can 
contribute to GvHD development. In a xenogeneic model, Xun 
et al. showed that in vitro interleukin-2 (IL-2)-activated human 
NK  cells producing interferon-γ (IFN-γ) and tumor necrosis 
factor-α (TNF-α) were able to induce acute GvHD upon transfer 
into SCID mice (62, 63). Interestingly, NK cells were found in 
GvHD target tissues in juxtaposition to damaged cells and pro-
duced in situ IFN-γ and TNF-α (62). Although the limitations of 
the xenogeneic model should be taken into account, the results 
from the aforementioned experiments suggest that, when pre-
activated to produce the pro-inflammatory cytokines IFN-γ 
and TNF-α, NK cells can indeed promote rather than prevent 
GvHD development. In accordance, while NK depletion by 
NK1.1 antibodies had no effect on GvHD when employed on 
steady-state donor splenocytes (25), it significantly prevented 
GvHD when employed on splenocytes obtained from donor 
mice previously treated with the toll-like receptor 3 stimulator 
polyinosinic:polycytidylic acid (poly I:C) (64, 65) by reducing 
IFN-γ production (65). Further, higher proportions of IFN-γ-
producing NK cells after HCT have been shown to be associated 
in humans with an increased incidence of acute GvHD (66). 
Collectively, these studies provide evidence for a promoting role 
of NK cells in GvHD, opposite from the suppressive role exerted 
by cytolysis, through the production of pro-inflammatory 
cytokines that may act directly to induce cell damage or indirectly 
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FiGURe 1 | nK cells contribution to graft-versus-host-disease (GvHD) protection or induction. Immunological interactions leading to GvHD protective  
(left panel) or promoting (right panel) effect of NK cells. Donor immune cells are depicted in blue while host target cells are depicted in orange. NK, natural killer;  
T, T lymphocyte; APC, antigen-presenting cell; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α.
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by increasing T  cell-mediated tissue damage through their 
well-known property to increase MHC expression (Figure  1, 
right panel). This model can be useful in the interpretation of 
the otherwise surprising results recently reported by Shah and 
coworkers (67). Most studies involving adoptive transfer of 
NK cells into HCT recipients failed to observe GvHD induction 
after infusion (68–70) (Table 1). Similarly, studies assessing the 
potential of adoptively transferred allogeneic haploidentical 
NK cells into lymphodepleted patients in non-allogeneic HCT 
settings did not observe any cases of acute GvHD (71–75) 
(Table 1). Few studies reporting the development of acute GvHD 
after allogeneic NK cell adoptive transfer (76–78) were unable to 
establish a causative relationship between the NK cell infusion 
and GvHD development because of other potential contributing 
factors including immune-suppression discontinuation (76) or 

residual T cell contamination of the administered cell product 
(77). Conversely, the report by Shah and coworkers provide 
some evidence for an NK cell involvement in GvHD development. 
The authors reported the development of GvHD in five out of 
nine recipients of HLA-matched, T-cell-depleted peripheral 
blood HCT upon adoptive transfer of donor-derived IL-15/4-
1BBL-activated NK cells (67). The direct involvement of donor 
NK  cells in GvHD was suggested by their presence in the 
lymphoid infiltrate found in biopsies of GvHD involved tissues 
(67). However, despite the fact that grafts contained very low 
numbers of T cells as a result of T cell depletion by CD34 positive 
selection, several issues suggested that the NK-cell-promoting 
role on GvHD could have been mediated by an indirect effect on 
T cells. First, a higher proportion of patients developing GvHD 
received grafts from unrelated donors, therefore, were provided 
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TAbLe 1 | Acute graft-versus-host-disease (GvHD) development reported in published natural killer (nK) cells adoptive transfer clinical trials.

Reference N Age Disease Donor type Conditioning Time from allo-
hematopoietic cell 
transplantation (HCT)

Cell isolation nK cells 
preparation

Cell dose 
(106/kg)

Combined 
therapy

Acute GvHD

Passweg et al. (68) 5 Adult AML Haploidentical Etoposide Post allo-HCT (day +3 
to +26)

CD3 depletion Fresh 6.9–14.1 – 0/5 (0%)

CML Cy/TBI/ATG CD56 selection

Miller et al. (71) 19 Adult AML Haploidentical Cy/Flu No allo-HCT CD3 depletion Interleukin-2 (IL-2) 
activated

0.1–20 IL-2 0/43 (0%)

Solid tumors

Rubnitz et al. (72) 10 Ped AML Haploidentical Cy/Flu No allo-HCT CD3 depletion Fresh 5–8 IL-2 0/10 (0%)

CD56 selection

Yoon et al. (76) 14 Adult AML Haploidentical Bu/Flu/ATG Post allo-HCT (day +43 
to +50)

CD34 selection In vitro 
differentiated

N/A – 1/14 (7%) (1 grade II)

MDS HLA-mismatched In vitro differentiation

ALL

Curti et al. (73) 13 Adult AML Haploidentical Cy/Flu No allo-HCT CD3 depletion Fresh 1.11–5 IL-2 0/13 (0%)

CD56 selection

Stern et al. (77) 16 Adult AML Haploidentical MAC/ATG or 
OKT3

Post allo-HCT (day +3 
to +40)

CD3 depletion Fresh 8–76 – 4/16 (25%) (1 grade II, 2 
grade III, 1 grade IV)Ped ALL CD56 selection Cryopreserved

Solid tumors

Klingemann et al. (74) 13 Adult HL Haploidentical None No allo-HCT CD3 depletion IL-2 activated 0.1–20 – 0/13 (0%)

NHL

MM

Bachanova et al. (75) 57 Adult
Ped

AML Haploidentical Cy/Flu No allo-HCT (n = 53)

