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1 |  INTRODUCTION

Through renal autoregulatory control of the afferent arte-
riole, blood flow and glomerular pressure are tightly regu-
lated (Arendshorst & Navar, 2007; Inscho, 2009). However, 

in diseases such as diabetes mellitus (DM) and some forms 
of hypertension, or in the case of loss of functional neph-
rons due to chronic renal diseases, either the vasoconstric-
tive response of the afferent arteriole proves inadequate 
in controlling blood flow and glomerular pressure and/
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Abstract
A novel anatomically accurate model of rat glomerular filtration is used to quantify 
shear stresses on the glomerular capillary endothelium and hoop stresses on the glo-
merular capillary walls. Plasma, erythrocyte volume, and plasma protein mass are 
distributed at network nodes using pressure differentials calculated taking into ac-
count volume loss to filtration, improving on previous models which only took into 
account blood apparent viscosity in calculating pressures throughout the network. 
Filtration is found to be heterogeneously distributed throughout the glomerular capil-
lary network and is determined by concentration of plasma proteins and surface area 
of the filtering capillary segments. Hoop stress is primarily concentrated near the af-
ferent arteriole, whereas shear stress is concentrated near the efferent arteriole. Using 
parameters from glomerular micropuncture studies, conditions of diabetes mellitus 
(DM), 5/6-Nephrectomy (5/6-Nx), and Angiotensin II-induced hypertension (HTN) 
are simulated and compared to their own internal controls to assess the changes in 
mechanical stresses. Hoop stress is increased in all three conditions, while shear 
stress is increased in 5/6-Nx, decreased in HTN, and maintained at control levels in 
DM by the hypertrophic response of the glomerular capillaries. The results indicate 
that these alterations in mechanical stresses and the consequent release of cytokines 
by or injury of the glomerular cells may play a significant role in the progression of 
glomerulopathy in these disease conditions.
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or vasodilatory compensatory responses exhaust the re-
serve capacity of remaining nephrons to maintain adequate 
renal function (Carmines, 2010; Hostetter, Olson, Rennke, 
Venkatachalam, & Brenner,  1981; Hostetter, Rennke, & 
Brenner, 1982; Inscho, 2009). Similarly, inappropriate ac-
tivation of the renin-angiotensin system results in increased 
afferent and efferent resistance, reducing blood flow into 
the glomerulus while increasing the glomerular pressure 
(Franco et al., 2011). These hemodynamic changes result 
in alterations in single nephron blood flow and glomer-
ular pressure which are believed to alter the magnitudes 
of shear stress on the glomerular endothelial cells and 
circumferential hoop stress on the glomerular capillary 
walls. Mechanical stresses play a crucial role in cell phys-
iology, and inappropriate elevation or reduction in these 
stresses may lead to glomerulopathy by triggering the re-
lease of inflammatory cytokines by endothelial cells (Chiu 
et al.,  2004; Nagel, Resnick, Atkinson, Forbes Dewey, & 
Gimbrone,  1994; Ohno, Cooke, Dzau, & Gibbons, 1995; 
Sorescu et  al.,  2004; Sucosky, Balachandran, Elhammali, 
Jo, & Yoganathan, 2009; Tsuboi, Ando, Korenaga, Takada, 
& Kamiya, 1995) and by potentiating hypertrophy and de-
tachment of podocytes (Dessapt et al.,  2009; Petermann 
et al., 2005).

While it is an established concept that mechanical stresses 
are increased in glomerular capillaries in these diseases, the 
actual in vivo magnitudes of these stresses are not known pri-
marily due to a lack of robust mathematical models of glo-
merular mechanics. Numerous models of varying complexity 
have been developed to estimate the glomerular clearance 
of fluid and solutes (Deen, Robertson, & Brenner,  1972; 
Papenfuss & Gross,  1978) however these models assumed 
the glomerulus to be composed of one to five rigid cylinders 
filtering in parallel and did not consider the tortuous topol-
ogy of the glomerular capillary network (Kaczmarek, 1999; 
Nyengaard & Marcussen,  1993; Shea,  1979; Shea & 
Raskova, 1984; Wagner, Czymmek, & Hossler, 2006). Few 
models have been devised which calculate the local filtration 
dynamics taking into account the actual glomerular anatomy 
(Lambert et al., 1982; Remuzzi et al., 1992), primarily due to 
the scarcity of anatomical data traditionally obtained using 
tedious methods of perfusion fixation and ultrathin sectioning 
to reconstruct the glomerular capillary network (Shea, 1979; 
Shea & Raskova, 1984).

Modeling studies that took into account the complex-
ity of the glomerular capillary network topology (Lambert 
et al., 1982; Remuzzi et al., 1992) used glomerular filtration 
equations previously derived by Deen et al. (1972) to calcu-
late the filtered volume on each capillary segment in an an-
atomically accurate glomerular capillary network. Mass and 
volume conservation laws were used to distribute plasma pro-
tein concentration, plasma flow, and erythrocytes through the 
network. The pressure drop along the length of the network 

was estimated assuming apparent viscosity of blood to be a 
function of hematocrit, and the pressure drop was assumed 
to be linear on each capillary segment without taking into 
account filtration.

Building on this work, we present a new model that uses 
a rat glomerular microvascular network geometry obtained 
through perfusion fixation and ultrathin sectioning of a rat 
glomerulus in a previous study (Shea,  1979). Our model 
takes into account the non-Newtonian properties of blood 
in calculating shear stresses exerted on the capillary walls 
(Ferrell et  al.,  2015) and determining the resistance of the 
glomerular capillaries (Pries et  al.,  1994). Our model im-
proves on the previous models by taking into account volume 
loss to filtration in estimating the pressure profile along each 
capillary segment without requiring the pressure profile to 
be linear, and this loss of volume similarly affects the pres-
sures at network nodes. Calibrating our model using hemody-
namic data from glomerular micropuncture studies (Franco 
et al.,  2011; Kasiske, O’Donnell, Garvis, & Keane,  1988; 
Zatz et  al.,  1986), we investigate the mechanical effect of 
pathophysiological alterations of renal hemodynamics on the 
glomerular capillaries, which has not been quantified previ-
ously; we use the model to simulate the glomerular hemody-
namics in a glomerulus in DM, a remaining glomerulus post 
5/6-Nephrectomy (5/6-Nx), and a glomerulus in Angiotensin 
II-induced hypertension (HTN), and we calculate the glo-
merular capillary wall shear stress and circumferential hoop 
stress in these cases.

