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Experimental demonstration of quantum advantage
for NP verification with limited information
Federico Centrone 1,2✉, Niraj Kumar3✉, Eleni Diamanti 1✉ & Iordanis Kerenidis2,4,5✉

In recent years, many computational tasks have been proposed as candidates for showing a

quantum computational advantage, that is an advantage in the time needed to perform the

task using a quantum instead of a classical machine. Nevertheless, practical demonstrations

of such an advantage remain particularly challenging because of the difficulty in bringing

together all necessary theoretical and experimental ingredients. Here, we show an experi-

mental demonstration of a quantum computational advantage in a prover-verifier interactive

setting, where the computational task consists in the verification of an NP-complete problem

by a verifier who only gets limited information about the proof sent by an untrusted prover in

the form of a series of unentangled quantum states. We provide a simple linear optical

implementation that can perform this verification task efficiently (within a few seconds),

while we also provide strong evidence that, fixing the size of the proof, a classical computer

would take much longer time (assuming only that it takes exponential time to solve an NP-

complete problem). While our computational advantage concerns a specific task in a scenario

of mostly theoretical interest, it brings us a step closer to potential useful applications, such

as server-client quantum computing.
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Quantum technologies explore the possibility of using
quantum resources in order to demonstrate in practice an
advantage in terms of computational time, security or

communication efficiency. A series of proposals of tasks for which
a computational advantage can be shown have appeared,
including Boson Sampling1,2, which has been implemented for
small sizes3–7, and sparse commuting (IQP) or random quantum
circuits8–14. The quest for such a quantum computational
advantage has culminated recently with a demonstration of a
random circuit sampling task by Google using the 53-qubit
superconducting chip Sycamore15.

One of the major difficulties in gaining confidence with these
experimental demonstrations, and cause for some doubts (see
Ref. 16), is that these are not well established tasks for which
classical methods have been developed for long, thus making
benchmarking against classical methods difficult. In particular,
although the asymptotic theoretical separation between quantum
and classical methods is based on strong computational com-
plexity theoretic assumptions (namely, polynomial hierarchy
collapses at the third level), this is less clear when considering the
exact scaling of the optimal classical algorithm to solve the task at
intermediate sizes and in the presence of noise. Moreover, the
verification of the advantage provided by the quantum machine
can only happen for a very narrow range of parameters where the
classical complexity is just out of reach but some kind of ver-
ification (usually of smaller or simpler instances) is still possible
to perform on a classical computer. Last, the main open question
is to demonstrate such superior behavior for a useful task, thus
proving the disruptive potential of quantum technologies.

In this work, we study the power of quantum technologies to
provide a computational advantage in an interactive setting,
where first we allow two parties to interact in a predefined
manner, and then we look at the time it takes for one of them to
resolve a specific computational task when they can use quantum
or classical resources. Specifically, we study the task of verifying
NP-complete problems, in particular whether a set of boolean
constraints have a satisfying assignment to them or not, when an
untrusted party provides some limited information about the
solution of the problem. For this task, we show that we can
achieve a quantum advantage exploiting experimental techniques
involving coherent states, linear optics and single-photon
detection.

Before explaining this further let us remark a few properties of
our result: first, the quantum hardware we use is simple and the
demonstration can be readily reproduced in well-equipped
quantum photonics labs; second, our task is inherently verifi-
able since the output is a YES/NO answer and not a sample from
an exponential size distribution (we emphasize here that the
quantum machine in our scenario is certainly not solving NP-
complete problems but merely verifies whether a solution exists
or not with limited information about the possible solution);
third, the benchmarking against the best classical methods is
based only on the assumption that NP-complete problems do not
have sub-exponential algorithms, a well-known and widely
accepted computational assumption17; and finally, while pre-
viously experimentally demonstrated computational tasks are
typically tailor-made for showing quantum advantage with no
direct connection to useful applications, the fast verification of
NP-complete problems with bounded information leakage could
potentially lead to interesting applications, including in
server–client quantum computing, authentication systems, ethical
behavior enforcement, and blockchain technologies18. At the
same time, we stress that the computational advantage we achieve
is not in the standard computational model where a single clas-
sical or quantum machine receives an input and computes an
output, but in the interactive setting, where we first allow

interaction with a second party before trying to resolve the
computational task at hand.

Let us now describe our results on the demonstration of a
quantum computational advantage in this interactive setting for
NP verification in more detail.

The class of NP-complete problems contains some of the most
interesting problems both from a theoretical point of view and in
practice. Such problems include the Traveling Salesman Problem,
Satisfiability, and many problems related to combinatorial opti-
mization, scheduling, networks, etc. The main characteristic of
these problems is that while it is very difficult to find a solution,
and in many cases even approximate the optimal solution, it is
easy to verify a solution if someone provides one to us, even if this
is an untrusted party. Moreover, the theory of NP-completeness
shows that all these different problems are related to each other
through reductions, meaning that it suffices to study one of them
in order to say something interesting about the entire class of
problems.

Let us then focus on 2-out-of-4 SAT, which can be obtained
through a reduction of a 3-SAT, the canonical NP-complete
problem. The 2-out-of-4 SAT problem consists of a formula of N
boolean variables in a conjunction of clauses, where each clause is
satisfied if and only if exactly two of the four variables forming
the clause are True. The task is to decide whether there exists an
assignment to the variables (x1, x2,…, xN), which satisfies all
clauses of the formula, in other words for every clause two
variables must be True and the other two must be False. We
assume without loss of generality that our 2-out-of-4 SAT
instance meets the following two conditions. First, it is a balanced
formula, meaning that every variable occurs in the same constant
number of clauses, and second, it is a Probabilistically Checkable
Proof (PCP), i.e., either the formula is satisfiable, or for any
assignment at least δ fraction of the clauses is unsatisfiable, for
some constant δ > 0. These conditions can always be guaranteed
using a polynomial overhead in N and the theory of PCPs. Thus
any NP-complete problem can be reduced to a balanced 2-out-of-
4 SAT instance that is probabilistically checkable.

For the verification of such a 2-out-of-4 SAT instance, we
would like the verifier, Arthur, to accept a correct proof (a truth
assignment of the variables that satisfies the formula) given by a
prover, Merlin, with high probability, say C ≥ 2=3. We call this the
completeness property of the verification scheme. If, on the other
hand, the formula is not satisfiable, then for any potential proof
he receives, Arthur must accept the proof with low probability,
say S ≤ 1=3. This is the soundness property of the verification
scheme. For a 2-out-of-4 SAT problem of size N, the best algo-
rithms for finding a solution run in time exponential in N (using
some sort of clever brute force search for a solution)19, while the
verification of a potential solution takes time linear in N. One
important property of NP-complete problems is that if we accept
that the best algorithms for solving an NP-complete problem are
exponential in N, then if one has found or has been provided with
part of a solution, for example the truth assignment to a subset of
the variables of size t <N, then in the worst case the remaining
time to complete the solution is still exponential in (N− t)17.

