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Abstract 
Eukaryotic gene regulation is a combinatorial, dynamic, and quantitative process that plays a vital role in development and disease and 
can be modeled at a systems level in gene regulatory networks (GRNs). The wealth of multi-omics data measured on the same samples 
and even on the same cells has lifted the field of GRN inference to the next stage. Combinations of (single-cell) transcriptomics and 
chromatin accessibility allow the prediction of fine-grained regulatory programs that go beyond mere correlation of transcription factor 
and target gene expression, with enhancer GRNs (eGRNs) modeling molecular interactions between transcription factors, regulatory 
elements, and target genes. In this review, we highlight the key components for successful (e)GRN inference from (sc)RNA-seq and 
(sc)ATAC-seq data exemplified by state-of-the-art methods as well as open challenges and future developments. Moreover, we address 
preprocessing strategies, metacell generation and computational omics pairing, transcription factor binding site detection, and linear 
and three-dimensional approaches to identify chromatin interactions as well as dynamic and causal eGRN inference. We believe that 
the integration of transcriptomics together with epigenomics data at a single-cell level is the new standard for mechanistic network 
inference, and that it can be further advanced with integrating additional omics layers and spatiotemporal data, as well as with shifting 
the focus towards more quantitative and causal modeling strategies. 
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Introduction 
In eukaryotes, spatiotemporal gene regulation is orchestrated by 
specific combinations of transcription factors (TFs), which bind 
to regulatory elements (REs). A RE can be further subclassified 
as a promoter when it is in immediate vicinity to the TSS, as 
an enhancer when it is located distal to the TSS and has an 
activating effect, or as a silencer when it is located distal to the 
TSS and has a repressive effect [1]. TF binding is further controlled 
by nucleosomes occluding RE access, leading to open/accessible 
chromatin or closed/nonaccessible chromatin regions. Different 
chromatin accessibility remodeling mechanisms include multiple 
TFs together outcompeting nucleosomes; pioneer TFs binding 
to DNA within regions of closed chromatin; active recruitment 
of chromatin remodelers; and post-translational modifications 
and/or DNA methylation [2, 3]. TFs, in turn, recruit cofactors to 
REs, which include the mediator complex, chromatin remodel-
ers, and histone modifiers, and which activate or repress RNA 
polymerase II at core promoters of target genes (TGs). Unraveling 
the complex, dynamic, and quantitative interplay between TFs, 
cofactors, REs, and TGs at the cellular level is crucial for the 
molecular understanding of development, cellular differentiation, 

and disease [4]. High-throughput technologies such as (sc)RNA-
seq (single-cell RNA sequencing) and (sc)ATAC-seq (single-cell 
assay for transposase-accessible chromatin using sequencing) 
profile transcriptomics and chromatin accessibility, respectively, 
and enable to characterize transcriptional regulatory interactions 
[5]. However, to decode the complex mechanisms of gene regu-
lation, computational methods are essential to integrate these 
multi-omics data and predict regulatory relationships thereof. 