2 |  MATHEMATICAL MODEL

The mathematical model consists of an anatomical model 
of the glomerular capillary network, including the network 
topology, lengths, and diameters of each capillary segment 
in the network; a filtering capillary model that calculates fil-
tered volume, blood flow, pressure, and the concentration of 
plasma proteins on the length of each capillary segment; and 
a network model that iteratively updates the node pressures 
taking into account filtration of plasma volume and apparent 
viscosity in determining capillary resistances. Mass balance 
equations are used to ensure conservation of plasma proteins, 
erythrocyte volume, and plasma volume on the length of the 
network. Boundary conditions are enforced by fixing inlet 
and outlet pressures, setting them equal to mean arterial pres-
sure (MAP) and peritubular capillary pressure, respectively. 
Afferent and efferent arterioles are represented by fixed 
resistors at the inlet and outlet of the glomerular network, 
respectively. The model is steady-state for the purpose of 
investigating chronic effects of changes in renal hemody-
namics, thus dynamic shifts in renal autoregulation are not 
considered. The key equations are described below, with de-
tails and model derivation included in the appendix.
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2.1 | Glomerular network anatomy

The model anatomical dimensions are derived from a study 
utilizing perfusion fixation to calculate the topology of, 
and diameter and length of each capillary within a Sprague 
Dawley rat glomerulus (Shea,  1979). Based on this data, 
the rat glomerulus is idealized as a network of straight, 
cylindrical tubes with prescribed length and diameter, 
representing filtering capillaries. The network contains 
320 segments with a mean diameter of 8.3 μm and mean 
length of 20.9 μm. Maximum capillary length and diameter 
are 109 and 21.3  μm, respectively, and minimum capil-
lary length and diameter are 2.5 and 2  μm, respectively. 
Capillaries branch and coalesce at 193 network nodes. 
Total glomerular surface area is 1.76 × 105 μm2. Originally 
reported with two efferent arterioles, these vessels are 
joined at a newly created node. Afferent and efferent arte-
rioles are represented by resistors leading into and out of 
the network, respectively.

2.2 | Filtering capillary model

For each capillary segment in the network we solve equa-
tions for the pressure profile p(x), the blood flow Q(x), the 
plasma protein concentration C(x), and the erythrocyte flow 
E, assumed constant on the length of the vessel (Papenfuss 
& Gross, 1978). We idealize a filtering capillary as a cylin-
drical tube extending from node i to node j, with length and 
diameter Lij and Dij, respectively. The resistance to the flow 
through the capillary is denoted Rij and we introduce the pa-
rameter R

f

��
 which represents the resistance of the capillary 

wall to filtration. For pij(x) the pressure profile on the length 
of the capillary segment and pBS Bowman's Space pressure, 
we define Rf

��
 such that we may obtain the capillary segment 

glomerular filtration rate (CSGFR) as a function of the pres-
sure profile:

The filtration resistance Rf

��
 is assumed constant on the length 

of the capillary and is not fixed but instead will be iteratively 
updated based on the plasma colloid osmotic and hydrostatic 
pressure profiles, as described below. For pi and pj the node 
pressures at each end of the capillary, we derive the second 
order differential equation for the pressure profile pij(x) along 
the capillary segment taking into account volume loss via 
filtration:

with boundary conditions pij(0)  =  pi and pij(Lij)  =  pj, where 
a2
��
=R��∕R

f

��
L2
��
. We let the capillary segment blood flow

Taking the derivative of Equation 3 and substituting Equation 2 
for the second derivative of pij(x),

Following traditional equations of glomerular filtration, we 
may also represent the change of blood flow on the length of the 
capillary segment as

for k the hydraulic conductivity of the capillary wall, defined 
as the permeability of the glomerular filtration barrier to water, 
and Πij(x) the colloid osmotic pressure as a function of plasma 
protein concentration Cij(x):

(Papenfuss & Gross, 1978). Assuming mass balance,

for Eij the erythrocyte flow in the capillary segment, assumed 
constant in x. To enforce consistency between Equations 4 and 5, 
we combine them and integrate on the length of the vessel, so that

With this formulation, we solve for the profiles of the pressure 
pij(x), blood flow Qij(x), plasma protein concentration Cij(x), and 
colloid osmotic pressure Πij(x) along the length of each capillary 
given a constant erythrocyte flow Eij and hydraulic conductivity 
k. Equation 8 is then used to iteratively update Rf

��
 as a function 

of the capillary pressure profile and plasma protein concentra-
tion from the previous iteration, as described below.

2.3 | Filtering network model

In order to assess the boundary conditions of Equations 1–8, we 
extrapolate the capillary model to a network of filtering capil-
laries using mass balance equations. We calculate pressures at 

(1)CSGFR�� =
∫ L��

0

(
p�� (x)−p��

)
dx

R
f

��
L��

.

(2)
d2p��

dx2
(x)−a2

��
p�� (x)=−a2

��
p��

(3)Q�� (x)=−
L��

R��

dp��

��
(x) .

(4)
dQ��

��
(x)=−

p�� (x)−p��

R
f

��
L��

.

(5)
dQ��

��
(x)=−k�D��

(
p�� (x)−p�� −Π�� (x)

)
,

(6)Π�� (x)=2.1C�� (x)+0.16C2
��
(x)+0.009C3

��
(x)

(7)C�� (x)=C�� (0)
Q�� (0)−E��

Q�� (x)−E��

,

(8)R
f

��
=

∫ L��

0

(
p�� (x)−p��

)
dx

k�D��L�� ∫ L��

0

(
p�� (x)−p�� −Π�� (x)

)
dx

.
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each node using a linear system with boundary conditions pa 
and pe at the beginning of the afferent arteriole and the end of 
the efferent arteriole, respectively. The pressures pa and pe are 
fixed and set equal to MAP and peritubular capillary pressure, 
respectively (Sgouralis & Layton, 2014), and afferent and ef-
ferent resistances are fixed. Due to the relationship between the 
pressure profile pij(x) and the resistance to filtration Rf

��
, filtered 

volume is taken into account in calculating pressures at each 
node of the network; once pressures pi and pj are calculated, 
Equations 3 and 4 are used to calculate the blood flows at the 
boundaries and CSGFR, respectively.

Erythrocyte flow in each capillary segment, Eij is cal-
culated using the sigmoidal function for distribution of 
erythrocytes at network nodes in the mesenteric microcir-
culation derived previously (Pries, Secomb, Gaehtgens, & 
Gross,  1990). These calculations are dependent upon the 
hematocrit in the feeding vessel. Hematocrit in a vessel con-
necting node i to node j is defined as

Afferent erythrocyte flow, EA, is calculated based on the as-
sumption that 20% of the systemic hematocrit appears in the 
microvasculature (Lipowsky, Usami, & Chien, 1980). Plasma 
protein concentration boundary conditions are determined 
using mass balance equations, assuming mixing of plasma 
proteins at each network node, with the afferent plasma protein 
concentration CA assumed to be known a priori. If we let K be 
the set of nodes k upstream of and connected to node i, and J be 
the set of nodes j downstream of and connected to node i, then 
for all nodes j in J we define

Equation 7 is then used to solve for Cij(Lij). With these equations, 
we calculate the pressure pi at each node, erythrocyte flow through 
each capillary segment Eij, and boundary conditions for the plasma 
protein concentration Cij(x) for each capillary segment.