The use of quantum protocols for verification in this so-called
interactive proof setting was first employed in Ref. 20, which
introduced the concept of Quantum Merlin Arthur. Since then,
QMA problems have been intensively studied21–25. They are the
quantum analog to NP problems in computational complexity
theory and have the same completeness and soundness properties
as the ones described above with the proofs encoded in quantum
states.

By the results of Ref. 25, we know that quantum Merlin Arthur
interactive proof systems can be used to verify NP-complete
problems more efficiently than the classical ones. In particular, it
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was shown that a quantum verifier who receives Oð ffiffiffiffi
N

p Þ
unentangled copies of a quantum proof can verify efficiently the
2-out-of-4 SAT instance by performing a number of tests/mea-
surements on these states. Note that the assumption that the
proofs are unentangled is crucial. Here, the quantum proof is the
state 1ffiffiffi

N
p

PN
i¼1 ð�1Þxi ij i, i.e., the quantum state on log 2N qubits

encoding the values of the assignment (x1,…, xN) as amplitudes.
The information Arthur receives about the classical solution
cannot be more than Oð ffiffiffiffi

N
p

log 2NÞ bits of information, since this
is the number of qubits he receives, nevertheless, the verification
becomes efficient in the quantum case: for the same amount of
revealed information a classical verification protocol would
require exponential time while it takes polynomial time for the
quantum protocol to perform the task. We remark that one can
see the quantum advantage either as a computational advantage,
as we do in our work, where we ask how long the verification will
take in the quantum and classical case if we fix the size of the
message sent by the prover, or as an information advantage,
where we ask what size of quantum or classical message is needed
if we fix the time of the verification to be polynomial in the input
size. We stress again that, in both cases, the advantage is not
about solving NP-complete problems, but about verifying them
with limited information. In Ref. 26, it was first shown that in
theory it is possible to implement such a verification protocol
with single photons and linear optics, albeit a practical imple-
mentation is and will probably continue to be out of reach for
photonics technology due to the extremely large number of ele-
ments in the proposed scheme.

Here, we overcome this limitation by proposing a quantum
verification test that maintains the properties of the original one
and at the same time uses new conceptual tools that make it
practical. This allows us to provide the first experimental
demonstration of an efficient quantum verification scheme for
NP-complete problems, and hence a strong provable quantum
advantage for this task based on the assumption that finding a
solution to NP-complete problems takes exponential time on a
classical computer. More precisely, we experimentally demon-
strate how a quantum Arthur who receives an unentangled
quantum proof of size eOðN3=4Þ (where eO denotes the order up to
logarithmic terms) can verify 2-out-of-4 SAT instances in time
linear in N, while a well-known assumption is that any known
classical algorithm takes time exponential in ðN � eOðN3=4ÞÞ. The
core idea of our protocol that enables us to perform the ver-
ification with coherent states and a simple linear optics scheme is
based on the Sampling Matching problem defined and imple-
mented in Ref. 27. This is particularly appealing from a practical
point of view because of the relative ease of preparation and
manipulation of coherent states, which combined with linear
optics transformations have made them attractive candidates for
proving quantum advantage in communication complexity and
security 28–34. The use of the Sampling Matching is also one of the
main conceptual differences of our current protocol with respect
to the work of Ref. 26, which provided a verification protocol with
single photons and which cannot readily be made to work simply
by mapping the single photons into coherent states.

In order to explain the importance of our result let us first go
back to the classical case and describe a possible scheme for
verification. Since we know that in case the formula is not
satisfiable then for any assignment at least a constant δ fraction of
the clauses are not satisfied, then for verification it suffices for
Arthur to pick a random clause, obtain the values of the four
variables and check whether the clause is satisfied or not. By
repeating this for a small constant number of clauses, Arthur can
verify with high probability whether the instance is satisfiable or
not, and moreover, the information Arthur receives about the

solution is very small (just the value of the variables in a few
clauses). We can also see this protocol in a slightly modified
version, which will be closer to our quantum verification protocol
based on Sampling Matching. Instead of having Arthur pick
uniformly at random a small number of clauses out of all possible
clauses to verify, we can assume that Arthur picks each clause
with some probability so in the end the expected number of
clauses he picks is the same number as in the initial protocol.

There is of course a well-known issue in these schemes. Once
Merlin knows which clause Arthur wants to test, he can easily
adapt the values of the variables to make this clause satisfiable.
Arthur cannot force Merlin to be consistent across the different
clauses, namely to keep the same value for each variable in the
different clauses. One way to remedy this would be by having
Merlin send the entire assignment to Arthur (which is the usual
verification protocol), but in this case Arthur gets all the infor-
mation about the classical solution. Another solution is through
interactive computational zero-knowledge proofs, where one uses
cryptographic primitives, i.e., bit commitment, in order to force
the behavior of Merlin, but such schemes necessitate commu-
nication between Arthur and Merlin and only offer computa-
tional security35.

Thus in the classical world, it is impossible to have a protocol
with a single message from Merlin to Arthur that performs ver-
ification while at the same time Arthur does not learn the entire
classical solution.

In the quantum world, using coherent states and a new efficient
linear optics scheme based on the Sampling Matching, we can
experimentally demonstrate exactly that: a quantum Arthur can
efficiently verify instances of NP-complete problems (in time
linear in the size N) while at the same time receiving only a small
amount of information about the solution (theoretically of ordereOðN3=4Þ). To show this advantage experimentally it was sufficient
to use sequences of a few thousand coherent pulses, corre-
sponding to a proof size N from 5000 to 15,000, with an average
mean photon number per pulse on the order of 1, and standard
InGaAs single-photon detectors.

We are now ready to give the details of our quantum ver-
ification protocol, analyze its completeness and soundness, and
provide the results of our experimental demonstration.