Post allo-HCT (n = 4)

CD3 depletion IL-2 activated 3.4–15 IL-2 0/57 (0%)

±CD19 depletion IL2DT

±CD56 selection

Choi et al. (69) 41 Adult AML/MDS Haploidentical Bu/Flu/ATG Post allo-HCT (day +14 
to +21)

CD3 depletion Ex vivo expanded 20–500 – 9/41 (21%) (2 grade I, 2 
grade II, 5 grade III–IV)ALL

Lymphoma

Shah et al. (67) 9 Adult Sarcomas HLA-matched 
sibling/unrelated 
donor

Cy/Flu/Melph Post allo-HCT (day +7 
to +35)

CD3 depletion IL-15/4-1BBL 
activated

0.1–1 – 5/9 (55%) (1 grade II, 3 
grade IV, 1 non-gradable)Ped CD56 selection

Lee et al. (78) 21 Adult
Ped

AML Haploidentical Bu/Flu Post allo-HCT (day −8) CD3 depletion IL-2 activated 0.02–8.32 IL-2 7/21 (33%) (5 grade II, 2 
grade III)MDS CD56 selection

CML

Jaiswal et al. (70) 10 Adult AML Haploidentical Treo/Flu/TBI Post allo-HCT (day +7) CD56 selection Fresh 1.7–17.7 – 0/10 (0%)
Ped CML PTCy

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; ATG, antithymocyte globulin; BM, bone marrow; Bu, busulfan; CML, chronic myeloid leukemia; Cy, cyclophosphamide; Flu, fludarabine; HL, Hodgkin’s lymphoma; 
MDS, myelodysplastic syndrome; Melph, melphalan; NHL, non-Hodgkin lymphoma; MAC, myeloablative conditioning; MM, multiple myeloma; PTCy, posttransplant cyclophosphamide; TBI, total body irradiation; Treo, treosulfan.
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with a higher alloreactive potential, compared to patients not 
developing GvHD (67). Second, patients developing GvHD 
displayed more rapid T-cell engraftment, as revealed by day 14 
and day 28 CD3-chimerism, compared with patients not devel-
oping GvHD (67). Moreover, it should be noted that patients 
were free of T-cell directed immune-suppressive treatment at 
the time of adoptive transfer. Importantly, the timing of the 
administration of the NK cells could have been another factor 
pushing the balance toward GvHD induction. Patients from the 
aforementioned report (67) received the pre-activated NK cells 
around the time of engraftment. Murine studies have demon-
strated the importance of the timing of NK cell administration 
on GvHD prevention, showing no benefit of delayed treatment 
(37) and even a potential for GvHD exacerbation when NK cells 
were administered at later time points (34), although in these 
latter experiments IL-2 was administered at the same time as 
the NK cells and could have contributed to the phenomenon. 
This opposing effect can be related with the production of 
IFN-γ that has been shown to inhibit GVHD when provided 
early after HCT and to exacerbate GVHD when acting at a later 
time (79). Considering all of these factors, it can be speculated 
that the administration of highly pre-activated NK  cells can 
enhance clinically undetectable T-cell alloreactivity through 
the production of pro-inflammatory cytokines (Figure 1, right 
panel) and that this functional aspect can, therefore, prevail on 
their GvHD-protective cytotoxic activity (Figure 1, left panel), 
thus promoting GvHD development.

GvHD MODULATiOn OF nK CeLLS

While NK cells may positively or negatively participate in GvHD 
development, the GvHD process can in turn affect NK cell biol-
ogy. Pattengale and coworkers were the first to demonstrate in 
murine models that acute but not chronic GvHD induce a marked 
decrease in NK cell activity associated with an impaired production 
of IFN-γ (80). NK cell reconstitution appears to be significantly 
delayed by acute GvHD in mice (81) and by acute and chronic 
GvHD in humans (42, 82–85). Recent evidence from a murine 
model of GvHD suggest that activated T cells could limit NK cell 
access to IL-15 through direct competition for this cytokine nec-
essary for NK cell development and homeostasis, administration 
of exogenous IL-15 being able to restore NK cell reconstitution 
(81). In addition to its quantitative effect, GvHD induces qualita-
tive defects on NK cells ultimately leading to impaired function. 
Bunting and coworkers recently showed in mice that, during 
GvHD, donor NK  cells display a hyperactivated phenotype 

associated with increased signs of apoptosis and autophagy 
(81). Importantly, they showed that GVHD-induced alterations 
in NK  cells resulted in defective in  vivo cytotoxicity resulting 
in a reduction of graft-versus-leukemia effect and an impaired 
control of cytomegalovirus infection (81). This dysfunctional 
status induced by GvHD is reminiscent of the NK cell exhaustion 
phenomenon we observed upon chronic proliferation, character-
ized by an impaired transcriptional machinery as revealed by the 
downregulation of the Tbox transcription factors Eomesodermin 
and Tbet (86). Accordingly, we reported in humans that exhaus-
tion is increased in NK cells after HCT and is further exacerbated 
in NK cells from patients with acute GvHD (87).

COnCLUDinG ReMARKS

Despite major efforts undertaken during many years to better 
understand NK cells biology in the context of HCT, the role of 
NK  cells during GvHD remained elusive because of conflict-
ing evidence coming from different experimental approaches. 
NK cells are capable of both effector and regulatory functions. 
This pleiotropic nature of NK  cells is likely responsible for the 
variable and even conflicting roles that NK cells can play during 
GvHD. We hope our model (Figure  1) will help interpret this 
apparent contradiction. Importantly, clarifying the impact of 
NK cell activation status on their GvHD induction potential will 
hopefully contribute to the optimization of cell manufacturing 
procedures to maximize allogeneic NK cell antitumor potential 
while preventing GvHD induction.
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