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Abstract

When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free
energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long–
term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily
nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe
injuries. We study biophysical neuron models based on the Hodgkin–Huxley (HH) formalism extended to include time–
dependent ion concentrations inside and outside the cell and metabolic energy–driven pumps. We reveal the basic
mechanism of a state of free energy–starvation (FES) with bifurcation analyses showing that ion dynamics is for a large
range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new
fundamental mechanism of ionic excitability that causes a long–lasting but transient FES as observed in pathological states.
We can in particular conclude that a coupling of extracellular ion concentrations to a large glial–vascular bath can take a role
as an inhibitory mechanism crucial in ion homeostasis, while the Naz=Kz pumps alone are insufficient to recover from
FES. Our results provide the missing link between the HH formalism and activator–inhibitor models that have been
successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine
symptoms are explained by disturbed function in ion channel subunits, Naz=Kz pumps, and other proteins that regulate
ion homeostasis.
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Introduction

The Hodgkin–Huxley (HH) model is one of the most successful

models in mathematical biology [1]. This formalism, i.e., a HH–

type model, describes voltage changes across cell membranes that

result in excitability. Not only neurons are excitable cells, also

myocytes, pancreatic b–cells, and even a plant cell (Chara

corallina) exhibit excitable dynamics [2–4]. The dynamic range

of phenomena includes single action potentials (spikes), periodic

spiking, and bursting (slow modulation of spiking). For example, in

pancreatic b–cells bursting is induced by a calcium current [4,5].

A more complete treatment of this phenomenon, however, also

requires the inclusion of Naz=Kz pumps [6]. The dynamics of

ion pumps and ion concentrations is also crucial for cardiac

alternans (periodic beat–to–beat variations) and higher–order

rhythms in the ischemic ventricular muscle [7–9].

In the literature such augmented HH–type models are also

called second–generation HH models [10]. In the context of

certain pathologies of the brain, whose fundamental dynamic

structure we study here, we prefer the simpler name ‘ion–based’

models. This indicates that ion concentrations are major

dynamical, that is, time–dependent variables. Their dynamical

role in neuron models goes beyond merely modulating spiking

activity. Ion dynamics can lead to a completely new type of ionic

excitability and bistability, that is, the phenomena of so–called

‘spreading depolarizations’ and ‘anoxic depolarization’, respec-

tively. (Spreading depolarizations are also called ‘spreading

depression’ and we will use both names interchangeably in this

paper.) These depolarized states of neurons are related to

migraine, stroke, brain injury, and brain death, that is, to

pathologies of the brain in which a transient or permanent

break–down of the transmembrane potential occurs [11,12].

Another even more characteristic property of this ‘twilight state

close to death’ [13] are the nearly completely flat transmembrane

ion gradients. The almost complete break–down of both

membrane potential and—due to reduced ion gradients—Nernst

potentials together cause a nearly complete release of the Gibbs

free energy, that is, the thermodynamic potential that measures

the energy available to the neurons for normal functioning. We

hence refer to this state as a state of free energy–starvation (FES).

We want to stress that such phenomena require the broader

thermodynamical perspective, because it goes beyond the HH

description in terms equivalent electrical circuits in membrane

physiology (see discussion).

The object of this study is to clarify quantitatively the detailed

ion–based mechanisms, in particular the time–dependent poten-

tials, leading to this condition. In fact, early ion–based models

have been introduced in a different context to describe excitable

myocytes and pancreatic b–cells with variable ion concentrations

[14–16]. Neuronal ion–based models have been used to study
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spreading depolarizations (SD) [17–22] and anoxic depolariza-

tions [21]. In these phenomenological studies the types of ion

dynamics related to the pathologies have been reproduced, but

not investigated in a bifurcation analysis. Hence the fundamental

phase space structure of these high–dimensional models that

underlies the ionic excitability characterisitic of SD remains

poorly understood. Furthermore, neuronal ion–based models

have been used to study seizure activity [23,24] and spontaneous

spiking patterns in myelinated axons with injury–like membrane

damaging conditions (e.g., caused by concussions) [25,26]. In

these models, the phase space structure was investigated,

however, only with respect to the modulating effect of ion

concentrations on the fast spiking dynamics (seizure activity,

injuries), and with respect to spiking node–to–node transmission

fidelity (myelinated axons).

In this paper we present bifurcation analyses of several minimal

biophysical ion–based models that reveal bistability of extremely

different ion configurations—physiological conditions vs. free

energy–starvation—for a large range of pump rates. In related

models certain bistabilities have been explored before. For

example, Fröhlich et al. [27–29] found coexistence of quiescence

and bursting for certain fixed extracellular potassium concentra-

tions and also bistability of a physiological and a strongly

depolarized membrane state in a slow–fast analysis of calcium

gated channels. Bistability of similar fixed points has also been

found for the variation of extracellular potassium [30] or, similarly,

the potassium Nernst potential [31]. Also the effect of pump

strength variation has been explored under fixed FES conditions

[32]. In this paper, however, we do not treat slow variables as

parameters and show bistability of fast dynamics, but instead we

address the stability of ion concentrations themselves, which are

subject to extremely slow dynamics. This allows us to find

bistability of extremely different ion distributions, a feature that

distinguishes these two states from the polarized and depolarized

states studied in the afore mentioned work. A study that also had

significantly different ion distributions was done by Cressman et al

[33], however, the seizure-like phenomena discussed in their work

are quite different—though clinically related—from those pre-

sented in this paper.

Because of the occurrence of ion state bistability we conjecture

that our model describes a threshold reduction of a mechanism

that leads to ionic excitability in form of spreading depolarizations.

In other words, we conclude that an important inhibitory

mechanism to describe ion homeostasis such as glial buffering or

diffusive regulation of extracellular ion concentrations plays a

crucial role in ion homeostasis and the Naz=Kz pumps alone are

insufficient to recover from free energy–starved states. We show

that when the extracellular Kz concentration is regulated by

linearly coupling it to an infinite bath, the bistable system changes

to an excitable system, which we call ionic excitability. The effect

of turning off glial buffering and diffusion has been discussed in

more detailed ion–based models [27,29] before, but has not been

related to the fundamental phase space structure of the system.

Our conclusions have been validated by demonstrating the

robustness of the results in a large variety of minimal ion–based

models, which all consistently show this insufficiency of Naz=Kz

pumps, and also in a very detailed membrane model that has been

used intensively for computational studies of spreading depolar-

izations and seizure–like activity [17,34].

Model

Hodgkin–Huxley (HH) model and reductions
A simple ion–based neuron model can be obtained as a natural

extension of the Hodgkin–Huxley (HH) model [1]. We list the

basic equations of HH that we used for the sake of completeness,

and also comment on two often used model reductions of which

one must be modified for our study. Furthermore leak currents are

specified, which is necessary for the extension towards ion–based

modeling.