Results
Quantum proofs encoded in coherent states. In the first step of
our verification protocol, Merlin sends the quantum proof to
Arthur. We consider here that if the instance is satisfiable then an
honest Merlin will use coherent states to encode the proof,
exploiting the coherent state mapping introduced in Refs. 28,29.
More precisely, he encodes his proof x= (x1, x2, . . . , xN) in a time
sequence of N weak coherent states. He does this by applying the
displacement operator D̂xðαÞ ¼ expðαâyx � α�âxÞ to the vacuum
state, where âx ¼ 1ffiffiffi

N
p

PN
k¼1 ð�1Þxk âk is the annihilation operator

of the entire coherent state mode, and âk is the photon annihi-
lation operator of the kth time mode. Hence,

αxj i ¼ D̂xðαÞ 0j i ¼
ON
k¼1

ð�1Þxkαj ik; ð1Þ

where ð�1Þxkαj ik is a coherent state with mean photon number
μ= ∣α∣2 occupying the kth time mode. Thus, the state αxj i has a
mean photon number ∣αx∣2=N∣α∣2, with the photons distributed
over the entire sequence of N modes. Note that varying the
parameter α controls how many photons are expected to be in the
state; for example for α= 1, every coherent state in the sequence
has on average one photon, while if we take α ¼ 1=

ffiffiffiffi
N

p
, then on

average only one photon will be present in the entire sequence.
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In the single-photon version of the original protocol25,26,
Merlin prepares Oð ffiffiffiffi

N
p Þ unentangled copies of a state that

consists of a single photon in N modes, i.e., a state in an N-
dimensional Hilbert space. This implies that during the protocol
the information revealed to Arthur is at most Oð ffiffiffiffi

N
p

log 2NÞ bits
of information. Then, a number of tests are performed on these
states to check that they are equal, uniform, and that they satisfy
the boolean formula. For the equality, a SWAP test is performed
between different copies of the proofs; for testing that the
amplitudes of the states are roughly uniform, a test based on the
Hidden Matching problem is performed; for satisfiability, the
parity of four variables that belong to the same clause is measured
in order to check whether the specific clause is satisfied. Each test
is performed with some probability and if the test is successful,
then Arthur accepts the instance as satisfiable.

An important feature of our protocol is that by using the
Sampling Matching method we are able to combine the above
tests into a single test and all copies of the proofs into a higher
mean photon number sequence of N coherent states, which we
also assume to be unentangled. By sending coherent states with a
higher mean photon number ∣α∣2 we essentially increase the
probability of measuring each variable and thus the information
conveyed by Merlin; this is important for the uniformity and
satisfiability parts of our verification test as we will see later.
Increasing ∣α∣2 instead of sending multiple copies of the same
state also allows us to avoid the necessity of applying the equality
test that was ensuring that the copies are the same. On the other
hand, the unentanglement assumption for the sequence of
coherent pulses is necessary as it was in Refs. 24,25, since
otherwise this would lead to a subexponential quantum algorithm
for solving NP-complete problems, which is thought to not be
possible.

We prove in the following that theoretically the average
photon number for each of the N coherent states that the honest
Merlin sends when the instance is satisfiable is of the order of
∣α∣2=O(N−1/4), which makes the information Arthur gets about
the classical solution to be eOðN3=4Þ. In high level, this also implies
that any classical verification algorithm with the same amount of
information will take time exponential in ðN � eOðN3=4ÞÞ, which
becomes large enough for practical sizes of N. This is because
Arthur can always enumerate over all possible proofs Merlin

sends and perform the verification for each one of them. It will
take him time exponential in eOðN3=4Þ to enumerate over all
possible proofs (since the information in them is less thaneOðN3=4Þ) and thus if the verification for each of them takes time
less than exponential in ðN � eOðN3=4ÞÞ then this would imply a
fast algorithm for NP.

Once Arthur receives the quantum proof as a sequence of
unentangled coherent states from Merlin, he performs the
verification by applying a verification test. We assume that
Merlin can behave dishonestly in any way possible, apart from
having to send unentangled states. Let us now describe this
verification test and how it can be performed in a linear optical
setting.

Verification test. As we discussed previously, the original ver-
ification test25 consists in first testing that the copies of the proofs
are the same (which we have avoided by sending a single
sequence of coherent states), and then that the amplitudes of each
of these states are close to uniform. This test is necessary in order
to show that Arthur can actually check all possible clauses with
roughly uniform probability. Otherwise, Merlin can just force
Arthur to always measure some specific subset of variables (the
ones that can satisfy some corresponding subset of clauses) and
thus convince Arthur of the validity of the assignment, even
though no assignment exists that satisfies all clauses.

Here, we deal with this in a different way. Again, we want to
ensure that Arthur will measure each clause with some
probability, meaning that Merlin cannot force Arthur to measure
only a specific subset of variables and clauses. This is where we
use the idea of Sampling Matching27, which was introduced as a
practical version of Hidden Matching, the problem performed in
the original uniformity test. Instead of interfering Merlin’s
coherent states with themselves, we in fact input in an
interferometer Merlin’s sequence of coherent states in one arm,
and a new sequence of coherent states prepared by Arthur in the
other arm. This is also the main difference with the single-photon
protocol in Ref. 26.

More specifically, the test as depicted in Fig. 1 is the following.
When Arthur receives the state αxj i from Merlin with the mean
photon number ∣αx∣2 predefined by the protocol, he generates his
local state in the form of a sequence of uniform coherent pulses,

Fig. 1 The Sampling Matching scheme (SM). Merlin creates his coherent state quantum proof by sequentially encoding his proof x into the coherent
pulses. Under the SM scheme, Arthur interferes Merlin’s coherent state quantum proof with his local state consisting of a sequence of N pulses. He
observes the clicks in two single-photon threshold detectors D0 and D1 to decide whether Merlin’s proof state is correct.
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with the same mean photon number. In particular, Arthur creates
the state

α0j i ¼
ON
k¼1

αj ik; ð2Þ

such that ∣α0∣2= ∣αx∣2. He then sequentially interferes each of
honest Merlin’s coherent states with his local coherent states in a
balanced beam splitter and collects the outputs in the two single-
photon detectors, D0 and D1. At each time step k, the input state
in the beam splitter is ð�1Þxkαj ik � αj ik, while at the output
modes we have,

ðð�1Þxk þ 1Þαffiffiffi
2

p
����

�
D0;k

� ðð�1Þxk � 1Þαffiffiffi
2

p
����

�
D1;k

: ð3Þ

Then, the probability of getting a click on each of the single-
photon detectors at the kth time step of the verification protocol
is:

PðkÞ
det ¼

1� e�jαj2 ð�1Þxkþ1ð Þ2=2 on D0

1� e�jαj2 ð�1Þxk�1ð Þ2=2 on D1:

(
ð4Þ

One way of understanding the above test is to note that it is
guaranteed that Arthur receives a value for each variable with at
least some probability, due to the photons in his own state. This
way, Merlin cannot choose exactly for what variables Arthur will
obtain a value. Thus, Arthur will end up obtaining the values of a
subset of variables that is random enough (meaning Merlin
cannot deterministically choose it) so that when he considers the
clauses whose variables are in this subset, then either all of them
will be satisfied in the YES-instance, or sufficiently many of them
will not be satisfied in the NO-instance.