2.4 | Capillary resistance and mechanical 
stress calculations

To calculate shear stress on the vessel walls, we assume 
Poiseuille flow through the capillary, taking into account 
filtration by averaging the flow on the length of the vessel. 
Assuming Poiseuille flow, the resistance of the capillary

where ��� is the apparent viscosity of the blood as a function of 
hematocrit:

for ���

��
 the plasma viscosity, taken to be a linear function of plasma 

protein concentration (Remuzzi et al., 1992), and λ a scaling fac-
tor that takes into account hematocrit in calculating the apparent 
blood viscosity (Pries et al., 1994). Similar to the filtration resis-
tance Rf

��
, the apparent viscosities μij will be iteratively updated 

based on the plasma protein concentration and erythrocyte flow. 
Shear stresses on each capillary segment, denoted by τ are calcu-
lated taking into account loss of flow due to filtration and appar-
ent viscosity of the blood as it passes through the capillary:

Hoop stresses on each capillary segment, denoted by σ are cal-
culated using the Young-Laplace equation:

for glomerular capillary wall thickness t assuming an en-
dothelial layer thickness te of 40  nm (Yamada,  1955), 
a basement membrane thickness tbm of 149.82  nm in 
the base case (Dubrulle, Terzi, Gubler, Kleinknecht, & 
Schaeverbeke, 1992), and an averaged podocyte layer thick-
ness tpod

��
 assuming podocyte foot processes to have a height 

hpod of 0.3 μm and width wpod of 0.17 μm (Kriz et al., 1994). 
In general, the thickness of each glomerular capillary wall 
is estimated assuming a minimum thickness of the podocyte 
layer tpod

min
 due to the presence of the slit diaphragm. Based on 

these assumptions, we have developed a model of estimating 
the average glomerular capillary wall thickness:

Parameters used in model simulations are detailed in Table 1.

2.5 | Model algorithm

The model equations above are iteratively applied to calculate 
pressures at nodes, updating vessel resistances, and filtered 
volume. Additionally, we use an iterative method to deter-
mine the hydraulic conductivity k for which the model will 
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E��

1
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converge to an expected value of SNGFR given experimen-
tal data. We briefly describe the algorithm, with additional 
details included in the appendix. Equation 8 is used to guess 
the initial values of Rf

��
, and apparent viscosities μij are ini-

tially set equal to a plasma viscosity of 1.24 cP. Pressures are 
calculated at each node with inlet and outlet pressure bound-
ary conditions, and Equation 2 is used to calculate the pres-
sure profile on the length of each capillary segment. Filtered 
volume on the length of each capillary segment is calculated 
with Equation 1. Using Equations 7 and 10, plasma protein 
concentration profiles are derived for each capillary segment, 
and erythrocyte flow is calculated for each capillary segment 
assuming mass balance. Using Equation 8, Rf

��
 are updated 

for each capillary segment. Equation 12 is used to update the 
apparent viscosity of blood in each segment as a function of 
vessel hematocrit and diameter, and subsequently update the 
capillary resistances. In the following iterations, the updated 
capillary apparent viscosities and filtration resistances are 
used to recalculate pressures at the network nodes, and the 
algorithm is repeated until all μij and Rf

��
 converge to within 

0.001% of their values in the previous iteration. If both μij 
and Rf

��
 converge, we check to see if the model SNGFR con-

verges to the SNGFR reported in the experimental study to 
which we are fitting the model and if k converges. We update 
k if convergence is not reached. A schematic of the algorithm 
is provided in Figure 1.

F I G U R E  1  A flowchart of the numerical scheme used to iteratively update filtration resistances Rf

��
, apparent viscosities μij and hydraulic 

conductivity k until the model converges to a target single nephron GFR (SNGFR) value.

T A B L E  1  Model simulation parameters, including afferent and efferent arteriole resistances, afferent plasma protein CA, and thickness of the 
glomerular basement membrane (GBM), Bowman’s Space pressure pBS, and MAP.

Condition
AA resistance 
(1010 dyn s/cm5)

EA resistance 
(1010 dyn s/cm5)

CA (g/
dl)

GBM 
thickness (nm)

pBS 
(mmHg)

MAP 
(mmHg) Ref

Base case 5.5 1.0 5.94 149.82 13 115 Dubrulle et al. (1992) and 
Navar et al. (1986)

Control 4.7 1.3 5.6 138 13 119 Østerby and Gundersen (1980) 
and Zatz et al. (1986)DM 2.2 1.0 5.9 162 11 117

Control 7.2 1.8 5.2 149.82 13 124 Dubrulle et al. (1992) and 
Kasiske et al. (1988)5/6-Nx 2.9 0.8 5.3 146.99 12 138

Control 5.9 1.5 5.12 149.82 11 115 Dubrulle et al. (1992) and 
Franco et al. (2011)HTN 16.1 2.7 5.49 149.82 13 165
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3 |  RESULTS

We assume base case conditions of a mean glomerular cap-
illary pressure (PGC) of 50  mmHg and SNGFR of 30  nl/
min (Navar, Bell, & Evan,  1986). We calculate network 
PGC by taking the mean of the averaged pressures of each 
glomerular capillary. We use a QA of 129 nl/min (Franco 
et al.,  2011; Kasiske et  al.,  1988; Zatz et  al.,  1986) and 
an afferent plasma protein concentration (CA) of 5.94  g/
dl to enforce an average colloid osmotic pressure Π of 
25 mmHg (Navar et  al.,  1986). We calculate the average 
colloid osmotic pressure as in glomerular micropuncture 
experiments, by taking the average of the inlet and outlet 
colloid osmotic pressures. Using the base case conditions, 
we conduct a sensitivity analysis of salient parameters and 
examine the spatial distribution of mechanical stresses and 
filtration throughout the glomerular capillary network. 
Afferent and efferent resistances are adjusted until the 
mean of the average pressure on each capillary segment 
equals the target PGC and plasma flow through the affer-
ent arteriole equals the target QA. Hydraulic conductivity is 
adjusted until the model SNGFR equals the target SNGFR. 
In addition to the base case, we employ this strategy to 
simulate disease conditions.