In the HH model, single neuron dynamics is described in terms

of an electrically active membrane carrying an electric potential V ,

and the three gating variables n, m and h that render the system

excitable. Ion species included are sodium, potassium, and an

unspecified ion carrying a leak current, which can be attributed to

chloride in our extended model. The rate equations read [1]:

dV

dt
~{

1

Cm

(INazzIKzzICl{{Iapp), ð1Þ

dn

dt
~

n?{n

tn

, ð2Þ

dh

dt
~

h?{h

th

, ð3Þ

dm

dt
~

m?{m

tm

: ð4Þ

The top equation is simply Kirchhoff’s current law for a

membrane with capacitance Cm and membrane potential V .

Iapp is an externally applied current that may, for example,

initiate voltage spikes. The gating variables n, h, and m are the

potassium activator, sodium inactivator, and sodium activator,

respectively. Their dynamics is defined by their voltage–

dependent asymptotic values x? and relaxation times tx (x~n,

m, h). These are given by

x?~
ax

axzbx

and

Author Summary

Theoretical neuroscience complements experimental and
clinical neuroscience. Simulations and analytical insights
help to interpret data and guide our principal under-
standing of the nervous systems in both health and
disease. The Hodgkin—Huxley–formulation of action
potentials is certainly one of the most successful models
in mathematical biology. It describes an essential part of
cell–to–cell communication in the brain. This model was
in various ways extended to also describe when the
brain’s normal performance fails, such as in migraine
hallucinations and acute stroke. However, the fundamen-
tal mechanism of these extensions remained poorly
understood. We study the structure of biophysical neuron
models that starve from their ‘free’ energy, that is, the
energy that can directly be converted to do work.
Although neurons still have access to chemical energy,
which needs to be converted by the metabolism to
obtain free energy, their free energy–starvation can be
more stable than expected, explaining pathological
conditions in migraine and stroke.
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tx~
1

w(axzbx)
for x~n, m and h:

Here w is a common timescale parameter, and the Hodgkin–

Huxley exponential functions are

am~
0:1(Vz30)

1{exp({(Vz30)=10)
, ð5Þ

bm~4 exp({(Vz55)=18), ð6Þ

an~
0:01(Vz34)

1{exp({(Vz34)=10)
, ð7Þ

bn~0:125 exp({(Vz44)=80), ð8Þ

ah~0:07 exp({(Vz44)=20)), ð9Þ

bh~
1

1zexp({0:1(Vz14))
: ð10Þ

The individual ion currents read

INaz~(gl
Nazg

g
Nam3h):(V{ENa), ð11Þ

IKz~(gl
Kzg

g
K n4):(V{EK ), ð12Þ

ICl{~gl
Cl
:(V{ECl), ð13Þ

with g
l,g
ion denoting leak and gated conductances. In fact, Hodgkin

and Huxley set up their model with an unspecified leak current

and non–leaking sodium and potassium channels. As long as ion

dynamics is not considered this is mathematically equivalent to

specifying the leak current as being partially sodium, potassium

and chloride, but it is physically inconsistent because the reversal

potentials for the ions differ. In an ion–based approach, however,

the main task of the ion pumps under physiological conditions is to

compensate for sodium and potassium leak currents (see next

section) while gated currents are extremely small in the

equilibrium. So at this point leak currents for all ion species are

important.

The Nernst potentials Eion are given in terms of the ion

concentrations ½ion� in the intracellular space (ICS) and the

extracellular space (ECS) denoted by subscripts i and e,

respectively:

Eion~
26:64

zion

ln(½ion�e=½ion�i), ð14Þ

for ion~K , Na, and Cl and zion is the ion valence. All model

parameters are listed in Table 1. The units chosen are those

typically used and appropriate for the order of magnitude of the

respective quantities. Time is measured in msec, potentials in mV,

and ion concentrations in mMol=l. The units for conductance

densities imply that ionic and pump current densities are in

mA=cm2. For better readability we omit the square brackets on the

ion concentrations and simply write Ki=e, Nai=e, and Cli=e.

For Iapp~0 this model is monostable with an equilibrium at

V~{68 mV. Note that ENa=V and EK=V imply that under

equilibrium conditions neither INaz nor IKz vanish, but only their

sum does. Sufficiently strong current pulses can—depending on

their duration—initiate single voltage spikes or spike trains.

Constant applied currents can drive the system to a regime of

stationary oscillations. The minimal current required for this is

usually called rheobase current.

The HH model can be reduced to two dynamical variables in a

way that preserves these dynamical features. One common

simplification [35] is to eliminate the fastest gating variable m

adiabatically and set

m~m?(V ): ð15Þ

Second, there is an approximate functional relation between h and

n that is usually realized as a linear fit [36]. The ion–based model

presented in this article, however, contains a stable fixed point

with large n, and a linear best fit would then lead to a negative h.

Therefore we will use the following sigmoidal fit to make sure h is

non–negative:

h~hsig(n)~1{
1

1zexp({6:5(n{0:35))
: ð16Þ

After this reduction the remaining dynamical variables are V and

n.

Minimal ion–based model
While in the original HH model ion concentrations are model

parameters, in ion–based modeling intra– and extracellular ion

Table 1. Parameters for Hodgkin–Huxley model.

Name Value & unit Description

Cm 1 mF=cm2 membrane capacitance

w 3/msec gating timescale parameter

gl
Na 0.0175 mS=cm2 sodium leak conductance

g
g
Na 100 mS=cm2 max. gated sodium conductance

gl
K 0.05 mS=cm2 potassium leak conductance

g
g
K 40 mS=cm2 max. gated potassium conductance

gl
Cl 0.05 mS=cm2 chloride leak conductance

Nai 27 mMol=l ECS sodium concentration

Nae 120 mMol=l ICS sodium concentration

Ki 130.99 mMol=l ECS potassium concentration

Ke 4 mMol=l ICS potassium concentration

Cli 9.66 mMol=l ECS chloride concentration

Cle 124 mMol=l ICS chloride concentration

ENa 39.74 mV sodium Nernst potential

EK 292.94 mV potassium Nernst potential

ECl 268 mV chloride Nernst potential

doi:10.1371/journal.pcbi.1003551.t001
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concentrations become dynamical variables, which causes the

Nernst potentials to be dynamic. The model defined by the rate

eqs. (1), (2) and contraint eqs. (15), (16) can straightforwardly be

extended to make ion concentrations dynamic since currents

induce ion fluxes. However, under those equilibrium conditions

found in HH neither IKz~0 nor INaz~0. Hence we need to

include ion pumps [15] to make sure that the rate of change in ion

concentration inside the cell (i) and extracellular (e) can vanish in

the resting state ( _NNai=e~ _KKi=e~ _CCli=e~0).