Biological networks that model regulatory relationships 
between TFs and TGs are called gene regulatory networks (GRNs). 
A GRN is formulated as a directed graph with a set of nodes 
representing TGs and TFs and a set of edges representing directed 
relationships TF → TG between them. More and more additional 
data modalities are included to capture a multimodal view 
on gene regulation, more accurately representing the intricate 
regulatory relationships across omics layers [6]. Especially TF 
binding to TF binding sites (TFBSs), chromatin accessibility of 
REs and promoters, and three-dimensional chromatin contacts 
provide information on the precise genomic location of TF 
binding. The physical interrelationship between RE, TF, and TG 
combined with expression levels of TFs and TGs allow to draft
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enhancer GRNs (eGRNs). These can be formulated as a directed 
graph with nodes representing TFs, genes, and REs, and two 
distinct sets of edges leading to a directed triple relationship 
TF → RE → TG. (e)GRNs offer a comprehensive view on 
gene regulation circuitry and are valuable as a mechanistic 
model. However, network inference, especially at the individual 
interaction level, is prone to false positives and negatives, and 
therefore, predicted regulatory interactions need to be further 
experimentally validated. In addition to GRNs and eGRNs, specific 
GRN structures are defined (Fig. 1). A regulon is the set of all 
TGs regulated by a specific TF [7], while a cistrome refers to 
the genome-wide set of REs that is targeted by a specific TF 
[8]. An eRegulon combines both concepts by including all REs 
targeted by a TF and the TGs targeted by those REs [9]. Networks 
can be classified as bulk, single-sample, or single-cell networks. 
Bulk network inference depends on many different samples 
with comparable phenotypes to obtain sufficient information for 
statistical learning and generates in this way average, population-
level networks. Single-sample network inference applies specific 
statistical measures on bulk networks to predict networks 
representative of a single sample or patient, which is highly 
desired in precision medicine [10]. Single-cell transcriptome data, 
on the other hand, with thousands of cells profiled, inherently 
contain the variability required to infer statistical dependencies 
between genes, hence allowing for patient-specific (e)GRNs and 
even cell type specific (e)GRNs [7]. Another critical aspect of 
(e)GRN inference is to go beyond statistical associations and 
identify direct causal relationships between TFs and TGs. Here, 
the term causality is used to describe which TF (causal factor) 
regulates which TG (target of regulation). This is done for example 
via Bayesian methods that infer statistical causality [11, 12], 
incorporation of biological constraints, and/or sophisticated 
experimental set-ups (e.g. TF binding information, chromatin 
accessibility, time-series data, single-cell pseudotime, genetic 
perturbation screens), hence leveraging event-related logic to 
reveal the regulatory direction [13–15]. 

In this review, we discuss state-of-the-art network inference 
methods that integrate transcriptomics and chromatin accessibil-
ity data for (e)GRN inference at the single-cell level. We first intro-
duce technologies, data, and preprocessing steps necessary for 
(e)GRN inference. Next, we discuss different correlation, regres-
sion, probabilistic, and deep learning models of network inference 
that combine (sc)RNA-seq and (sc)ATAC-seq data, and on that 
base, identify shared and unique components for successful net-
work inference. We further point out opportunities, pitfalls, and 
challenges and discuss some aspects that still lack consensus in 
the community concerning best practices. We end the review with 
an outlook of directions in which the (e)GRN inference field might 
evolve in the near future. 

High-throughput technologies for 
transcriptomics and chromatin accessibility 
Methodologies used to chart single-cell omics divide into plate-
based and microfluidics droplet-based systems. Plate-based sys-
tems such as SMART-seq separate cells into wells on plates and 
obtain full-length transcript coverage per cell [16]. Droplet-based 
strategies such as Chromium single-cell gene expression from 10x 
Genomics enclose single cells in uniquely barcoded GEMs (Gel 
Bead-In Emulsions) utilizing microfluidic devices and generate 
larger numbers of sequenced cells, but with less transcripts per 
cell and coverage only from the 5′ or 3′ end of the transcript [17]. 
However, newer plate-based and droplet-based methods show 

significantly increased performance and throughput by reducing 
hands-on time in the lab [5, 18], increasing throughput via mul-
tiplexing [19, 20], or split-pool combinatorial barcoding [21]. For 
chromatin accessibility, the core principle of (sc)ATAC-sequencing 
for processing cells is the same as in (sc)RNA-seq, but targets 
DNA and involves the hyperactive transposase Tn5 to fragment 
open chromatin regions of cell nuclei and simultaneously tag the 
DNA with adaptors for sequencing [22, 23]. Methods are plate-
based, such as sciATAC-seq [24, 25], or droplet-based, such as 
Chromium single-cell ATAC from 10x Genomics. Recent single-
cell multi-omics approaches can jointly profile both modalities by 
separating the transcriptome and accessible chromatin libraries 
from the same cell [5, 18]. Examples are plate-based methods such 
as Paired-seq [26] and  SHARE-seq [27] and droplet-based methods 
like SNARE-seq [28] and the 10x Genomics Multiome [5, 18]. 