3.1 | Sensitivity analysis of glomerular 
mechanical stresses

We conduct a sensitivity analysis to evaluate the effect of 
varying afferent arteriole resistance, glomerular capillary 
diameters, and MAP on mechanical stresses exerted on the 
glomerular capillaries (Figure  2). Increases in afferent ar-
teriole resistance reduce glomerular pressure and flow, 
thus reducing both shear and hoop stresses. Small changes 
in the glomerular capillary diameters directly influence the 
mean network shear stress, τ and hoop stress, σ, according 
to Equations 13 and 14. As would be expected, increasing 
the inlet pressure increases QA and PGC, with consequent in-
creases in shear and hoop stresses. To facilitate the compari-
son to experimental studies, the afferent arteriole resistance 
is calculated as in micropuncture experiments assuming no 
reduction of hematocrit in the microvasculature (Lipowsky 
et al., 1980). Alteration of the podocyte foot process height 
results in significant changes in hoop stress throughout the 
network, highlighting the importance of podocytes in coun-
teracting capillary wall distention (Kriz et al., 1994).

Minor alterations in network topology are considered by 
setting the diameter of individual capillaries to 0.1  μm to 
evaluate the effect of this change on SNGFR and magnitudes 

F I G U R E  2  Analysis of the sensitivity of mechanical stresses to variance of afferent arteriole (AA) resistance, percent alteration in all 
glomerular capillary diameters, mean arterial pressure MAP, and podocyte foot process height hpod. Vertical dashed lines indicate the values used in 
the base case.
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of mechanical stresses exerted throughout the network 
(Figure 3). Distance of a particular capillary segment from 
the afferent arteriole is ascertained by computing the number 
of bifurcations on the shortest path between the afferent ar-
teriole and the source node of the capillary segment (x-axis 
in Figure 3). Based on where the altered segments lie in re-
lation to the afferent arteriole, it is apparent that altering the 
diameter of the segments closest to the afferent and efferent 
arterioles has the greatest effect on filtration and mechanical 
stresses in the glomerular capillaries.

3.2 | Spatial distribution of mechanical 
stresses and filtration

Using base case conditions, we examine the spatial distribu-
tion of filtration (Figure 4) and mechanical stresses (Figures 5 
and 6) throughout the glomerular capillary network. We 
demonstrate that filtration is heterogeneously distributed 
throughout the glomerular capillary network (Figure 4a) and 
is heavily influenced by individual glomerular capillary sur-
face areas (Figure 4b). While most of the capillaries closest 
to the afferent arteriole filter due to the lower concentration 
of plasma proteins, the summative surface area is highest in 
the “middle” of the glomerulus where the larger number of 
capillary segments increases the summative filtration in this 
region (Figure 4c). Capillaries furthest downstream from the 
afferent arteriole are rendered nonfiltering as plasma proteins 
concentrate to the point where plasma colloid osmotic pres-
sure equalizes the hydrostatic pressure gradient, causing fil-
tration to cease.

Shear stresses are generally concentrated closer to the ef-
ferent arteriole than the afferent arteriole due to the concen-
tration of plasma proteins and hematocrit which increase the 
plasma viscosity closer to the efferent arteriole (Figure 5a). 
Shear stress also appears to be concentrated within individ-
ual lobules or groupings of glomerular capillaries, with low 
magnitudes in the cross-cutting anastomoses between the 
lobules. Mean network shear stress is 42.4 dyn/cm2, with a 
minimum of 0.3 dyn/cm2 and a maximum of 399.7 dyn/cm2, 
demonstrating the large variance of shear stress throughout 
the glomerular capillary network. In contrast to the con-
centration of shear stresses near the efferent arteriole, hoop 
stresses are concentrated near the afferent arteriole due to the 
larger diameters of the vessels that branch off of the afferent 
arteriole upon entering the glomerulus (Figure 6a). The mean 
hoop stress on the network is 59.0 kPa, with a minimum of 
14.3 kPa and a maximum of 160.7 kPa. Given that 1 kPa is 
equal to 7.5 mmHg, the large hoop stress relative to the pres-
sure drop across the capillary walls is caused by the thinness 
of the glomerular filtration barrier in comparison to the cap-
illary diameter, where the wall thickness is in the order of nm 
while the diameter is in the order of μm.

3.3 | Hydraulic conductivity and filtration 
coefficient Kf

In conducting a sensitivity analysis of SNGFR and filtering 
surface area (Sf) to hydraulic conductivity (Figure 7a), we see 
that hydraulic conductivity k has a negative relationship with 
the filtering surface area, due to the upstream concentration 

F I G U R E  3  Analysis of the sensitivity 
of SNGFR, mean network shear stress τ, 
and mean network hoop stress σ to reduction 
of a single capillary segment diameter to 
0.1 μm, based on location of the segment in 
the network. Changes in SNGFR, τ, and σ 
are represented by % change over baseline. 2 3 4 5 6 7 8 9 10
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of plasma proteins as shown in Figure 4. The filtration coef-
ficient Kf is equal to the product of the hydraulic conductivity 
and the filtering surface area of the glomerulus. However, 

Kf is typically calculated by dividing SNGFR by the aver-
age effective filtration pressure, according to the glomerular 
filtration equation:

F I G U R E  4  (a) Spatial distribution 
of capillary segment glomerular filtration 
rate (CSGFR) throughout the glomerular 
capillary network. CSGFR values are 
graphed on the glomerular network topology 
to facilitate comparison between CSGFRs 
at different locations in the network. 
Thickness of each segment is proportional 
to the filtration rate. AA––afferent arteriole, 
EA––efferent arteriole. (b) CSGFR is 
plotted against capillary surface area 
to determine the cause of heterogenous 
filtration throughout the capillary network. 
(c) Individual and summative CSGFRs are 
graphed as a function of distance of the 
capillary segment from the afferent arteriole
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We compare both methods for calculating Kf (Figure 7b), 
and demonstrate that both methods approach a plateau of Kf 
at large hydraulic conductivities, corresponding to filtration 
equilibrium. Using the glomerular filtration equation under-
estimates Kf in comparison to the direct multiplication of the 
hydraulic conductivity with the filtering surface area, which 
can be attributed to an underestimation of the average colloid 
osmotic pressure on the network by averaging afferent and ef-
ferent colloid osmotic pressures to calculate Π, when the col-
loid osmotic pressures in individual capillaries may exceed this 
value due to heterogenous filtration throughout the network.

3.4 | Disease condition simulations

We simulate three disease conditions that alter glomerular 
hemodynamics: DM, 5/6-Nx, and HTN. By optimizing the 

model afferent and efferent resistances, we match the model 
afferent plasma flow QA and mean glomerular capillary pres-
sure PGC to hemodynamic data obtained from glomerular 
micropuncture studies for both control and disease condi-
tions, assuming inlet pressure to be equal to MAP (Franco 
et al., 2011; Kasiske et al., 1988; Zatz et al., 1986). We then 
optimize the hydraulic conductivity to match the model 
SNGFR to that of the respective studies.