The rate equations for ion concentrations in the intracellular

space (ICS) are then

dNai

dt
~{

c

vi

(INazz3Ip), ð17Þ

dKi

dt
~{

c

vi

(IKz{2Ip), ð18Þ

dCli

dt
~z

c

vi

ICl{ : ð19Þ

The factor c converts currents to ion fluxes and depends on the

membrane surface Am and Faraday’s constant F :

c~
Am

F
, ð20Þ

Dividing the ion fluxes by the ICS volume vi gives the change

rates for the ICS ion concentrations. The pump current Ip

represents the ATP–driven exchange of ICS sodium with

potassium from the extracellular space (ECS) at a 3=2–ratio. It

increases with the ICS sodium and the ECS potassium concen-

tration. Chloride is not pumped. We are using the pump model

from [23,24]:

Ip(Nai,Ke)~r(1zexp(
25{Nai

3
)){1

(1zexp(5:5{Ke)){1, ð21Þ

where r is the maximum pump current. As a consequence of mass

conservation ion concentrations in the ECS can be computed from

those in the ICS [33]:

ione~ion(0)
e z

vi

ve

(ion
(0)
i {ioni), ð22Þ

with the ECS volume ve. Superscript zero indicates initial values.

Since all types of transmembrane currents, i.e., also the pumps,

must be included in eq. (1) for the membrane potential, we have to

add the net pump current Ip:

dV

dt
~{

1

Cm

(INazzIKzzICl{zIp{Iapp): ð23Þ

The rate equations for the ion–based model are thus given by eqs.

(2), (17)–(19), (23). These rate equations are complemented by the

gating constraints eqs. (15), (16) and the mass conservation

constraints

Nae~Na(0)
e z

vi

ve

(Na
(0)
i {Nai), ð24Þ

Ke~K (0)
e z

vi

ve

(K
(0)
i {Ki), ð25Þ

Cle~Cl(0)
e z

vi

ve

(Cl
(0)
i {Cli): ð26Þ

Dynamic ion concentration imply that the Nernst potentials in eqs.

(11)–(13) are now dynamic (see eq. (14)). The additional

parameters of the ion–based model are listed in Table 2. The

morphological parameters Am and vi are taken from [17]. In

cortical ion–based models, the extracellular volume fraction

f ~ve=(vezvi) ranges from 13% in [17] to 33% in [21]. In

experimental studies, f is about 20%, a value that can increase, for

example, in focal cortical dysplasias type II, a frequent cause of

intractable epilepsy, to 27% [37] or during sleep to 32% (the latter

only, if we transfer the increase observed in mouse data to human)

[38]. It is important to note that in experimental studies, the

extracellular volume fraction refers to the fraction with respect to

the whole tissue, which includes also the glial syncytium. Assuming

equally sized neuronal and glial volume fractions of 40% each, an

experimentally measured value of 20% would in our model, which

does not directly include the volume of the glial syncytium,

correspond to f ~0:33 or 33%. We choose an intermediate value

of 25% for f , but address the influence of the volume ratio in Sec.

Results. We prefer to give these morphological parameters in the

commonly used units which are appropriate to their order of

magnitude rather than unifying all parameters, e.g. the cell volume

is given in mm3 instead of l which ion concentrations are related

to. Consequently c from Table 2 must be multiplied by a factor of

10 to correctly convert currents to change rates for ion

concentration in the given units. Because of the extremely small

value of c the membrane dynamics, i.e., the dynamics of V and n,

is five orders of magnitude faster than the ion dynamics.

A consequence of this large timescale separation is that the

system will attain a Donnan equilibrium when the pumps break

down. The Donnan equilibrium is a thermodynamic equilibrium

state (not to be confused with merely a fixed point, though it is one)

that is reached for ion exchange across a semipermeable

membrane. Since we have not explicitly included large imperme-

able anions inside the cell, this is at first surprising. For no applied

currents and Ip~0, the ion rate equations imply that an

equilibrium requires all ion currents to vanish. Since conductances

Table 2. Model parameters for ion–based model only.

Name Value & unit Description

vi 2,160 mm3 volume of ICS

ve 720 mm3 volume of ECS

F 96485 C=Mol Faraday’s constant

Am 922 mm2 membrane surface

c
9.556e–3

mm2Mol

C

conversion factor

r 5.25 mA=cm2 max. pump current

doi:10.1371/journal.pcbi.1003551.t002
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are strictly positive it follows that all Nernst potentials and the

membrane potential must be equal. Ion concentrations will then

adjust accordingly. However, eqs. (17)–(19) and (23) imply the

following constraint on the ICS charge concentration Qi:

DQi : ~DNaizDKi{DCli~
Cmc

vi

DV , ð27Þ

where D denotes the difference between the initial and final value

of a variable. Since c is very small, changes in ion concentrations

must practically satisfy electroneutrality. This condition together

with the equality of all Nernst potentials defines the Donnan

equilibrium, so we see that it is contained in our model as the limit

case with no pumps and no applied currents. It should be noted

that this observation provides a necessary condition for the

correctness of biophysical models.

In this extension of the HH model the ion dynamics makes

Nernst potentials time–dependent. The simultaneous effect of a

diffusive and an electrical force acting on a solution of ions is

described more accurately by the Goldman–Hodgkin–Katz

(GHK) equation though. Nevertheless we prefer Nernst

currents, because this formulation allows us to use well–

established conductance parameters so that the model is

completely defined by empirically estimated parameters. In

Sec. Results we will see how GHK currents can be modelled

and that the qualitative dynamical behaviour of the system is

not affected.

Results

Phase space analysis of ion–based model
In the ion—based model introduced above current pulses can

still initiate voltage spikes (not shown). However, extremely strong

pulses, in fact comparable to those used in [17] to trigger

spreading depolarizations, can drive the system away from the

physiological equilibrium to a second stable fixed point that is

strongly depolarized (see Fig. 1(a)). This is a new dynamical

feature. The depolarized state can also be reached when the ion

pumps are temporarily switched off (see Fig. 1(b)). Apart from the

depolarization this state is characterized by almost vanishing ion

gradients. This free energy–starvation (FES) is reminiscent of the

Donnan equilibrium. Extracellular potassium is increased from 4
to more than 40 mMol=l while the extracellular sodium concen-

tration is reduced from 120 to less than 30 mMol=l. The gated ion

channels are mostly open (potassium activation n is 60%), and it is

no longer possible to initiate voltage spikes. In this section we will

Figure 1. Upper panels: Membrane and Nernst potentials, lower panel: Ion concentrations vs time. (a) Response of the model to a
0:5 sec long sodium current pulse with amplitude 150 mA=cm2 (marked by the black star). The pulse causes voltage spiking that stops in a strongly
depolarized state (see blow–up inset). The membrane potential V takes a final value of about {25 mV (upper panel). The ion gradients, i.e., the
differences between intra– and extracellular ion concentrations, reduce drastically during the stimulation and slowly adjust to a new fixed point after
a couple of hundreds of seconds (lower panel). (b) Switching off the ion pump for 20 sec (indicated by the light grey interval) causes similar dynamics.
The membrane depolarization and dissipation of ion gradients is a bit slower than for (a). After the pump is switched on again the system attains the
same fixed point as in (a).
doi:10.1371/journal.pcbi.1003551.g001
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present a phase space analysis of the model and derive conditions

for the observed bistability between a physiological equilibrium

and a state of FES.