Now, if Merlin wants to send a value for a specific variable xk to
Arthur, then he can do it perfectly, since by constructing an
honest coherent state of the form ð�1Þxkαj ik, only one of the two
detectors of Arthur has non-zero probability of clicking. On the
other hand, if Merlin sends any state βj i, then after the
interaction with Arthur’s coherent state αj i one important thing
is true: no matter what Merlin’s state is, there is still a probability
of a detector click, which is at least 1� e�jαj2 due to the photons
in Arthur’s coherent state and the fact that we only perform linear
optics operations that preserve the number of photons. In other
words, Arthur obtains a value for each variable with some
probability independent of Merlin’s message, and this value can
be fixed by Merlin if he honestly sends a state that encodes
a value.

After recording the results of his measurements, Arthur assigns
values to the variables in the following way: if the detector D0

clicked, then the value is 0, if the detector D1 clicked then the
value is 1, while he leaves the variables unassigned if no click was
observed. Then, Arthur checks for each clause for which he has
assigned a value to all four variables whether it is satisfied or not,
namely if exactly two out of the four variables in the clause have
value 1. In the ideal case where there are no errors, Arthur will
accept if all clauses are satisfied and reject if any clause is not
satisfied. In the presence of non-ideal experimental conditions, we
will see that Arthur will use a threshold and accept if at least that
fraction of clauses are satisfied or else he will reject.

We are now ready to analyze the completeness of the protocol,
namely the probability Arthur accepts assuming that the 2-out-
of-4 SAT instance is a satisfiable instance, in which case Merlin
prepares a proof state in the form αxj i for a satisfying assignment
x. Then, we discuss the soundness of the protocol, namely the
case in which the instance has no satisfying assignment and
where Merlin still wants Arthur to accept his proof and acts

dishonestly. He will then try to send some general quantum state
to trick Arthur, while, as we said, here we make the same type of
assumption as in the original work of Aaronson et al.25, namely
that Merlin still sends a sequence of unentangled states. Later, we
will complete the analysis by looking at the protocol under non-
ideal experimental conditions and see what level of noise the
interferometric setup can tolerate in order to maintain a positive
gap between the completeness and soundness probabilities.

The completeness corresponds to the probability that Arthur
accepts the proof of Merlin in the case of a satisfiable instance,
where Merlin sends the correct quantum state. As we have
described, Arthur will retrieve the values of a number of variables
that are encoded in the phases of Merlin’s sequence of coherent
states by using his own local coherent states and the interfero-
metric setup shown in Fig. 1. As long as Merlin honestly encodes
the satisfying assignment into his coherent states then only one
detector has non-zero probability of clicking and thus Arthur will
never get a wrong value. Thus the only probability of rejecting
comes from Arthur not obtaining the values of the four variables
of any clause.

To estimate this probability, and hence the completeness, we
remark again that the unentanglement promise guarantees that
the probability of detecting a photon in each of the pulses in the
sequence is independent of the remaining pulses of the sequence,
since the pulses are unentangled between them. Furthermore, the
probability of measuring a particular variable is independent of
which clause Arthur is going to verify later on. If we now denote
as ph ≥ 1� e�2jαj2 the probability that a detector clicks during a
time step in an honest run (see Eq. (4)), then the probability that
a specific clause is measured (meaning all four variables in the
clause are measured) is at least p4h (where we have used the
independence remarks above).

We have also assumed that the instance is balanced and each
variable appears in a constant number of clauses, which implies
that the number of clauses in an instance of the problem is O(N).

Taking into account the above, we see that the probability that
Arthur does not obtain the values of the four variables for any

clause in an instance is at most ð1� p4hÞOðNÞ. This can be made
arbitrarily small, and therefore the completeness arbitrarily close
to 1, as long as p4h ¼ OðN�1Þ for a large enough constant, which in
turn implies that it suffices to take ∣α∣2 on the order of O(N−1/4)
with a large enough constant. Note that by taking ∣α∣2 on the order
of O(N−1/4), the verifier is expected to receive eOðN3=4Þ clicks in
the detectors. This is higher than the Oð ffiffiffiffi

N
p Þ bits in the original

protocol of Ref. 25, where one can choose a specific measurement
(depending on the clauses) to always get the value of a clause and
hence check satisfiability. In fact the Oð ffiffiffiffi

N
p Þ is needed to prove

the uniformity of the state. In our case, the way we achieve a good
probability of measuring all variables in a clause of the instance is
by increasing the ∣α∣2 to ensure we are measuring enough
variables, and that number needs to be now eOðN3=4Þ to make the
probabilities work out. We will see later that experimentally we
will pick specific values for N and ∣α∣2 that keep the completeness
higher than 0.9.

We are going to show now that if the 2-out-of-4 SAT is a NO
instance, then the soundness of the protocol, namely the
probability of Arthur accepting the proof, is small enough no
matter the strategy of the prover as long as the promise of
unentanglement holds. For this, we highlight again two important
features of our test and the properties of the SAT instances we are
dealing with. First, at least a δ fraction of the clauses are
unsatisfiable for any assignment of variables, and second, the
probability of measuring a particular variable is lower bounded by
the fact that Arthur inputs an honest coherent state into the
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interferometer, even if Merlin sends no photon in his
corresponding state.

We can then bound the probability that Arthur measures the
values of some variables and finds a clause that contains them and
is not satisfied. We have already seen that the minimum
probability of Arthur obtaining a value for any variable, no
matter what Merlin sends, is pd ≥ 1� e�jαj2 . Then, following the
same rationale as before, since a constant δ fraction of clauses
are unsatisfied for any assignment, we can conclude that the
probability of measuring the values of four variables that make a
clause unsatisfied is at least δp4d . Assuming again that there are O
(N) clauses in an instance, the probability that Arthur does not

find any unsatisfied clause is at most ð1� δp4dÞOðNÞ. So again we
just need to pick ∣α∣2 large enough in order to make the
soundness small enough. In particular, since δ is a constant, we
can pick as before ∣α∣2=O((δN)−1/4)=O(N−1/4) and make
soundness arbitrarily small. We will see later that experimentally
we will pick values for N and ∣α∣2 that keep the soundness lower
than 0.6.

Classical complexity of verification. Our quantum verification
test takes time O(N) to implement, since Arthur receives a
sequence of N pulses that he interferes with his own coherent
states and then he simply calculates the number of satisfied
clauses (from the O(N) of them) before accepting or rejecting. To
compare our test with classical resources in terms of complexity,
we are making here a well founded assumption that any classical
algorithm for solving 2-out-of-4 SAT runs in time exponential in
the instance size N. In particular, we consider the classical com-
plexity to be of the form 2γN for some constant γ ≤ 1. Shöning’s
algorithm for 3-SAT takes time (4/3)n on average for instances of
size n36, while the best-known practical SAT solvers can provide a
complexity of O(1.307N)=O(20.4N)19. We have also discussed
previously that if the information that Arthur gets about the proof
is t bits, then the running time of the classical algorithm remains
exponential in (N− t).