Preprocessing of transcriptome and 
chromatin accessibility data 
Preprocessing of single omics data starts from demultiplexing 
of raw sequence files and assigns reads to features (transcripts, 
genomic regions) and cells using cellular barcodes. The cardinal 
preprocessing steps include trimming and filtering of minimally 
expressed reads, filtering of poor-quality cells, Polymerase Chain 
Reaction (PCR) duplicate removal [e.g. based on unique molecu-
lar identifiers (UMIs)], read alignment, peak calling for scATAC-
seq, and cell-by-feature count matrix with transcripts [29, 30] or  
genomic regions as features [28, 31, 32]. This count matrix is fur-
ther normalized to control for nonmeaningful sources of variabil-
ity (e.g. sequencing depth or batch effects). The next steps are fea-
ture selection and dimensionality reduction. For a more detailed 
view on processing steps, we refer to Supplementary text 1. 

Single-cell count matrices are high-dimensional, sparse struc-
tures (e.g. typically containing >20 000 TFs/TGs or >100 000 REs), 
while the number of cells for individual samples are often much 
lower than the number of features. This concept is known as the 
curse of dimensionality, and linear methods such as principal 
component analysis, matrix factorization, and latent semantic 
indexing, and nonlinear methods such as autoencoders, aim to 
consolidate information from the high-dimensional space into 
fewer dimensions while preserving as much biological informa-
tion as possible from the original data [33]. Although proper 
dimensionality reduction allows for effective noise removal and 
facilitates downstream analysis, it also alters the feature space 
[33]. Therefore, (e)GRN inference itself is mostly done in the 
original feature space, either directly on all features or on a 
set of selected features, based on highly variable genes (HVGs) 
or deviance for scRNA-seq [34] and differential or coaccessible 
regions (e.g. pyCisTopic [9]) for scATAC-seq. While some (e)GRN 
inference models are able to directly use filtered raw counts (e.g. 
SCENIC+ [9]), others need further normalization steps, e.g. log-
normalized counts per million [35] or data transformations [36]. 
To address sparsity, imputation methods can estimate and replace 
missing count values; however, this is more often done on scATAC-
seq than scRNA-seq data and might be detrimental [35]. 

GRN inference from single omics data 
Originally, bulk GRN inference relied exclusively on gene 
expression profiles for inferring statistical dependencies between 
genes, using e.g. mutual information (CLR [37], ARACNE [38]), 
random forest regression (GENIE3, [39]), ensemble methods 
(Inferelator [40]), and module network inference (LemonTree, [41],
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Figure 1. Combinatorial gene regulation between TFs, REs, and TGs can be modeled in eGRNs. (A) (1) In a simplified model, a TF binds to its TFBS within 
an active RE or promoter region, which is, or comes, in close contact with the TG promoter, and subsequently regulates TG transcriptional expression. (2) 
Chromatin accessibility and gene expression data provide complementary readouts of gene regulation. (3) These data can be used to reverse engineer 
eGRNs. (B) An example eGRN consisting of TF, RE, and TG nodes, connected with directed TF-RE and RE-TG edges. The set of all regulatory interactions 
derived from a tissue or cell type forms a context-specific eGRN. Important components of eGRNs are regulons (set of one TF and all its TGs), cistromes 
(set of genome-wide REs targeted by a specific TF), and eRegulons (one TF, its REs, and subsequently connected TGs). (C) Bulk GRN inference relies on 
many samples to be successful. Single-sample GRNs output one network per sample and are either inferred from bulk with single-sample network 
inference methods, or from single-cell data using all cells as observations. Cell type–specific network inference allows to resolve specific networks per 
cell type. Figure created with BioRender.com. 

MERLIN [ 42]). Pioneering single-cell network inference methods 
mostly integrated or adapted methods that were designed for 
bulk network inference [7, 43]. One popular example is SCENIC 
[7], which combines regression trees–based approaches like 
GENIE3 or GRNboost and TFBS overrepresentation to generate cell 
state–specific GRNs. Later methods explored different inference 
techniques including deep learning (DeepDRIM, [44]), integration 
of time series (SINCERITIES, [45]), partial information decom-
position (PIDC, [46]), ordinary differential equations (SCODE, 
[47]), or probabilistic matrix factorization (PMF-GRN, [48]). Some 

single-cell GRN inference methods were also optimized by 
incorporation of (prior-based) transcription factor activity (TFA), 
e.g. implemented as regulon pruning step [7], or TFA replacing TF 
expression as predictor [42, 49, 50]. One popular tool is decoupleR 
[49] implementing many different TFA inference algorithms, 
including VIPER [51], AUCell [7], or a consensus of several tools. 