Note that the transition from the physiological state to FES

happens via ion accumulation due to spiking, and we will see in

Sec. Results that indeed the membrane ability to spike is a

necessary condition for the bistability. Similar processes of ion

accumulation were regarded as unphysiological in modelling of

cardiac cells [8], but are familiar in cortical neurons where ion

accumulation is central to seizure–like activity [24,33] and

spreading depression [17] (SD). In fact, we will briefly demonstrate

how the bistability relates to local SD dynamics.

Symmetry of the ion–based model. Prior to a bifurcation

analysis we need to discuss a conservation law (symmetry) of eqs.

(17)–(19), (23). The direct extension of a membrane model to

include ion dynamics as presented above naturally leads to a linear

dependence of dynamical variables. In our case this is reflected by

the following relation

Cm
dV

dt
~

vi

c

dNai

dt
z

dKi

dt
{

dCli

dt

� �
, ð28Þ

for Iapp~0. As a consequence the determinant of the Jacobian is

always zero and the system is nowhere hyperbolic. For the

continuation techniques used by software tools like AUTO [39],

however, the inverse Jacobian plays a central role, so they cannot

be applied to the system unless this degeneracy is resolved.

Furthermore the phase space structure of such nonhyperbolic

systems can be changed with arbitrarily small perturbations which

is why they are called structurally unstable [40]. Note that the

linear dependence can be avoided when the rate equation for V
contains an additional current with a fixed reversal potential

breaking the symmetry. Such strictly speaking unphysical currents

are indeed often included in neuronal ion–based models

[17,24,33,34], but we will rather make use of the symmetry and

eliminate one linearly dependent variable.

The physiological view on the instability should be as follows.

Assume that the system is in its physiological equilibrium and then

apply a constant current Iapp to the voltage rate eq. (23). Then eqs.

(17)–(19) and (23) imply that the equilibrium conditions _VV~0 and
_KKi~ _NNai~ _CCli~0 are contradictory, so the equilibrium will

vanish even for arbitrarily small currents. In fact for any constant

and positive Iapp, the system will evolve in a highly non–

physiological manner with Ki, Nai and Cle slowly tending to zero.

To avoid even the theoretical possibility of such behaviour we

will now use eq. (28) to reduce the system and thereby make it

structurally stable. We can, for example, eliminate V and express

it in terms of the ICS ion concentrations rather than treating V as

an independent dynamical variable:

d

dt
V{

vi

Cmc
NaizKi{Clið Þ

� �
~0

[

V~V (0)z
vi

Cmc
Nai{Na

(0)
i zKi{K

(0)
i {ClizCl

(0)
i

� �

This was also done in Ref. [15]. The physiological meaning of this

reduction is simply that the possibility of unspecified applied

currents is ruled out. For instance, a perturbation on the sodium

rate eq. (17) should be interpreted as a sodium current. The above

constraint describes the simultaneous effect on V . It would be

equivalent to apply perturbations to eq. (17) and eq. (23)

consistently to model the full effect of an applied sodium current,

so the additional constraint should be seen as a consistency

condition. (The curves in Fig. 1(a) were computed for a sodium

current pulse.) This consistency rule does not at all change the

dynamics unless unspecified currents are applied, and even then it

practically does not change the dynamics, because any deviation in

ion concentrations scales with c and is hence negligible. The

structural instability is thus a rather formal feature of the

degenerate model and we remark that its physiological equilibrium

is nevertheless stationary. Instabilities that lead to an unphysio-

logical drift of ion concentrations for very long simulation times

have been reported and resolved in cardiac cell models [7,8]. Our

case is different though, because the physiological state is a

stationary one and the response to moderate stimulation is

physiologically realistic.

For the bifurcation analyses presented in this paper we have

eliminated Nai rather than V for numerical reasons. This is

completely equivalent, because we only vary the pump rate and

morphological parameters. So in our reduction we have replaced

rate eq. (17) by the following constraint:

Nai~Na
(0)
i {KizK

(0)
i zCli{Cl

(0)
i

z
Cmc

vi

(V{V (0))
ð29Þ

The model is then defined by the rate eqs. (2), (18), (19) and (23)

and the constraint eqs. (15), (16), (24)–(26) and (29).

Bifurcation analysis. We have used the continuation tool

AUTO [39] to follow the polarized fixed point of the system under

variation of the maximal pump rate r. Stability changes and the

creation of stable or unstable limit cycles are detected by the

software which helps us to interpret the dynamical behaviour. For

a better overview we will extend our bifurcation analysis even

beyond the physiologically relevant range. The full bifurcation

diagram is presented in Fig. 2.

In the (r,V )–plane the fixed point continuation yields a smooth

z–shaped curve where unstable sections are dashed. The

physiological equilibrium is marked by a green square. For higher

pump rates the equilibrium remains stable and becomes slightly

hyperpolarized. If r is decreased the physiological equilibrium

collides with a saddle point at rLP1~0:894006 mA=cm2 in a

saddle–node bifurcation (limit point, LP). In a LP the stability of a

fixed point changes in one direction (zero–eigenvalue bifurcation).

Thus after LP1 the fixed point is a saddle point with one unstable

direction. In a Hopf bifurcation (HB) at rHB1~29:2336 mA=cm2

two more directions become unstable. Via another LP at

rLP2~34:5299 mA=cm2 the last stable direction switches to

unstable and the saddle becomes an unstable node. In HBs at

rHB2~33:7285 mA=cm2 and rHB3~24:6269 mA=cm2 the fixed

point becomes a saddle and a stable depolarized focus, respec-

tively. The stability is indicated by the (n{,nz)–tuples along the

fixed point curve with n{,z denoting the number of stable and

unstable directions.

In every HB a limit cycle is created. Our model only contains

unstable limit cycles that are created in subcritical HBs. In the

diagram they are represented by their extremal V values. Such

unstable limit cycles are not directly observable, but in the bistable

regime they can play a role for the threshold behaviour for the

transition from one fixed point to the other. All limit cycles in the

model disappear in homoclinic bifurcations (HOM). In a HOM a
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limit cycle collides with a saddle. When it touches the saddle it

becomes a homoclinic cycle of infinite period. After the bifurcation

the limit cycle does not exist any more. The limit cycles created in

HB1, HB2 and HB3 disappear in HOMs at r~27:6463 mA=cm2,

r~33:7027 mA=cm2 and r~1:024291 mA=cm2. The limit cycle

emanating from HB1 collides with the upper (i.e., less polarized)

saddle, for the other two HOMs the situation is clear, because

there is only one saddle available. Since the limit cycles are all

unstable these bifurcation details are physiologically irrelevant, but

mentioned for completeness.