In DM, hyperglycemia acts directly on afferent arteriole 
vascular smooth muscle cells to reduce afferent and efferent 
resistances thereby increasing the glomerular pressure and 
blood flow (Carmines, 2010; Zatz et al., 1986). In the case 
of 5/6-Nx, significant loss of functional nephrons results in 
diversion of blood to the remaining kidney mass, substan-
tially increasing blood flow and pressure in the remnant 
glomeruli (Kasiske et al., 1988). In the HTN case, angioten-
sin II constricts both afferent and efferent arterioles, result-
ing in decreased afferent blood flow and a slightly increased 
glomerular pressure (Franco et al.,  2011). In addition to 

(16)SNGFR=Kf (ΔP−Π) .

F I G U R E  5  (a) Shear stress magnitudes 
and locations within the glomerular capillary 
network. A scale bar is used to indicate 
shear stress magnitude on a log scale, and 
segments with shear stress over 100 dynes/
cm2 are of greater width. AA––afferent 
arteriole, EA––efferent arteriole. (b) A 
histogram details frequency of shear stress 
values throughout the network.
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hemodynamic alterations, the glomerular capillaries undergo 
structural changes. In DM, capillaries dilate, increasing their 
diameters by 14% (Østerby & Gundersen, 1980). Increased 
production of extracellular matrix components by mesangial 
cells and podocytes results in a thickened basement mem-
brane, from 138 nm in control conditions to 162 nm in DM 
(Østerby & Gundersen, 1980). In the case of 5/6-Nx, capillary 
diameters are increased by 23% (Bidani, Mitchell, Schwartz, 
Navar, & Lewis, 1990), while the basement membrane does 
not thicken (Dubrulle et al., 1992). No structural changes are 
assumed to occur in HTN.

Common across all three disease states is the increase 
in glomerular pressure over their respective controls, 
which consequently raises the mean hoop stress on the 
glomerular capillaries (Table 2). The increase in afferent 
plasma flow in DM and 5/6-Nx explains the increased 
mean network shear stress in these disease conditions over 

their respective controls, however the shear stress in DM 
is increased only slightly due to the remodeling of the di-
abetic rat glomerulus (Østerby & Gundersen, 1980) which 
increases the glomerular capillary diameters. This remod-
eling is even more pronounced in the remnant glomeruli 
post 5/6-Nx (Bidani et al., 1990), however the massive 
increase in blood flow to the remnant glomeruli still re-
sults in a significantly increased shear stress. In the case 
of HTN, a reduction in afferent blood flow reduces mean 
shear stress from the control condition.

4 |  DISCUSSION

We developed a novel model of blood flow and filtration 
in the glomerular microvascular network that takes into ac-
count blood rheology, blood phase separation at network 

F I G U R E  6  (a) Circumferential hoop 
stress magnitudes and location within 
the glomerular capillary network, where 
the scale bar at right indicates magnitude 
of hoop stress. AA––afferent arteriole, 
EA––efferent arteriole. (b) A histogram 
to represent the frequency of hoop stress 
magnitudes throughout the network.
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nodes, plasma protein concentration, and colloid osmotic 
pressure. Previous models rely on an assumption that the 
pressure profile is linear on the length of each capillary, 
with capillary resistance dependent upon the blood apparent 
viscosity (Lambert et al., 1982; Remuzzi et al., 1992). Our 
model improves on these models by taking into account loss 
of volume due to filtration, thereby allowing for nonlinear 
pressure profiles. By taking into account the complex ana-
tomical dimensions of the glomerular capillary network, our 
model allows for in-depth investigations into the chemical 
and mechanical microenvironment of glomerular cells and 
the contribution of different populations of the glomeru-
lar capillaries to overall glomerular function. We expand 
on previous work by applying our model to investigate the 

mechanical consequences of pathophysiological alterations 
in renal hemodynamics.

In baseline conditions our model median shear stress 
is 31.2  dyn/cm2, which matches closely with the shear 
stress of 31.7  dyn/cm2 estimated experimentally by Ferrell 
et  al.  (2015), providing validation of our mechanical pre-
dictions. Our sensitivity analysis indicates that of particular 
importance are glomerular capillary diameters in estimat-
ing mechanical stresses; increasing the glomerular capillary 
diameters results in a reduced mean shear stress and an in-
creased hoop stress on the glomerular capillary walls. Our 
sensitivity analysis also suggests that network topology plays 
an important role in determining the mechanical stresses and 
filtration in the glomerulus (Figure  3). Altering individual 

F I G U R E  7  (a) An analysis of the 
sensitivity of SNGFR and filtering surface 
area Sf to changes in hydraulic conductivity, 
for Sf normalized to the total surface area 
S

0

f
 equal to 1.76 × 105 μm. (b) Comparison 

of filtration coefficient Kf calculations, 
including taking the product of the hydraulic 
conductivity and the filtering surface area, 
and the indirect use of the glomerular 
filtration equation to estimate Kf. The 
vertical dashed line indicates the value of 
hydraulic conductivity used in the base case
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capillary diameters close to the afferent or efferent arterioles 
results in substantial diversions of blood flow which may 
alter the mean network shear stress. In this case reduction 
of the diameters is considered, which leads to a reduction of 
SNGFR if the altered segment is close to the afferent arteri-
ole. This sensitivity demonstrates that both function and me-
chanics are highly dependent upon anatomical parameters, 
particularly the number and diameter of capillaries branching 
off of the afferent arteriole.

We demonstrate that filtration is heterogeneously distrib-
uted throughout the glomerular capillary network, that some 
segments are sent into a nonfiltering state by nature of the 
filtration that occurs upstream, and that some segments filter 
more than others due to their larger surface area. Because 
there is more cumulative surface area in the “middle” of the 
glomerulus, the summative filtration is highest after several 
generations of branching after the afferent arteriole, which 
has not been demonstrated by previous models that do not 
take the glomerular anatomy into account and thus assume the 
highest magnitude of filtration occurs nearest to the afferent 
arteriole (Deen et al., 1972). Nonfiltering surface area is a re-
sult of increasing concentration of plasma proteins upstream. 
As the network hydraulic conductivity is increased, capillar-
ies further from the afferent arteriole will see an increase in 
plasma protein concentration and thus colloid osmotic pres-
sure, explaining the relationship between hydraulic conduc-
tivity and Sf seen in the sensitivity analysis (Figure 7a). The 
reciprocal relationship of the hydraulic conductivity and the 
filtering surface area in addition to the plateau of the SNGFR 
in the sensitivity analysis suggests the capability of the 
glomerulus to maintain function in the event of physiological 
or pathological alterations or perturbations of the hydraulic 
conductivity of the glomerular capillary wall.