Many attempts have been undertaken to validate and bench-
mark GRN inference methods both at bulk [39, 52, 53] and single-
cell level [43, 54–59]. While methods such as GENIE3, LemonTree, 
and SCENIC were shown to outperform other methods in public

BioRender.com
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benchmarks, GRN inference only achieved low performance, e.g. 
reflected in low area under the precision recall curve (AUPR) 
values across benchmarks. This is not only influenced by the 
incompleteness of ground truth data but also because of lim-
ited observations and incomplete modeling of regulatory mech-
anisms. Moreover, benchmarks revealed that methods relying 
purely on gene expression even struggle with outperforming ran-
dom predictors [54, 60]. 

Besides transcriptomics data, (e)GRN inference can also be per-
formed on chromatin accessibility data alone when harnessing 
TFBS within accessible REs. In the simplest case, a network is 
constructed by overlapping TFBS positions and open chromatin 
peaks and connecting them to genes within a specific genomic 
distance [61]. Detection of TFBS sites can be based on simple 
scanning or further be refined via overrepresentation analysis 
where occurrences are compared against a background model 
in which accessible regions are shuffled across the noncoding 
genome [7, 9, 62]. Alternatively, enhancer accessibility is corre-
lated with core promotor or gene accessibility, compared against 
correlation scores of randomly selected regions to filter out non-
significant interactions [63, 64]. Cicero, for example, computes the 
covariance of peaks within genomic blocks to produce a distance-
weighted coaccessibility score, consecutively used to find RE-
TG interactions [65]. However, (e)GRNs inferred from scATAC-seq 
alone differ from those inferred from scRNA-seq, as there is no 
perfect correlation between both modalities [66, 67]. 

(e)GRN inference from (sc)RNAseq and 
(sc)ATAC-seq data 
Recently, multi-omics methods have started to dominate the 
GRN inference field. The combination of gene expression and 
chromatin accessibility contributes both omics-specific and 
complementary information. Thus, well-modeled multimodal 
integration of transcriptomics and chromatin accessibility 
addresses shortcomings of single-omics GRN inference and have 
been shown to improve the reverse engineering of regulatory 
interactions [9, 58, 68]. A variety of (e)GRN network inference 
methods combine ATAC-seq and RNA-seq data at the bulk 
or single-cell level, and their number is constantly increasing 
(Table 1, Supplementary file 1, Figs 2–4). Current state-of-the-art 
methods take different input types such as paired gene expression 
and chromatin accessibility measured in the same cell (e.g. 
TRIPOD [69], scREG [70]), measured in independent cells of the 
same sample (e.g. GRANIE [71], ANANSE [72]) or in metacells 
that algorithmically couple gene expression and chromatin 
accessibility (e.g. SCENIC+, FigR  [73]). Some methods integrate 
additional data modalities, such as protein–protein interactions 
(PPIs) (SCORPION [74], HuMMuS [75]), histone modifications 
(ANANSE) or three-dimensional chromatin contacts (GRANIE). 
Methods that were originally developed for application on bulk 
data (e.g. ANANSE, GRANIE, or SPIDER [61]) were found to be 
applicable to single-cell data, especially upon transforming cell 
type–specific omics into pseudobulk data. Methods can also 
produce different types of output networks, including fully 
modeled eGRNs, GRNs, or only TG-RE or RE-TG interactions, and 
mostly follow mathematical principles of regression, correlation, 
probabilistic models and deep learning. In the following sections, 
we will review the important concepts and elements of (e)GRN 
inference based on examples from state-of-the-art (e)GRN 
inference methods. 