This bifurcation analysis shows that our model is bistable for a

large range of pump rates rLP1vrvrHB3. Strongly depolarized

and electrically inactive states of neurons with nearly vanishing ion

concentration gradients have been reported in pathological states

[11,13], but in real systems such free energy–starvation (FES) is

not stable. In the below section we show how this bistability can be

resolved.

Ionic excitability. We will now briefly show how the above

analyzed model can be modified such that the unphysiological

bistability turns into excitability of ion dynamics. For this we follow

[24,33] and include an additional regulation term for extracellular

potassium. This means that Ke becomes an independent

dynamical variable and the constraint eq. (25) must be replaced

by its rate equation:

dKe

dt
~

c

ve

(IKz{2Ip)zIreg: ð30Þ

The regulation term Ireg can be interpreted as a diffusive coupling

to an extracellular potassium bath or as a phenomenological

buffering term. It takes the following form:

Ireg~l(Kreg{Ke), ð31Þ

where Kreg is the potassium concentration of an infinite bath

reservoir coupled to the neuron or a characteristic parameter for

glial buffering, and l is a rate constant (values given in Table 3).

Kreg takes values of physiological potassium concentrations and

hence stabilizes the physiological equilibrium. This is how Ireg

regulates ion homeostasis and destabilizes the energy–starved

state.

If we now stimulate the system with a current pulse or

temporarily switch off the pump as we did in Fig. 1 the system no

longer remains in the depolarized state, but repolarizes after a long

transient state of FES (see Fig. 3). After the repolarization ion

concentrations start to recover from FES. Full recovery to the

initial physiological values is an asymptotic process which takes

very long (about two hours), but the neuron is back to normal

functioning already after nine to ten minutes. Similar dynamics is

described in numerical [17,34] and experimental SD models.

The bistable and excitable dynamics can be nicely compared in

a projection of the respective trajectories onto the (Nai,Ki)–plane.

Figure 2. Bifurcation diagram of the ion–based model. Bifurcations are marked by red circles, the physiological equilibrium by a green square.
Following the z–shaped fixed point characteristic from below there are two saddle–node bifurcations (limit point, LP) at r~0:894006 mA=cm2 and
r~34:5299 mA=cm2 , and three subcritical Hopf bifurcations (HB) at r~29:2336 mA=cm2 , r~33:7285 mA=cm2 and r~24:6269 mA=cm2 . The limit
cycles created in HB1, HB2 and HB3 disappear in homoclinic bifurcations (HOM) at r~27:6463 mA=cm2 , r~33:7027 mA=cm2 and
r~1:024291 mA=cm2 , respectively. The second LP and the second HB together with the HOM of limit cycles occur in a very narrow parameter
range (see blow–up inset). The number of stable (n{) and unstable (nz) directions of the fixed point is indicated by the (n{,nz)–tuples. There is
bistability of a physiological state and a depolarized state with largely reduced ion concentration gradients between r~8:94006 mA=cm2 and
r~24:6269 mA=cm2 .
doi:10.1371/journal.pcbi.1003551.g002

Table 3. Buffering parameters.

Name Value & unit Description

l 2.7e–5/msec regulation rate

Kreg 4 mMol/l regulation level

doi:10.1371/journal.pcbi.1003551.t003
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For the bistable model the conditions _KKi~0 and _NNai~0 define

three–dimensional hypersurfaces called nullclines. Adding the

necessary fixed point conditions on the remaining dynamical

variables, namely V~ECl and n~n?(V ), allows us to specify

curves that represent these nullclines and only depend on Nai and

Ki. In the buffered model Ke is another dynamical variable and its

fixed point condition is Ke~Kreg. Electroneutrality and mass

conservation imply that certain (Nai,Ki)–combinations would lead

to a negative Cli or Ke. In the plot, these unphysiological

configurations are shaded.

In Fig. 4, we see that the bistable model has three nullcline

intersections, i.e., fixed points, while the buffering term deforms

the nullclines so that only one stable fixed point remains. In the

bistable case an initial current pulse stimulation (dashed part of

trajectory) drives the system into the basin of attraction of the

FES–state, which it then asymptotically approaches (solid line).

After the same stimulation the buffered system performs a large

excursion in phase space with extremal ion concentrations

comparable to FES, but eventually returns to the physiological

equilibrium. This large excursion in the ionic variables character-

izes what we refer to as ionic excitability or excitability of ion

homeostasis. The simulations presented in this section support the

hypothesis that it is caused by the bistability of the unbuffered

model. Note that intersections of nullcline curves and trajectories

do not have to be horizontal or vertical since they may (and do)

differ in the non–ionic variables. The main purpose of the nullcline

curves is to indicate the existence and location of fixed points.

Robustness of results
The ion–based model we have analysed so far has been

motivated as a natural extension of the Hodgkin–Huxley

membrane model. However, there are different variants of ion–

based models [17–24,32] that use different pump and current

models, ion content, and ion channels. We will hence address the

question how general our results are in this respect. Furthermore

we vary the geometry–dependent parameters (membrane surface

and extracellular volume fraction) continuously to test their effect

on the phase space, too.

Model variants. As we noted before, transmembrane cur-

rents are more accurately described as Goldman–Hodgkin–Katz

(GHK) rather than Nernst currents, even though we prefer the

latter. It is hence important to check which difference the choice of

current model makes. To generalize the Nernst currents in eqs.

(11)–(13) to GHK currents we assume that both models have the

same steady state currents under physiological equilibrium

conditions. The GHK version of the sodium current is

IGHK
Naz ~(Pl

NazP
g
Nam3h):F :

V

26:64
:

Nai{Nae exp({V=26:64)

1{exp({V=26:64)

ð32Þ

with membrane permeabilities Pl
Na and P

g
Na instead of conduc-

tances. To compute these permeabilities we set the GHK current

Figure 3. Upper panels: Membrane and Nernst potentials, lower panel: Ion concentrations vs time. (a) Stimulation with the same, but earlier
applied, current pulse as in Fig. 1(a). Due to the additional potassium regulation the system returns to the physiological equilibrium after an approximately
60 sec lasting FES and subsequent hyperpolarization. (b) Similar dynamics as in (a) is observed for a temporary pump switch–off like in Fig. 1(b).
doi:10.1371/journal.pcbi.1003551.g003
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equal to its Nernstian counterpart

INaz~(gl
Nazg

g
Nam3h):(V{ENa) ð33Þ

for the equilibrium conditions given in Table 1. This leads to a

common conversion factor from conductances g
l,g
Na to permeabil-

ities P
g,l
Na. With this ansatz we obtain conversion factors for the

three different ion species that lead to the conductances listed in

Table 4.

There is also a certain freedom in the choice of a pump model.