The relationship between hydraulic conductivity and fil-
tering surface area is further explored in Figure 7b, in which 
the filtration coefficient Kf is calculated directly through 
taking the product of hydraulic conductivity and filtering 
surface area, and indirectly through the glomerular filtration 

equation. The former calculation overestimates the latter due 
to the simplifying assumption in the latter that average col-
loid osmotic pressure may be estimated by taking the average 
of the inlet and outlet colloid osmotic pressures; by taking 
the average of the colloid osmotic pressures in each capillary 
of the network, the model average colloid osmotic pressure 
exceeds this estimation by roughly 3 mmHg, which justifies 
the greater value of Kf calculated by taking the product of the 
hydraulic conductivity and the filtering surface area.

The model predicts that in DM, shear stress is largely con-
trolled by the remodeling of the glomerular capillaries which 
increases the capillary diameter, indicating that this remodel-
ing acts as a protective mechanism to reduce shear stress on 
the endothelium. However, this increase in capillary diameter 
leaves the capillary more vulnerable to hoop stresses gener-
ated by the increased PGC. While the glomerular basement 
membrane thickens due to increasing production of ECM 
components (Østerby & Gundersen, 1980), the overall thick-
ness of the glomerular capillary wall does not increase pro-
portionally to the increase in diameter thus the hoop stress 
increases by 41%. Diabetic nephropathy is characterized by 
a loss of podocytes and hypertrophy of the remaining podo-
cytes (Pagtalunan et al., 1997), a finding consistent with the 
podocyte's response to stretch in vitro (Dessapt et al., 2009; 
Petermann et al., 2005). While our model does not consider 
mechanical strain, increased levels of chronic hoop stress 
may play a role in the reorganization of the podocyte actin 
cytoskeleton as the podocyte undergoes structural changes 
to counteract the distention of the glomerular capillary wall 
(Kriz et al., 1994). The increased capillary diameter also sub-
jects podocytes to increased risk of hypertrophy and detach-
ment due to hoop stresses resulting from transient rises in 
glomerular pressure.

In our simulations of a glomerulus in the remaining kid-
ney mass post-5/6-nephrectomy, both shear stress and hoop 
stress are increased, the former as a result of a substantial in-
crease in afferent blood flow and the latter a result of a lack of 
thickening of the glomerular basement membrane, increased 

T A B L E  2  Disease condition simulations of DM, 5/6-Nx, and HTN, with their respective controls. Hemodynamic data, including glomerular 
capillary pressure PGC, afferent plasma flow QA, and SNGFR, is obtained from the listed references and reproduced by the model via parameter 
optimization.

Condition
Mean PGC 
(mmHg)

QA (nl/
min)

SNGFR 
(nl/min)

Hydraulic 
conductivity (10–5 nl/
min mmHg−1 μm−2)

Filtering 
surface 
area (μm2)

Mean shear 
stress (dyn/
cm2)

Mean hoop 
stress (kPa) Ref

Control 52 154 45.9 2.3 176,213 49 66 Zatz et al. (1986)

DM 63 268 81.6 1.9 200,882 54 93

Control 51 112 35.5 1.6 176,213 34 62 Kasiske et al. (1988)

5/6-Nx 57 309 97.0 2.4 217,271 43 91

Control 49 122 36.2 1.6 176,213 36 61 Franco et al. (2011)

HTN 55 76 23.1 0.85 176,213 24 69
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intraglomerular pressure, and increased glomerular capillary 
diameters. Despite this increase in diameter, mean capillary 
shear stress is increased by 26% in 5/6-Nx over control. This 
finding is in opposition to results by Ferrell et  al.  (2015) 
who showed that the increase in capillary diameter results 
in a combined effect of reduction in shear rate and apparent 
viscosity. This discrepancy can be attributed to the fact that 
Ferrell et al. imaged the rat glomeruli 2 weeks after renal ab-
lation, whereas the hemodynamic data used in our simulation 
was gathered at 4 weeks after renal ablation. Ferrell et al. mea-
sured a mean increase of 16% in glomerular capillary diame-
ter and a 110% increase in blood flow post-5/6-Nx, however 
in our simulation we assume a 23% increase in glomerular 
capillary diameter based on a morphometric analysis of rem-
nant glomeruli 4 weeks post 5/6-Nx (Bidani et al.,1990), and 
a 180% increase in blood flow based on our hemodynamic 
data (Kasiske et al., 1988). Results from Ferrell et al. indi-
cate that glomerular capillary remodeling may compensate 
for the increased blood flow for a short period after the renal 
ablation, but our results show that even with further dilation 
the capillaries are subjected to higher shear stresses in the 
long-term. Based on data of Ferrell et al. (2015) we increased 
the capillary diameters by 16.1% and the AA blood flow by 
110% in our model and found an 18% increase in shear stress 
(data not shown). This suggests that asymmetric distribution 
of erythrocytes and plasma protein concentration, both not 
considered in the work of Ferrell et al., play an important role 
in determining the degree to which mean network shear stress 
changes in disease conditions.

In response to laminar shear stress at magnitudes compa-
rable to the mean shear stress calculated in our 5/6-Nx simu-
lation, endothelial cells increase production of TGF-β1, and 
endothelial cell TGF-β1 mRNA increases proportionally to 
the increase in shear stress magnitude (Ohno et al.,  1995). 
Cell surface expression of ICAM-1 follows a similar pattern, 
whereby ICAM-1 expression increases with increasing shear 
stress magnitude (Tsuboi et al., 1995). Given the profibrotic 
effect of TGF-β1 and the role of ICAM-1 in initiating the 
inflammatory process, the increased shear stress––in combi-
nation with increases in hoop stress––may play a significant 
role in progression of glomerulopathy in the remaining glom-
eruli in severe renoprival conditions.

In our simulations of HTN, we see that hoop stresses are 
modestly increased by roughly 13%, whereas shear stresses 
are decreased by 33% due to the increasing afferent and effer-
ent arteriole resistances which in turn reduce blood flow into 
the glomerulus. While the increased hoop stress is significant, 
the reduction in shear stress may also play a role in perpetuat-
ing injury of the glomerulus through the action of endothelin; 
microvascular endothelial cells secrete increased levels of en-
dothelin at shear stresses under a threshold of 15 dynes/cm2, 
and reduce secretion at higher levels (Wang et al.,  2002). 
In control conditions, our model indicates that 23% of the 

capillaries are subjected to shear stresses below this thresh-
old. With the reduction of flow in the HTN condition, the 
fraction of capillaries within the range of increased endothe-
lin secretion rises to 43%. Independent of hypertension, en-
dothelin increases glomerular permeability to albumin, and 
selective antagonists of the ETA receptor attenuate this effect 
(Saleh, Boesen, Pollock, Savin, & Pollock, 2010), indicat-
ing that endothelin, and thus a reduction of shear stress, may 
play a significant role in the progression of glomerulopathy 
in hypertension. According to our model results, lower shear 
stresses primarily occur in anastomoses between the lobules 
and regions closer to the afferent arteriole, which may in turn 
result in transport of secreted endothelin to other regions of 
the glomerulus by the blood flow.