The value of t, namely the bits of information Arthur obtains
about the proof during the verification of a YES instance, can be
easily upper bounded for our test by the number of detector clicks
during the verification procedure. We want to remark here that in
our setting we have an honest Arthur who tries to verify the
instance and we do not have to consider a cheating Arthur as in
the case of standard cryptographic settings. The expected number
of clicks in Arthur’s detectors depends on the parameter ∣α∣2,
namely the average number of photons per pulse. In particular we
have that the number of clicks is OðNð1� e�2jαj2ÞÞ and for our
value of ∣α∣2=O(N−1/4) we have that the information obtained
by Arthur is at most eOðN3=4Þ. Thus, by picking large enough N it
is easy to make the difference ðN � eOðN3=4ÞÞ also large enough.

We will see later that experimentally we will keep this
difference larger than 1000. This is an arbitrary choice that
nonetheless is more than sufficient to confirm that the classical
computation would be unfeasible. For example, given a difference
of 150, we can calculate that we would need a 45-digit number of
operations to verify the SAT instance: even with processors
working at 10 GHz and operated by 10 billion people, and
repeating the operation in 10 billion planet Earth copies,
parallelizing somehow the whole process, it would be necessary
to wait around the age of the Universe to be able to classically
verify such instances.

To summarize the above, in the setting that we have described
we define the notion of quantum advantage for verifying NP-
complete problems of size N with bounded information when
three conditions are fulfilled:

1. The verification of the proof by a quantum Arthur takes
time linear in N;

2. The obtained completeness is high enough and soundness
low enough, where in our case we have set C > 0:9 and
S < 0:6;

3. The number of bits of information on the proof that Arthur
obtains is much smaller than N, in our case at least 1000
bits smaller, so that the classical complexity of performing
the same task is such that it is effectively unfeasible.

Dealing with practical imperfections. Let us now consider how
we can take into account practical imperfections in our verifica-
tion test in view of its experimental implementation for demon-
strating a quantum advantage as we have defined it above.

Up till now we have assumed that Arthur measures the values
of the variables perfectly when Merlin is honest. In a practical
setting, however, this may not be the case due to errors coming
mainly from the imperfect visibility of the interferometric setup
and the finite quantum efficiency and dark counts of the single-
photon detectors.

There is a simple way to remedy the verification test in order to
deal with such imperfections. Arthur performs the same
measurements and assigns values to the variables in the following
way: when only one detector clicks then he assigns the
corresponding value to the variable, i.e., he assigns the value 0
if he registers a click in detector D0 and nothing in D1 and vice
versa; when both detectors click (which can occur in practice due
to the imperfections) then he assigns a uniformly random value
to the variable; when no detector clicks then the variable remains
unassigned. Note that the fact of picking a random value for a
variable in case of double clicks, instead of ignoring this variable,
helps avoiding the case where Merlin would input a large number
of photons to force double clicks for the variables that he would
not want Arthur to measure. Once Arthur assigns the values to
the variables, he looks at the clauses for which all four variables
have been assigned a value and checks if the clause is satisfied,
namely if exactly two out of four variables have the value 1.
Knowing the experimental parameters, we can calculate the
expected fraction of satisfied clauses in the YES instance (which
should be only slightly less than 1 for photonic systems with low
loss and errors) and the one in the NO instance (which should be
much less than 1 for instances with large enough δ and small
enough errors). Arthur can now define an appropriate threshold
for the number of satisfied clauses above which he accepts and
below which he rejects, and assuming an appropriate gap between
the number of satisfied clauses in the YES and NO instances we
can then guarantee a large gap between completeness and
soundness using simple Chernoff bound calculations.

We will try now to find an experimental parameter regime
where we can show quantum advantage. For this, we first make
one more assumption about the dishonest Merlin, which is that
he always sends states that have the correct mean photon number
μ= ∣α∣2 specified by the protocol, while he can freely choose the
assignment values in order to trick Arthur to accept. Note that
here we are not trying to define a general interactive proof
(Arthur-Merlin) system; we are trying to construct a specific
computational task for experimentally demonstrating quantum
advantage. Thus, we add on top of the unentanglement
assumption the assumption of states with the appropriate mean
photon number so as to make the implementation of this task
simpler. This essentially corresponds to a dishonest Merlin who
can only cheat “classically”, in the sense that he can choose
whatever assignment he wants for the variables encoded in the
quantum states and then send states of the form in Eq. (1) (see
also Fig. 1). This is an assumption that is only needed in order to
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perform our proof of principle experiment but it is not needed for
any of the previous analysis of the protocol, including about
completeness and soundness. In fact, even without this assump-
tion we can find a parameter regime where the experimental
demonstration is possible, albeit these parameters were just out of
reach with our photonics setup but can very well be achieved in
the near future. We will also discuss later how Arthur may in fact
be able to force this behavior of Merlin, namely instead of
assuming that dishonest Merlin sends states with the correct
mean photon number, Arthur can verify this himself by slightly
changing the protocol itself. In any case, we emphasize again that
our goal here is to define a specific theoretical scenario and a
concrete computational task for which we can show a quantum
advantage.

We denote the imperfect visibility of Arthur’s interferometer
by ν (with ν= 1 in the ideal case) and the dark count probability
of the single-photon detectors by pdark. As we will justify later, the
effect of the random detection events due to the dark counts can
be neglected. To understand the effect of the imperfect visibility,
we see that, for example, for an input state in the beam splitter at
the kth time step αj ik � αj ik (corresponding to xk= 0), the
output state will be

ffiffiffiffiffi
2ν

p
α

�� �
D0;k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� νÞp

α
�� �

D1;k
, hence there

is a non-zero probability of a click in the wrong detector (D1 in
this case). We can then calculate the probability of detecting a
photon in the correct and wrong detector (and nothing in the
other) as follows,

pc ¼ ð1� e�2νjαj2Þe�2ð1�νÞjαj2 ð5Þ

pw ¼ ð1� e�2ð1�νÞjαj2Þe�2νjαj2 : ð6Þ
Moreover, we calculate the probability of a click in both

detectors as,

pdc ¼ ð1� e�2νjαj2Þð1� e�2ð1�νÞjαj2Þ: ð7Þ
These double clicks do not contain any information but, as we
have explained, they will be used by Arthur to pick a random
value for the variable, so they play a role in the verification test.
Note that the average number of expected detector clicks is given
by (pc+ pw+ pdc)N ≈ phN (with an equality for negligible pdark as
in our case). Note also that all quantities depend on ∣α∣2 and ν,
but we have neglected the effect of the losses in the system, as we
will also justify later.