It is a general feature of Na+/K+ pumps that their activity is

enhanced by the elevation of ECS potassium and ICS sodium. Still

different models exist, and to investigate the role of the particular

pump model we replace the pump from eq. (21), now referred to

as Ip,A, with the following one from [17]:

Ip,B(Nai,Ke)~rB 1z
3:5

Ke

� �{2

1z
10

Nai

� �{3

ð34Þ

In order to retain the equilibrium at V~{68 mV we have to set

the maximum pump current to rB~5:72 mA=cm2. This is slightly

higher than the previous pump value (rA~5:25 mA=cm2), but in

the same range.

From the rate equations of the HH membrane model (see Sec.

Model) it is obvious that the chloride leak current stabilizes the

equilibrium membrane potential. To test its stabilizing effect in the

context of ion–based modeling we compare models that either do

or do not contain this current. We are further interested in the

question whether membrane excitability and ion bistability are

related. Therefore also the effect of in– and excluding active ion

channels is tested.

In this section we will only discuss fixed points and their

stability, but not the unstable limit cycles belonging to HBs. In

Fig. 5 the fixed point continuation curves for all combinations of

current model (Nernst or GHK), pump choice (Ip,A or Ip,B) and the

respective in– and exclusion of chloride and active ion channels

channel are shown. Each panel (a)–(d) contains all continuation

curves for a given choice of pump and current model. For those

models that are bistable for certain pump rates an overview of the

different dynamical regimes is presented in Fig. 6. It shows the

parameter ranges for bistability and for monostability of a

physiological state or FES.

The most striking result of this bifurcation analysis is that this

bistability occurs in all models with gated ion channels, but not in

any model with only leak channels (grey–shaded graphs in the

insets of Fig. 5). The comparison of any model with active gates

and its leak–only counterpart shows that whenever the physiolog-

ical equilibrium of the first one exists it is identical to the

equilibrium of the latter one. While the physiological state

disappears in a LP for all bistable models at small pumping, the

fixed points of the leak models remain stable, but depolarize

drastically for further decreasing pump rates until the Donnan

equilibrium for rA,B~0 is reached. The absence of the second

fixed point in leak–only models is plausible if we consider Fig. 1

again. The depolarized state is characterized by large ion

concentrations Ke and Nai which implies an increased pump

current (see eq. (21)). Since the differences between the Nernst

potentials and the membrane potential are even smaller in the

depolarized state, higher, hence gated, conductances are required

to compensate for the pump currents and maintain the

depolarized state. Besides the requirement of active ion channels,

the bistability is a very robust feature of these simple ion–based

models.

Let us now consider the effect of the different model features on

the minimal physiological pump rate, i.e., the pump rate required

for a stable physiological fixed point, and the recovery pump rate

that destabilizes the depolarized state of FES and allows the

Figure 4. Projection of the trajectories corresponding to Fig. 1a and Fig. 3a. The shaded regions indicate unphysiological (Nai ,Ki)–
combinations that imply negative Cli (lower left region) or negative Ke (upper region in left plot). Stable and unstable fixed points are marked by
solid and open circles. (a) In the bistable case an initial stimulation (dashed line) leads to large subsequent changes in ion concentrations that
terminate in the second fixed point of the system. (b) The excitable motion starts very similar to case (a), but after reaching the extremal
concentration values the system slowly returns to its initial state.
doi:10.1371/journal.pcbi.1003551.g004

Table 4. Membrane permeabilities for GHK current.

Name Value & unit Description

Pl
Na

0.0264 mm/sec leak sodium permeability

P
g
Na 150.77 mm/sec gated sodium permeability

Pl
K

0.0169 mm/sec leak potassium permeability

P
g
K 13.488 mm/sec gated potassium permeability

Pl
Cl

0.0521 mm/sec leak chloride permeability

doi:10.1371/journal.pcbi.1003551.t004
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Figure 5. Bifurcation diagrams of fixed points for different models. The effects of chloride and active ion channels are compared for each of
the four possible pump (A vs B) and current model (Nernst vs GHK) combinations. The physiological equilibrium for normal pump rates
(rA~5:25 mA=cm2 and rB~5:72 mA=cm2) is marked by a green square. The model from fig. 2 is marked by a star. The value is the same with and
without chloride or active channels. Insets show the bifurcation diagrams for low pump rates (rA,Bv5 mA=cm2). Fixed point lines for models without
active ion channels are shaded (see insets). Note the different scales on the main figures, insets are for the same range in each panel.
doi:10.1371/journal.pcbi.1003551.g005

Bistable Dynamics and Ionic Excitabilty

PLOS Computational Biology | www.ploscompbiol.org 10 May 2014 | Volume 10 | Issue 5 | e1003551



neuron to return to physiological conditions. These rates are the

lower and upper limit of the bistable regime, and low values are

physiologically desirable.

In Fig. 6 we see that pump model A, GHK currents and

chloride each lead to a lower minimal physiological (see the inset)

and a lower recovery pump rate than pump model B, Nernst

currents and the exclusion of chloride. Quantitative differences

should be noted, though. The inset of Fig. 6 shows that all models

with pump A have lower minimal physiological pump rates than

models with pump B. So the stability of the physiological

equilibrium with respect to pump strength reduction depends

mostly on the choice of pump. On the other hand four of the five

lowest recovery pump rates are from models that include chloride.

In fact, it is only the combination of both, the GHK current model

and pump A, that make the recovery threshold of the chloride

excluding model 7 slightly lower than that of the chloride

including model 2. However, one should note that even the

lowest recovery pump rate is as high as r~14:3 mA=cm2 (model

8). This is still an almost threefold increase of the normal rate. So

even if we assume pump enhancement due to additional

mechanisms, for example increased cerebral blood flow, the

threshold for recovery from FES seems to be too high. Thus it is

true for a large class of ion—based neuron models that realistic

neuronal homeostasis cannot rely on Na+/K+–ATPase alone, but

rather on a combination of ion pumps and further regulation

mechanisms like glial buffering.

There is another effect of chloride to be pointed out. In Fig. 5

we see that it raises the Donnan equilibrium potential (see

potentials at r~0 mA=cm2) significantly. To understand this effect

note that without chloride electroneutrality forces the sum of DKe

and DNae to be zero, while the presence of the decreasing anion

species Cle implies D(KezNae)v0. According to eq. (14) this

leads to lower Donnan equilibrium Nernst potentials EK and ENa,

and consequently to a lower membrane potential. Since the

conditions of FES for physiological pump rate values are very close

to the Donnan equilibrium, this depolarized fixed point is shifted

in the same way.

The effect of the current model on the two characteristic pump

rates is less pronounced than that of chloride or the pump choice.

It lowers the minimal physiological rate more than chloride, but

not as much as a pump change from model B to A. Its effect on the

recovery threshold is the weakest.