Our sensitivity analysis details the importance of the net-
work topology and vessel diameters in calculating mechani-
cal stresses and glomerular dynamics, and the results of the 
simulation studies are sensitive to the hemodynamic data 
gathered from glomerular micropuncture studies. Additional 
studies must incorporate more anatomical and hemodynamic 
data to build a better understanding of the variance of me-
chanical stress and function between different glomeruli.

Additional important assumptions of our model include 
the assumption that the capillary segments have constant di-
ameter along their length, which has a significant effect on 
capillary resistance (Iordache & Remuzzi,  1995), and the 
assumption that shear stress may be quantified assuming 
Poiseuille flow which does not take into account complexi-
ties of fluid flow arising from filtration through the capillary 
wall. The steady-state model used in this study does not con-
sider temporal dynamics of renal autoregulation and conse-
quent alterations in SNGFR. These limitations make obvious 
the need for additional study of glomerular function and me-
chanics using more sophisticated mathematical models.

We demonstrate that shear stress and hoop stress are 
concentrated near the efferent arteriole and afferent arteri-
ole, respectively. This novel finding correlates with perihilar 
glomerular sclerosis, a common form of glomerular sclero-
sis wherein scarring is primarily visible at the vascular pole, 
at which both afferent and efferent arterioles are located 
(Fogo,  2015). The model results, combined with previous 
literature regarding the effect of mechanical stresses on endo-
thelial cells and podocytes, indicate that changes in mechan-
ical stress may play a role in the cause and/or progression of 
glomerulosclerosis in conditions in which glomerular hemo-
dynamics are significantly altered, such as DM, HTN, or the 
loss of renal mass.
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APPENDIX 

Capil lary model  derivation
We aim to develop a model that allows for the solution 
of pressures at network nodes, and for calculation of the 
pressure profile on the length of each capillary segment. 
We assume a capillary spans from node i to node j and is 
of length Lij. The capillary is discretized into M segments, 
each with length Lij/M. If the capillary has resistance Rij, 
each segment will in turn have resistance Rij/M. The fil-
tration resistance Rf

��
 is introduced such that each segment 

filters with filtration resistance MR
f

��
. For m = 1, 2, 3, … 

M−1, we denote pressures pm to be pressures along the 
length of the capillary, with p0 = pi and pM = pj (Figure 8). 
The pressure outside the capillary, denoted p∞, is assumed 
constant on the length of the capillary segment. Volume 
flux balance at m is such that:

This implies that

writing in terms of h = L/M, and letting a2
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which is a discretization of

where pij is the pressure profile from node i to node j. We 
solve equation 20 with boundary conditions pij(-Lij/2) = pi and 
pij(Lij/2) = pj:

with this formulation for pij, and using Equation 3 we see that 
Qij(x), the blood flow through capillary ij, is:

In deriving the capillary model, we assume that the pres-
sure outside the capillary, p∞, is independent of x. To apply 
the capillary model to estimate the filtration in a glomerular 

capillary, we must incorporate the plasma protein concentra-
tion and colloid osmotic pressure. To do so, we let p∞ = pBS 
and calculate the resistance to filtration Rf

��
 as a function of 

the average colloid osmotic pressure on the length of the 
capillary segment, implemented in Equation 8. This strategy 
guarantees that the amount of filtered volume is consistent 
with the average colloid osmotic pressure on the length of 
the glomerular capillary and the hydraulic conductivity of 
the glomerular capillary wall. Because resistance to filtra-
tion is a function of the pressure profile, an iterative method 
is necessary to update Rf

��
 until every value of Rf

��
 converges.

Network model  derivation
We wish to conserve volume flow at nodes of the network 
taking into account loss of blood flow along the length of each 
capillary segment. Using the equations for flow and pressure 
derived above, for segment ij connecting nodes i and j, flow 
at nodes i and j, denoted Qi = Qij(−L/2) and Qj = Qij(L/2), 
respectively, are computed as follows:
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F I G U R E  8  A schematic representation 
of volumetric flux balance at one point m 
out of M total points along the length of the 
capillary between nodes i and j. Pressure at 
point m is denoted by pm, resistance of the 
capillary is denoted Rij, and the resistance to 
filtration is assumed constant on the length 
of the vessel and is denoted by Rf

��
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we then define the cumulative filtration on the segment 
CSGFRij = Qi − Qj as:

As in Equation 1. If we let J be the set of nodes j connected to 
node i, conservation of blood flow at node i is represented by:

which implies that

Equation 27 allows for the solution of pressures at every 
node taking into account filtration along each segment.

Erythrocyte distr ibution at  network 
nodes
Incoming erythrocyte volume flow is summed at a network 
node and is then distributed according to a rule that seeks to 
capture the nonlinearity of blood phase separation at micro-
vascular network bifurcations (Pries et al., 1990). For nodes k 
in K the set of nodes that flow into node i, and nodes j and l in 
J the set of two nodes that node i flows into, the erythrocyte 
volume Eij in capillary ij is:

where

For FQij the fraction of blood flow distributed to node j and log-
it(x) = ln(x/(1 − x)). In calculating the parameters Aij, B, and X0, 

Df is the diameter of the parent branch. In the case that there is 
more than one parent branch, we combine the parent branches 
into one vessel with diameter such that the cross-sectional area 
of the combined vessels is equal to the sum of the cross-sec-
tional areas of the actual parent branches. Hf represents the dis-
charge hematocrit present in the parent branch. This strategy 
is effective for estimating the blood flow distribution with two 
daughter branches but cannot predict this distribution for more 
than two daughter branches. In this case, we combine all but 
one of the daughter branches into a surrogate daughter branch 
with diameter such that the cross-sectional area of the surrogate 
is equal to the sum of the combined daughter branch cross-sec-
tional areas. The uncombined daughter branch and the surro-
gate branch diameters are used with Equation 28 to calculate 
erythrocyte flow through the uncombined branch. Once flow 
through the uncombined branch is determined, this process is 
repeated with the branches that were combined to form the sur-
rogate branch, until there are only two branches remaining.