Let us now calculate, taking into account the above, the
expected number of satisfied measured clauses Arthur should
obtain in the YES and NO instances. In the YES instance, all
clauses are satisfied by the assignment, and the probability that
Arthur measures a satisfied clause will be the sum of three terms,

pY ¼ ðpc þ pdc=2Þ4 þ ðpw þ pdc=2Þ4
þ4ðpc þ pdc=2Þ2ðpw þ pdc=2Þ2:

ð8Þ

The first term is the probability of getting four correct values for
the four variables; the second of getting four wrong values; and
the third is the sum of the probabilities of two correct and two
wrong values in a way that the 2-out-of-4 clause remains satisfied.

In the NO instance, we upper bound the probability of
measuring a satisfied clause as follows,

pN ≤ p4h � δpY � ð1� δÞðp4h � pYÞ: ð9Þ
This is the probability of measuring a clause (for negligible pdark)
minus the probability of measuring an unsatisfied clause. To
provide a bound on the latter we note that, for any assignment,
there is at least a δ fraction of unsatisfiable clauses that will not be
satisfied if measured correctly, namely with probability pY, and a

fraction 1− δ of satisfiable clauses that will be unsatisfied if
measured incorrectly, namely with probability p4h � pY .

It is then straightforward to find the expected number of
measured satisfied clauses TC in the YES instance and TS in the
NO instance, by multiplying the above probabilities with the
number of clauses that we assume is some constant (greater than
1) times N. Thus, we have TC � TS ≥ ðpY � pNÞN . Our experi-
mental values will be such that TC � TS is a large enough number
to allow us to use Chernoff bounds to guarantee a sufficiently
large gap between completeness and soundness.

More specifically, we define a threshold for Arthur’s verifica-
tion as T ¼ ðTC þ TSÞ=2, in other words Arthur accepts if and
only if at least T measured clauses are satisfied. By a simple
Chernoff bound we can then see that the completeness can go
arbitrarily close to 1 and the soundness arbitrarily close to 0 by
properly tuning the value of ∣α∣2, and again as ∣α∣2=O(N−1/4).
More precisely, we use the following inequalities for completeness
and soundness,

C ¼ Pr correct measured clauses ≥ T½ �

≥ 1� e�
TC�TSð Þ2

4TC
ð10Þ

S ¼ Pr correct measured clauses≥ T½ �

≤ e�
TC�TSð Þ2

4TS :
ð11Þ

To illustrate how this analysis allows us to identify an
experimental parameter regime where it is possible to demon-
strate a quantum advantage for our verification task, we show in
Fig. 2 theoretical bounds for the fraction of measured satisfied
clauses in the YES and NO instances, as well as the gap between
the completeness and soundness, as a function of the mean
photon number μ= ∣α∣2, for N= 10000, ν= 0.91, δ= 0.15, and
negligible dark counts. We can see that for our aforementioned
target gap, where we want to keep the completeness above 0.9 and
the soundness below 0.6, there is a region of μ where quantum
advantage can be shown for the chosen parameters.

Fig. 2 Numerical results. (Top) Gap between completeness and soundness
as a function of the mean photon number μ= ∣α∣2, for N= 10,000, δ= 0.15,
ν= 0.91. The two vertical lines correspond to the minimum and maximum
μ in order to have at the same time completeness C > 0:9 and soundness
S < 0:6. (Bottom) Fraction of measured satisfied clauses as a function of μ.
As the mean photon number increases the number of satisfied clauses in
the NO instance overcomes the one in the YES instance.
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Let us now discuss the more general scenario where the
dishonest Merlin may send any unentangled state (including with
no or many more photons). This is a more complicated case to
analyze, but we do know that whatever Merlin does, Arthur will
still receive a value for a variable from the photons he inputs
himself in the interferometer, which is at least pd ¼ 1� e�jαj2 . If
we drop the assumption that Merlin will only send coherent states
with the correct mean photon number, we can still find a region
with a positive gap between completeness and soundness, albeit
with more stringent experimental conditions that were not
fulfilled in our setup, in particular with respect to the required
visibility, but that we believe can be fulfilled in the near future.

Note also that Arthur could potentially try to force Merlin to
send states with the correct mean photon number by creating the
pulses himself, sending them over to Merlin who prepares the
state with the setup of Fig. 1 and returns it. Arthur can use
random timings for his pulses impeding Merlin from injecting
more photons and also use part of the pulses in order to count the
number of clicks and convince himself that Merlin is not sending
fewer photons over. Again, we do not need to do any of this for
our demonstration of a quantum advantage, since we are free to
define the computational task ourselves, namely verification of
NP problems for a specific type of interactive proof systems,
without having to deal with general cryptographic considerations
and dishonest behaviors. Nevertheless, this would provide a
simple solution in case one might want to use our protocol in
practical scenarios, for example for server–client verification.

Last, we claim that losses are not important in our setting.
Again, this is a verification scenario where an honest Arthur tries
to efficiently verify an NP instance with the “small” help of an
untrustful Merlin. Hence, Arthur and Merlin can jointly measure
the potential losses during a calibration phase before the actual
verification starts and increase the power of their pulses by the
factor 1/η, where η includes the channel and detection efficiency.
Thus, we do not have to worry here about an Arthur that can use
the losses to his benefit.

To summarize the above and in preparation for the description
of our experimental implementation, we provide below a step-by-
step outline of the protocol in Box 1.

Experimental results. We now have all the ingredients to
describe the experimental implementation of our verification test
and the assessment of the quantum advantage for this task. As we
defined previously, we need to satisfy three conditions to show
quantum advantage. We need the verification procedure to take
time linear in N, to have completeness and soundness such that
C > 0:9 and S < 0:6, and that the number of clicks Arthur reg-
isters is much smaller than the input size N.

First, as we will see, in our experiment we use indeed a train of
coherent pulses of size N and some simple classical post-
processing of the measurement results, so our test satisfies
condition 1. In fact, the real time to run the verification procedure
for N between 5000 and 14,000 was a fraction of a second for the
quantum part, a few seconds for the classical post-processing and
a couple of minutes for the calibration procedure for each run.

Second, we will show that our verification procedure has high
completeness, i.e., when the instance is satisfiable and Merlin
sends to Arthur a satisfying assignment encoded in the coherent
states, then Arthur accepts with high probability. For the same
experimental parameters we will then use our theoretical analysis
that upper bounds the maximum soundness of our protocol for
any strategy of Merlin, and ensure that the soundness is much
lower than the experimentally demonstrated completeness, thus
proving condition 2 of quantum advantage.