While above we describe and investigate minimal Hodgkin–

Huxley model variants to obtain SD behavior in the simplest

neuron model types, in the current literature biophysically much

more detailed neuron models have been developed for this

phenomenon. We do not intend to investigate such detailed

models thoroughly, but as an example that further demonstrates

the robustness of our results, we also replicate our results with a

much more detailed membrane model as first described by Kager

et al. [17]. This detailed model contains five different gated ion

channels (transient and persistent sodium, delayed rectifier and

transient potassium, and NMDA receptor gated currents) and has

been used intensively to study spreading depolarizations and

seizure–like activity. In fact, one modification is required so that

we can replicate our previous results. The detailed model contains

an unphysiological so–called ‘fixed leak’ current

Ileak,f ~gleak,f
:(Vz70) ð35Þ

that has a fixed reversal potential of {70 mV and no associated

ion species. This current only enters the rate equation for the

membrane potential V and thereby implies that V~{70 mV is a

necessary fixed point condition. In other words, the type of

depolarized fixed point that we have found in the simpler model is

ruled out by this current. If we, however, replace this unphysical

Figure 6. Overview of the parameter regimes for bistability, polarized and depolarized stability for different models (1–8). The
change from the monostable depolarized regime to bistability (red to orange) defines the minimal physiological pump rate, i.e., the pump rate
required for the existence of a polarized fixed point. The line separating the bistable from the monostable polarized regime (orange to green) defines
the minimal recovery pump rate, i.e., the pump rate required to return from the depolarized fixed point to the polarized equilibrium. The model from
Sec. Model is marked by a star.
doi:10.1371/journal.pcbi.1003551.g006
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current with a chloride leak current as in our model (see eqs. (13),

(19), (23)) and furthermore neglect the glial buffering model use in

Ref [17], we find the same type of bistability as in our model.

The fixed point continuation of this model (for a complete list of

rate equations see [17,34]) in Fig. 7 shows that again FES

conditions and a physiological state coexist for a large range of

pump rates. This model has slightly different leak conductances

and equilibrium ion concentrations, and consequently the

characteristic pump rates also differ from ours. However, the

only important thing to note here is that the recovery pump rate

defined by the subcritical Hopf bifurcation of the upper fixed point

branch is large compared to the physiological value (marked by

the green square), so also in this rather different membrane model

recovery from FES due to pump enhancement is practically

impossible. The limit cycle continuation also bears a strong

similarity to the one in Fig. 2 with the only main difference being

that the limit cycles of the detailed model are stable in two narrow

parameter regimes (see solid circles in Fig. 7). We remark that the

physiologically irrelevant unstable fixed point branches in Fig. 7 do

not connect in a saddle–node bifurcation, but saturate for very

high pump rates. The occurrence of the same type of bistability in

a Hodgkin–Huxley–based ion model and this very detailed one,

and also the similarity of the SD trajectories in Fig. 3 to those

presented in [17], support the physiological relevance of the

minimal ion–based ansatz that we developed and follow in this

paper. Moreover, we assume that bistability is an universal feature

also for other more detailed membrane model, which are yet more

elaborate variants of the model described by Kager et al. [17]. We

will hence use the model from Sec. Model for further investiga-

tions.

Variation of membrane surface and extracellular volume

fraction. After the overview of different variants of ion content,

ion channels, pumps and current models we finally address the

role of the neuron geometry. Therefore we vary the membrane

surface and the extracellular volume fraction in the model from

Sec. Model. For the surface variation we introduce the relative

surface size parameter xA and replace Am with AmxA which

implies the replacement (see eq. (20))

c?cxA

wherever c occurs, i.e., in the ion rate eqs. (18) and (19) and the

sodium constraint eq. (29). The extracellular volume fraction,

typically denoted as f , is defined as

f : ~
ve

vtot

[ ve~f vtot and vi~(1{f )vtot,

where vtot~vizve is the total volume of the system. When f is

varied, the above expressions for vi=e must be inserted in both ion

rate eqs. (18) and (19), and in all ion constraint eq. (24)–(26) and

(29). The surface parameter xA is varied from 0:1 to 10, f is varied

from 2% to 50%. The standard values of these parameters are

xA~1 and f ~25% and parameters are understood to take these

values when they are not varied. We start from the bifurcation

diagram of Fig. 2 and perform two–parameter continuations of the

detected bifurcations to find out how the membrane surface and

the volume ratio change the bistable regime. The (r,xA)– and

(r,f )—continuation curves are shown in the left and right plot of

Fig. 8.

We see that the xA variation has hardly any effect on the

bifurcation values of r. This can be understood from the structure

of the model. The fixed point curve is defined by setting the rate

eqs. (2), (18), (19), (23) to zero and the constraint eqs. (15), (16),

(24)–(26) and (29). When xA is varied the only modification to

these conditions is in eq. (29) (sodium constraint). But this

modification is of order O(10{5) and does practically not affect

the shape of the fixed point curve, so the limit point bifurcations

Figure 7. Bifurcation diagram of the fixed points for the Kager et al. model [17]. The physiological equilibrium is at r~13 mA=cm2 , the
minimal physiological pump rate is r~9:8 mA=cm2, and the recovery rate is r~107 mA=cm2 . The limit cycle emanating from the HB undergoes four
saddle–node bifurcations of limit cycles (indicated by the stability changes, but not explicitly labled) before it disappears in a homoclinic bifurcation
(HOM). Like in Fig. 5 the fixed point line for the corresponding leak–only model is shaded. Its value at r~0 mA=cm2 indicates the Donnan
equilibrium.
doi:10.1371/journal.pcbi.1003551.g007
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LP1 and LP2 are almost not changed. Hopf bifurcation could be

shifted, but a rescaling of the (initial and dynamical) ion

concentrations by xA transforms the rate and constraint equations

such that xA only appears in the pump currents. Their derivatives

are then multiplied by xA, but for all HBs the pumps are saturated

and hence xA does not contribute to the Jacobian. The variation of

f , however, does change the width (with respect to r) and the

threshold values of the bistable regime. A small value of f
(corresponding to a small extracellular space) reduces the recovery

pump rate, and also increases the minimal physiological pump

rate. This means that both, depolarization and recovery, are

enhanced. However, the minimal physiological pump rate is much

less affected than the recovery pump rate, so basically a big cell

volume supports recovery from the depolarized state. It is known

that in spreading depression (SD), where metastable depolarized

states that resemble the energy–starved fixed point of our model

occur, the osmotic imbalance of ICS and ECS ion concentrations

leads to a water influx that makes the cells swell. Our analysis

shows that such a process helps the neuron to return to its

physiological equilibrium. Extracellular volume fractions of down

to 4% are reported in SD, but even for such extreme volume

fractions the required recovery pump rate is too high for pump

driven recovery of the neuron (see the lowest value for rHB3 in the

right plot of Fig. 8). We remark that the bifurcation curves in Fig. 8

do not saturate for f w50%, but, except from the LP1–curve that

remains very low, bend down, probably due to an approximate

symmetry of ICS and ECS ion concentration dynamics. In

summary also the analysis of different cell geometries confirms that

ion homeostasis cannot be provided by Na+/K+ pumps alone. For

example, in computational models of dynamically changing pump

rates due to oxygen consumption maximal rates of twice the

physiological values are considered [22].