Apparent viscosity equations
Blood apparent viscosity used in calculating shear stress on 
the vessel walls and resistance of the capillaries in calculating 
pressures at network nodes is computed on capillary segment 
ij as follows:

for μpl the plasma viscosity in cP, which is a function of plasma 
protein concentration (Remuzzi et al., 1992):

The non-dimensional, experimentally derived scaling factor 
λ is based on vessel diameter D and discharge hematocrit HD 
(Pries et al., 1994), which is related in a nonlinear manner to the 
tube hematocrit Ht and vessel diameter D due to the Faerheus–
Lindquist effect:

In this equation D* = 10.43 μm is defined as the minimum di-
ameter vessel a red blood cell may pass through without alter-
ing its surface area (Ferrell et al., 2015). Equation 31 holds true 
for vessel diameters below 12 μm, however this relation breaks 
down for higher diameter vessels. As in (Ferrell et al., 2015), 
we assume a linear increase of Ht/HD to unity at a diameter of 
300 μm as a function of vessel diameter for vessels of diame-
ter above 12 μm. While this is an oversimplification, only 8% 
of the capillary segments in the microvascular network have 
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diameters over 12 μm and thus we believe this is a reasonable 
assumption. With this definition of HD (Pries et al., 1994),

for

an experimentally derived shape parameter and

The relative viscosity for a fixed (HD)�� of 0.45.

Model  algorithm
An iterative approach is taken to update the capillary filtra-
tion resistance Rf

��
 such that the filtered volume is consistent 

with the colloid osmotic pressure which hinders filtration and 
is dependent upon plasma protein concentration. Apparent 
blood viscosity μij is similarly updated as erythrocyte flow 
and plasma protein concentration change with the volume fil-
tered, which feeds back into nodal pressures and thus flows 
through each segment. We use Equations 8 and 12 to update 
R

f

��
 and μij, respectively, however an additional step must be 

taken to control the change in these values to prevent oscilla-
tions. We propose a method based on control theory whereby 
the change in each Rf

��
 and μij is dependent upon the maxi-

mum difference between these values at each iteration and 
the values obtained using Equations 8 and 12. Inlet and out-
let pressure boundary conditions are set equal to MAP and 
peritubular capillary pressure, respectively, and inlet plasma 
protein concentration, hematocrit, and hydraulic conductivity 
(assumed the same for all capillary segments) are passed as 
parameters to the model. In describing each step of the algo-
rithm, the exponent n is used to indicate the iteration number, 
beginning with n = 1 indicating the first iteration. The algo-
rithm steps are as follows:

 1. In the first iteration, initial values for Rf

��
 are determined 

using Equation 8 on the basis that on average, the colloid 
osmotic pressure will be equal to 90% of the hydrostatic 
pressure gradient

 2. Assuming zero erythrocytes in the network, and that ap-
parent viscosity for all capillary segments is equal to a 
baseline plasma viscosity of 1.24 cP, Equation 11 is used 
to calculate the initial resistance of every capillary seg-
ment, Rn=

��

 3. Equation 27 is used to calculate pressures at all nodes of 
the network.

 4. Using Equations 21 and 22, the pressure and blood flow 
profiles pn

��
(x) and Qn

��
(x), respectively, are derived for 

each capillary segment.
 5. CSGFR is calculated for each capillary segment using 

Equation 1. SNGFR is calculated by summing all 
CSGFRs.

 6. Using Equation 28, erythrocyte volume is distributed 
throughout the network to calculate En

��
 for each capillary 

segment.
 7. Using Equations 7 and 10, the plasma protein concentra-

tion profile Cn
��

(x) is derived for each capillary segment of 
the network.

 8. Equation 6 is used to calculate the colloid osmotic pres-
sure profile Πn

��
(x) on the length of each segment as a 

function of Cn
��

(x)

 9. Filtration resistances and apparent blood viscosities are 
updated for each capillary segment, first using Equations 
8 and 12 to derive target Rf

��
 and μij, denoted (Rf

��
)* and 

μij
*, respectively:

 

  The hydrostatic pressure profile pn
��

(x) is integrated ana-
lytically, whereas the colloid osmotic pressure profile 
Πn

��
(x) is integrated by quadrature.

 10. We then update the filtration resistances (Rf

��
)n and appar-

ent viscosities �n
��
 based on the difference between these 

values and the target values (Rf

��
)* and �∗

��
. We define the 

term α to be the maximum relative difference of all (Rf

��
)n 

and �n
��
 with their respective target values

for β a smoothing parameter used to impose an upper 
bound on the amount that any given (Rf

��
)n or �n

��
 may 
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change from one iteration to the next. We then update (R
f

��
)n  

and �n
��
 using α: 

 

 

 11.. Steps 3–10 are repeated until both (Rf

��
)n and �n

��
 con-

verge, such that

 

For δμ = δR = 1 × 10–5. The parameter β is used to control the 
degree to which the viscosities or the filtration resistances may 
change. In our simulations we use β = 3, such that the vari-
ables may change at most by 33.33%. This is similarly reflected 
in the case in which the target filtration resistance is negative, 
indicating that the colloid osmotic pressure exceeds the hydro-
static pressure gradient. In this case the corresponding filtra-
tion resistance is increased by a factor of 1/β, which will allow 
for the capillary to remain permeable unless it repeatedly has a 
colloid osmotic pressure that exceeds the hydrostatic pressure 
gradient. Thus, β may be chosen to determine the “smoothness” 
of the variables’ progression over the course of the iterations. 
For larger β there will be more iterations necessary, because 
more steps will be required to change the variables by the same 
amount. In the event that the maximum difference between the 
current iteration (Rf

��
)n and �n

��
 and the calculated target val-

ues goes below 1/β, we say that the variables should then just 

converge to the target value, and the denominator in the deriva-
tive term of Equations 39 and 40 becomes 1.

In addition to the iterative procedure above, an iterative 
method is used to converge to the value of hydraulic con-
ductivity k such that the model SNGFR matches that of a 
particular experimental study. The bisection method is used 
to try different values of k until both SNGFR and k converge. 
Two initial values of k are used to obtain an upper and lower 
bound on the SNGFR, and the average of the initial two k val-
ues is used to obtain either the next upper or lower bound, de-
pending on if the target SNGFR is larger or smaller than the 
midpoint SNGFR estimate. Convergence of k and SNGFR 
are defined as

For SNGFR* the target value for SNGFR based on micropunc-
ture experiment data, and δk = δS = 1 × 10–5.

Simulation parameters
Parameters used in the simulations not discussed in the text 

include afferent plasma protein CA, thickness of the glomer-
ular basement membrane (GBM), Bowman's Space pressure 
pBS, and MAP, which are shown in Table 1 for each simula-
tion condition. A peritubular capillary pressure of 15 mmHg, 
a minimum podocyte thickness tpod

min
 of 5 nm, podocyte foot 

process height hpod of 0.3 μm, and a podocyte foot process 
width wpod of 0.17 μm are assumed for all simulation cases. 
Afferent and efferent arteriole resistances are included in 
Table 1. As in the sensitivity analysis, afferent and efferent 
resistances are calculated as in glomerular micropuncture 
experiments assuming a systemic hematocrit of 0.4 without 
taking into account the reduction of hematocrit seen in the 
microvasculature (Lipowsky et al., 1980).
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