In fact, to simplify the classical pre- and post-processing, we
experimentally perform a modified version of the test, where we
do not sample balanced and probabilistically checkable YES
instances with planted satisfying assignments (this is far from
being straightforward), but we generate uniformly random N-bit
strings (for several values of N) that correspond to satisfying
assignments. Note that a uniform distribution of the satisfying
assignments is the hardest case for the problem, since with any
other distribution, Arthur would already have some information
about the possible solutions to the problem. After that, we check
the number of the variables for which Arthur obtains the correct
value, the number of wrong values, and the number of undefined
variables. From these numbers we compute the expected number
of satisfied and unsatisfied clauses Arthur will get on a random
YES instance, and using the threshold that has been defined in the
calibration phase of the experiment described below, we conclude
whether Arthur would accept or reject the instance, thus
estimating the completeness of our protocol.

Finally, the measurements events of Arthur are also used to
ensure that condition 3 for quantum advantage is satisfied.

Let us now provide more details on our experiments. The
experimental setup is shown in Fig. 3. The coherent light pulses
are generated using a continuous wave laser source emitting light
at 1560 nm followed by an amplitude modulator, at a rate of 50
kHz and with a pulse duration of 10 ns. An unbalanced beam
splitter is used to monitor the pulse power and a variable optical
attenuator (VOA) to set the mean photon number at the desired
level. We then use a balanced beam splitter to direct the coherent
pulses to Arthur and Merlin. Following the scheme for the
verification test shown in Fig. 1, Merlin impinges his proof on the
phase of the pulses using a phase modulator (PM). Arthur and
Merlin then both use a set of variable optical attenuators to finely
tune and equalize the power of the signals entering the output

Box 1 Protocol for NP verification

Input: Instance of the NP-complete problem and all its relevant parameters: N, δ, etc., after the reduction to a 2-out-of-4 SAT;
Goal: Verification of the solution;
1 Merlin and Arthur jointly perform a pre-calibration of the optical setup, finding the values of the visibility νN and the transmittivity η;
2 Arthur computes the minimum value of the mean photon number number μN in order to satisfy the quantum advantage conditions 1–3 and
communicates it to Merlin in order to tune the amplitude of his pulses; he also computes the threshold T for accepting a proof;
3 Arthur sends a signal to Merlin to trigger the protocol;
4Merlin encodes his proof in the phases of the pulses which are then sent to Arthur;
5 Arthur interferes Merlin’s pulses with his own and assigns a value xk each time he registers a measurement in the kth pulse:
5.1 xk= 0 for a click in detector D0 and no click in D1;
5.2 xk= 1 for a click in detector D1 and no click in D0;
5.3 xk is randomly assigned if both detectors click.
6 For all the measured bits that form a clause, Arthur checks the satisfiability;
7 If the number of satisfied clauses is greater than T, Arthur accepts the proof, otherwise he rejects.
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balanced beam splitter of the interferometer. The pulses are
finally detected by two InGaAs single-photon detectors (D0 and
D1) and the measurement results are collected by Arthur. The
experiment is controlled by a data acquisition card and the data is
analyzed with dedicated software.

We perform several preliminary measurements and calibrations
before moving on with the verification test. In particular, we calibrate
the voltage level needed to induce a π-phase shift, Vπ, with the phase
modulator off line. Phase drifts may occur during the experiment and
affect the obtained visibility, hence requiring real-time phase
correction techniques27. In our case the time scale of the drift (on
the order of 5 s) was much longer than the duration of each run of
the protocol (around a fraction of a second) and it was therefore not
necessary to use such feedback loops. Arthur and Merlin also need to
carefully equalize the power of their pulses before interfering them, as
required by our test. To do this, Arthur calibrates the losses in
Merlin’s path by first removing his signal, measuring detection events
due to Merlin’s signal only, for several values of the mean photon
number, and then minimizing the clicks on one of the detectors with
his signal reconnected. This procedure also allows Arthur and Merlin
to determine the losses in their setup, and hence the efficiency η,
which includes the channel efficiency ηchannel≈ 38%, and the
quantum efficiency of the single-photon detectors, ηdet≈ 25%. As
we have explained, this parameter does not play a direct role in our
verification test.

Importantly, the above calibration procedure allows Arthur to
evaluate the visibility of the interferometer, which is central to the
assessment of the performance of our test. Indeed, we use this
estimation as benchmark for the expected number of satisfied
clauses in the YES and NO instances, and correspondingly define
a threshold for accepting a proof, as we have detailed previously.
A low visibility will increase the number of errors so that we will
need to increase δ in order to verify the solution with sufficient
completeness and soundness.

In our experiment, we use the nominal value νN= 0.93, as well as
μN= 1.31, and set correspondingly δ= 0.15. These values are
chosen such that in our theoretical estimations (see Fig. 2) the
conditions C > 0:9 and S < 0:6 are satisfied at the same time for all
the values of N that we will be using. The value of δ will be fixed for
all the runs; however, we experimentally measure the actual
visibility in each case. We remark that here we are using a single
laser to generate the pulse sequences of Arthur and Merlin, which is
optimal for obtaining high visibility values. Nevertheless, it is still
possible to use this setup for assessing the performance of our test

for demonstrating a quantum advantage since all actions required
by the test, as shown in Fig. 1, are performed independently.

We finally remark that the dark count probability in our setup
is pdark ~ 10−3, and hence the effect of dark counts can safely be
considered negligible for our values of ν and μ. In fact, for our
choice of parameters, we have pc, pw, pdc≳ 10−2 as can be easily
seen from Eqs. (5) and (6).

We are now ready to analyze our verification test enabling
Arthur to verify efficiently that a given 2-out-of-4 SAT instance is
satisfiable. As we have explained, we assume that Merlin acts
honestly and only the environment will lead to errors that will
make Arthur reject a correct proof. After performing the
preliminary calibrations, Merlin starts the test by encoding his
proof on his coherent pulse sequence. Here, as a proof, we
generated a random Boolean string of N variables (for several
values of N). Arthur records all clicks tclk including single and
double clicks on both detectors. We denote the single clicks as sclk.
He assigns a bit 0 or 1 to variable xk if the pulse at time step k
resulted in a single click in detector D0 or in a single click in
detector D1, respectively. For the double clicks, he assigns a
random value to the corresponding variable, while we leave all
other variables undefined.

For computing the completeness of the verification, we need to
decide if Arthur would have accepted or rejected the specific run
of the verification test. Had we fixed a specific instance then
Arthur would just check with the values of the variables that he
has obtained, how many clauses are satisfied and how many
clauses are not, and depending on the threshold T he would
accept or reject. Note that Arthur can indeed compute the value
of T given the experimental values of μ and ν.