Discussion

Computational neuroscience complements experimental and

clinical neuroscience. Simulations help to interpret data and guide

a principal understanding of the nervous systems in both health

and disease. The HH–formulation of excitability was ‘‘so

spectacularly successful that, paradoxically, it created an unreal-

istic expectation for its rapid application elsewhere’’ as Noble

remarked [9]. While his statement refers to modeling of cardiac

cells it certainly holds true also for neurological diseases and brain

injury [11,13]. In both fields, the incorporation of the Na+/K+

pump in the original excitability paradigm formulated by Hodgkin

and Huxley is of major importance. The fundamental structure of

such models has to our knowledge not been exploited in

neuroscience beyond merely modulating spiking in epileptiform

activity [23,24] or in models that have energy–starved states [17–

22,32] yet without investigating the fundamental bifurcation

structure.

As we stressed in the introduction, this extension of the original

HH model enforces a physical or rather thermodynamical

perspective, which was, of course, the starting point of Hodgkin

and Huxley, too. For instance, we also considered the Goldman–

Hodgkin–Katz (GHK) current equation which is derived from the

constant field assumption applied to the Nernst–Planck equation

of electrodiffusion. Electroneutrality is important to consider, as

can be seen by the indirect insertion of impermeable counter

anions only reflected by observing a thermodynamic Donnan

equilibrium. Furthermore, a thermodynamic description of

osmotic pressure (which would require a direct insertion of a

concentration An{ of a counter anion with valence n) and

corresponding changes in cell volume can be included.

There are further physical mechanisms that may alter the

dynamics in biophysical ion–based models. At the same time, we

have to avoid ‘‘an excruciating abundance of detail in some

aspects, whilst other important facets […] can only be guessed’’

[41], like using various new currents but guessing the correct value

of the valence n of an impermeable counter anion. For this reason,

we decided to use the original ion currents from the HH model.

The comparison of our results to a physilogically more realistic

and much more detailed membrane model in Fig. 7 support the

assumption that the basic structure will not be changed by just

adding or modifying gating. This question has also been addressed

experimentally and in simulations by showing that only the

simultaneous blockade of all known major cation inward currents

did prevent hypoxia–induced depolarization with FES [17,42]. In

the model [17], five different Naz currents were investigated. Of

course, to apply our model to a particular pathological condition,

like migraine which is a channelopathy [43,44] (disease caused by

modified gating), these details will become important. This can

Figure 8. Two–parameter continuations of the fixed point bifurcations of Fig. 2. In the left plot the dimensionless surface size parameter
xA is varied, in the right plot the extracellular volume fraction f is changed. The insets show the LP1 curves that mark the minimal physiological pump
rate. The pump rates for which the system is bistable range from the LP1 to the HB3. The HB3 pump rate is required to repolarize a neuron that is in
the depolarized equilibrium. The parameter xA (left plot plus inset) almost does not change the stability of the system, but f (right plot) reduces the
recovery pump rate significantly. The inset shows that the minimal physiological pump rate is much less affected. In each plot and inset the standard
parameter value is indicated by the light–blue vertical line.
doi:10.1371/journal.pcbi.1003551.g008
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easily be incorporated in future investigations. Moreover, note that

changes in cell volume, which are very important in brain injuries,

are in this study only treated by varying it as a parameter.

Our bifurcation analysis shows that a whole class of minimal

ion–based models is bistable for a large range of pump rates

(rLP1vrvrHB3). Bistable dynamics was suggested by Hodgkin to

explain spreading depression [11,12], and a corresponding model

has been investigated mathematically by Huxley but never been

published (cf. Ref. [45]). Dahlem and Müller suggested to extend

this ad hoc approach, i.e., a single so–called activator variable with

a bistable cubic rate function, by including an inhibitory

mechanism in form of an inhibitor species with a linear rate

function coupled to the activator [45]. This, of course, leads to the

well known FitzHugh–Nagumo paradigm of excitability type II

[46,47], that is, excitability caused by a Hopf bifurcation [48], but

should not be mistaken as a modification of conductance–based

excitability in form of HH–type model in the ‘first generation’ and

the interpretation as an equivalent electrical circuit. FitzHugh used

his equation in this way, he investigated a long plateau as seen in

cardiac action potentials. Dahlem and Müller suggested to use the

same mathematical structure of an activator–inhibitor type model

[45] to describe a fundamental new physiological mechanism of

ionic excitability that originates from bistable ion dynamics. Our

current results provide the missing link between this ad hoc

activator–inhibitor approach, which has been widely used in

migraine and stroke pathophysiology [45,49–58], and biophysical

plausible models. The major result from this link is the new

interpretation of the physiological origin of the proposed inhibitory

variable [45]. We wrongly interpreted it as being related to the

pump rate [49,51,53,57].

As our ion–based model shows bistable dynamics, we see it as

essentially capturing the activator dynamics of an excitable system

and briefly show in Figs. 2 and 3 that it can be transformed into

such a system by the introduction of a inhibitory process. Vice

versa, excitable systems can be reduced to bistable dynamics by

singular perturbation methods. Such reductions are referred to as

a threshold reduction. From this perspective our model can be

interpreted as the threshold reduction of an excitable system, and

we conclude that without contact to an ion bath, physically

realistic ion–based models miss an important inhibitory mecha-

nism. Our analysis shows that unlike what we thought before

[49,51,53,57], ion pumps alone are insufficient. If the pump rate is

temporarily decreased to less than the minimal physiological rate,

the neuron depolarizes, and normal pump activity does not suffice

to recover the physiological state. Depending on the particular

model the required recovery pump rates range from three times up

to more than 30 times the original value. These high values suggest

that also more detailed pump models that, for example, include

the coupling of the maximal pump rate to oxygen or glucose [22]

will not resolve this bistability.

It can, however, also be seen that a regulation term for the

extracellular ion concentrations that mimics glial buffering and

coupling to the vasculature will allow only monostability. An

additional diffusive coupling to a bath value in the extracellular

rate equations forces all such buffered extracellular species to

assume the respective bath concentrations. There are no two

points on the solution branch that share the same extracellular

potassium concentrations (see Fig. 4). Hence one fixed point is

selected, the other state becomes unstable. We consequently

suspect that coupling to some bath (glia/vasculature) plays a

crucial role in maintaining ion homeostasis and our results from

Figs. 3 and 4 confirm that an ion–based model including such

coupling will recover from superthreshold perturbations by a large

excursion in phase space that is characterized by long transient

free energy–starvation.
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