Pseudobulk and metacells to tackle sparsity in 
single-cell data 
To deal with sparsity for single-cell ATAC data (only 1%–10% of 
peaks are called in each cell [76]), imputation or transformation 
such as latent semantic indexing (LSI) [77], latent Dirichlet allo-
cation (LDA) [78], or spectral embedding is applied. While some 
degree of sparsity is expected caused by biological effects, it 
is also introduced by drop-out values. Furthermore, sparsity of 
both RNA and ATAC-seq data can be addressed with pseudobulk-
ing. In pseudobulking, either all or a subset of reads (e.g. from 
a cell type) are mapped together to a reference. This reduces 
technical noise, enables differential gene expression or differen-
tial chromatin accessibility analysis, and allows to confidently 
define enhancers and even to detect TF footprints upon suffi-
cient sequencing depth. However, pseudobulk loses the single-cell 
resolution, which makes it difficult to detect rare cell types or to 
explore the dynamic behavior across cells. A middle way between 
single-cell resolution and pseudobulking is done by grouping 
only similar cells into so-called metacells. We define a metacell 
here as an aggregated group of cells representing a distinct cell 
state, whereby within metacell variation is assumed to origi-
nate only from technical rather than biological sources [79, 80]. 
Metacells are usually inferred using a measure of similarity that 
is computed within the lower-dimensional embedded space of 
cells. For example, SEACells can infer metacells from scATAC-
and/or scRNA-seq data. It constructs first a k-nearest neighbor 
graph based on an embedding, generates an affinity matrix with 
adaptive Gaussian kernel transformation to capture nonlinear 
cell relationships, and employs an archetypal analysis on the 
kernel matrix to identify clusters representing distinct cell states, 
subsequently labeled as metacells [80]. Another example of a 
metacells generating tool is Cicero, which samples highly similar 
cells based on a k-nearest-neighbor graph for scATAC-seq [65, 77]. 
However, it is important to note that metacells trade observations 
in exchange for an increase in counts, which might introduce a 
nonbiological bias. For example, for a metacell that includes an 
exceptionally low number of cells, an averaging effect might only 
increase technical variation in gene expression. 

Computational pairing of scRNA-seq and 
scATAC-seq using sequencing data 
Given the idea that cells with comparable properties can be 
grouped and might reflect similar cell states, it is also possible to 
computationally pair similar cells from unpaired scATAC-seq and 
scRNA-seq modalities. Ideally, both modalities should follow a 
similar distribution and are measured by the same process, while 
in reality, scRNA-seq follows a negative binomial distribution 
and scATAC a quasi-binary distribution with most regions being 
supported by one or two reads only [81]. However, tools rely 
on explicit assumptions on the underlying biology, and predict 
the ‘activity’ of each gene as a proxy for gene expression in 
each cell of the scATAC-seq data based on the accessibility of 
the gene’s surrounding chromatin, and subsequently map cells 
from the two modalities into the same feature space based on 
gene expression and chromatin accessibility. For example, SIMBA 
jointly embeds single cells and their features into a common 
latent space allowing to link cells from different modalities [82]. 
DIRECT-NET first creates metacells by aggregating similar cells 
learned from a k-nearest neighbor graph for scATAC-seq and 
scRNA-seq, respectively, and consequently generates a single

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae382#supplementary-data
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Figure 2. Schematic overview of (e)GRN inference from both transcriptomics and chromatin accessibility data. As input, (e)GRN inference methods take 
gene count and chromatin accessibility matrices. The core steps of (e)GRN inference include the detection of TF-RE, RE-TG, and TF-TG interactions, done 
in a stepwise or integrated manner. Preprocessing: Samples can be integrated together, e.g. to enable GRN inference at atlas level. Modalities can be 
integrated, e.g. by computationally coupling cells from a scRNA and scATAC-seq dataset. Pseudobulk increases detection strength of scATAC-seq peaks. 
RE-TG linkage: Potential TF-RE connections can be derived based on genomic distance or chromatin conformation data. TF-RE interactions: Requires the 
detection of TFBS within REs. Footprinting approaches aim to find evidence of TF binding events within REs. TF expression and chromatin accessibility 
can be further statistically investigated, mostly via correlation or regression. RE-TG and TF-TG interactions: Regression, correlation, probabilistic models 
and deep learning approaches are used to predict TG expression from TFs and/or REs. In case of stepwise GRN inference, TF-RE and RE-TG layers are 
merged via shared nodes. Output: While some methods model TF-RE-TG networks (eGRNs), others generate TF-TG interactions. Downstream analysis: 
“In silico perturbation” allows to investigate changes in TG expression propagated through the inferred GRN. Some methods also model (e)GRNs over 
experimental timepoints or pseudotime, and thus produce dynamic (e)GRNs. Figure created with BioRender.com. 