As we said, in order to avoid the complications of sampling
such classical instances in a fair way, we decide whether Arthur
accepts or rejects the instance using the same threshold T, but
estimating the number of clauses Arthur would have found
satisfied or not, through the number of correct variable values he
really obtained through the experiment. Since the instances are
assumed to be balanced, this is equal on expectation over random
instances to the corresponding calculations on the clauses.

In other words, from the number of all single clicks sclk, the
number of single clicks that correspond to the correct variable
value cclk, and the number of double clicks that are randomly
assigned dcclk, we can infer the probabilities pdcexp ¼

tclk
N , pcexp ¼

cclk
N

and pwexp
¼ sclk�cclk

N , from which we can compute the expected

Fig. 3 Experimental setup. A coherent light source operating at a wavelength of 1560 nm (Pure Photonics) together with an amplitude modulator (AM)
are used to generate coherent pulses at a 50 kHz repetition rate and with a 10 ns pulse duration. Using a beam splitter with 1/99 ratio, we monitor the
pulse power with a photodiode and send the small fraction of the beam to the rest of the setup. The beam is further attenuated before being split with a
balanced beam splitter (BS) and sent to Merlin and Arthur. The former encodes the proof in the phases of his pulses using a phase modulator (PM). They
both use attenuators to fine tune and equalize the photon number in their paths and the pulses are then interfered on the output beam splitter (I) before
been detected by InGaAs avalanche photodiode single-photon detectors (IDQuantique). The measurement outcomes are collected using a National
Instruments data acquisition card and analyzed with dedicated software.
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number of satisfied clauses in the YES and NO instances using
Eqs. (8) and (9). Note that the expected numbers are sufficiently
far from the threshold so that we do not expect the variance of the
number of satisfied clauses (for each specific instance) to affect
the completeness. For these experimental parameters we also
compute the soundness, which is in fact very close to 0, see Fig. 4.

In order to prove the third condition for the quantum
advantage, if the proof is accepted, we count the number of
variables for which Arthur has no information, i.e., N− sclk,

which is the information that Arthur is missing to complete the
solution. We remark again that a double click in both detectors
does not provide any information to Arthur and we also assume
that all single clicks reveal the true variable value. With only
classical resources, Arthur would need a computational time of
2γðN�sclkÞ, for some prefactor γ (for SAT solvers around 0.4). As
we have explained, here we claim quantum advantage if N− sclk is
larger than 1000, but it is clear that for any given threshold one
can reach quantum advantage by increasing N and improving ν.

In Table 1 we summarize our experimental data for fixed δ,
slightly varying μ, and ν evaluated for every input size N. We
include the number of single clicks, correct clicks, double clicks,
missing bits, as well as the threshold T and the number of
computed satisfied clauses in each case. As we can see, the
number of bits Arthur still misses at the end of the protocol
increases with N, which means that the problem is becoming
more and more difficult for classical computation as N increases.
Moreover, starting from N= 6000, we see that the computed
number of satisfied clauses is much bigger than the threshold,
hence the completeness is very close to one.

Finally, in Fig. 4 we compare the simulations with a typical run of
the experiment for various N fixing the nominal photon number μN,
visibility νN and the constant δ. Notice how the gap between
completeness and soundness increases with N and very fast becomes
almost 1. In the experimental runs shown in the figure, the only point
for which we cannot show quantum advantage is the one at N=
5000, since the gap between completeness and soundness is not large
enough. This is due to a low level of visibility that induced a too large
number of incorrect detections in this case.

Discussion
Our result is an experimental demonstration of a computational
quantum advantage in the interactive setting with linear optics.
The simplicity of our experimental implementation, in addition
to the powerful algorithmic idea of the Sampling Matching,
exemplifies the power of linear optics, and in particular of
coherent state mappings, not only for communication but also for
computational tasks. It will be interesting to investigate further
applications of linear optics, in particular in the frame of near-
term quantum technologies. Moreover, we would like to argue
that our computational task, that of efficiently verifying NP-
complete problems with limited leakage of knowledge about the
proof, is a step closer to useful applications, even though it
remains for the time being a theoretical scenario. In fact, one can
start imagining applications in a near-term quantum cloud, where

Fig. 4 Experimental data. (Top) Plot of the gap as a function of N when
simulating the protocol with the nominal parameters of νN= 0.93, μN= 1.31
and δ= 0.15. The vertical line bounds the region for quantum advantage.
(Bottom) Number of clicks as a function of N. The correct bits are clicks in
the correct detector or in both detectors with half probability and total
clicks is the total number of measured pulses. Each square corresponds to
one run of the protocol whereas the dots with error bars are numerical.
Because each pulse gives a poissonian probability distribution in the
number of photons, the error bar is given by 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# clks

p
which is twice the

root mean square of the poissonian.

Table 1 Summary of experimental data. In each run we increase the input size N by 1000. The table shows: the actual visibility in
each run; the average number of photons per pulse; the number of measured single clicks and those that were in the correct
detector; number of double clicks, which correspond to randomly assigned variables; the missing bits to complete the solution;
the threshold of correct measured clauses for accepting a proof; the number of satisfied clauses in the experiment. The
parameters δ= 0.15, νN= 0.93, and μN= 1.31 are kept fixed in the theoretical analysis of the experiment.

N ν μ Total single clicks Correct clicks Double clicks Missing bits Threshold Satisfied clauses

5000 0.87 1.29 3657 3505 964 1343 2254 2227
6000 0.93 1.30 4834 4741 719 1166 2717 3231
7000 0.94 1.34 5670 5582 848 1330 3232 3904
8000 0.92 1.29 6203 6062 1195 1797 3613 4030
9000 0.92 1.30 6974 6813 1363 2026 4088 4546
10,000 0.95 1.15 8045 7929 947 1955 4111 5082
11,000 0.93 1.30 8675 8524 1515 2325 4996 5789
12,000 0.93 1.30 9632 9466 1476 2368 5437 6471
13,000 0.95 1.30 10636 10496 1405 2364 5902 7320
14,000 0.94 1.29 11135 10950 1807 2865 6801 7437
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a powerful quantum server might have the ability to perform
some difficult computation, and the much less powerful client can
verify the validity of the computation, without the server needing
to reveal all the information to the client. Such limited-knowledge
proof systems could also have applications in a future quantum
internet, similarly to classical zero-knowledge proofs that can be
used for identification, authentication or blockchain. It still
remains an open question to find the first concrete real-world
application of quantum computers and our results show that
linear optics might provide an alternative route towards that goal.

Data availability
The experimental data that support the finding are available from the authors upon
request.
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