BioRender.com
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Figure 3. Distribution of (e)GRN inference method characteristics. All properties are based on our selection of inference methods listed in Table 1, which  
were developed between 2017 and 2023. Publication status threshold was 2023. 

Figure 4. Regression and correlation approaches together make up the majority of strategies across all three inference steps. Approaches and strategies 
that were only used in one single method are summarized in the category “Other,” while methods that do not model the corresponding step are put in 
the category “None.” ODE = or dinary differential equation; PM = probabilistic model. 

unified low-dimensional representation to couple similar cells 
between different modalities [ 83]. SCENIC+ samples a predefined 
number of cells from each data modality within the same cell 
type annotation label and averages the raw gene expression 
and imputed chromatin accessibility data across these cells to 
produce a multiome metacell [9]. FigR, on the other hand, applies 
the scOptMatch algorithm where cells from both assays are first 
placed in a shared coembedding using canonical correlation 
analysis and next sampled within a k-nearest-neighbors subgraph 
while accounting for cell number and cell type imbalances 
[73]. Pando uses a minimum-cost maximum-flow bi-partite 
matching in a canonical correlation space and summarizes 
matches into metacells [84]. GLUE won NeurIPS 2021 multimodal 
single-cell data integration challenge and models cell states as 
low-dimensional embeddings learned through modality-specific 
variational autoencoders [85]. It incorporates prior knowledge in 
the form of a guidance graph to explicitly model cross-modality 
regulatory interactions, e.g. between REs and TGs from scATAC 
and scRNA, respectively [85]. With increasingly available paired 
multi-omics data, mosaic integration, where only a subset of 
cells and/or features can serve as anchors, becomes feasible 
[86, 87]. Computationally matched cells can be used for (e)GRN 

inference and be processed similarly as if the features were 
directly measured in the same cells. 

Characterization of REs 
To infer eGRNs from a specific dataset at hand, REs need to 
be first identified by either literature-based or data-driven 
approaches. Literature-based approaches assign REs based on 
external sources of known enhancers, including ENCODE, VISTA, 
and Enhancer Atlas annotations, which are based, for example, on 
a consensus of ChIP-seq, ATAC-seq, MNase-seq, CAGE, ChIA-PET, 
and chromatin marks such as H3K27ac [88–91]. Also, additional 
biological prior information such as evolutionary conservation 
of REs can be considered [84]. On the other hand, data-driven 
approaches infer REs directly from ATAC-seq data. Reads are first 
pseudobulked either on all cells or preferentially per annotated 
cell type, and subsequent peak calling returns a set of regions 
serving as set of potential REs [9, 35, 76]. Overlapping peaks across 
cell types can also be merged and filtered based on peak scores 
to obtain a consensus [9]. Literature-based approaches offer a 
more reliable RE definition since they are independent from 
sequencing depth and noise. Data-driven approaches, however, 
add context specificity and sensitivity, even at the cell type level.
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Literature-based as well as data-driven RE definitions can also be 
combined to define enhancers [72, 84]. 

Inference of TF-RE interactions 
Linking a TF to one or more potential REs is based on binding 
evidence of the given TF to the DNA sequence of the RE. A direct 
way of measuring genome-wide TF binding is given by TF-specific 
binding assays based on immunoprecipitation such as in vivo 
ChIP-seq, CUT&RUN [92], CUT&TAG [93, 94], and their single-cell 
counterparts [95] or  in vitro methods like protein binding microar-
rays and HT-SELEX [96]. While these assays measure context-
specific TF binding, they can be expensive, require the availability 
of a TF-specific antibody, and detect mainly high-affinity binding. 
Hence, this experimental TF binding information is not available 
for all TFs and certainly not in all conditions [88]. Computa-
tional TFBS discovery approaches rely on DNA sequence infor-
mation to search for overrepresented DNA patterns in genomic 
regions of interest. These patterns are often learned on TF binding 
experimental data, and prioritizing genomic regions with reduced 
crowdedness for general TF binding was shown to significantly 
improve this process [97]. Examples for de novo TFBS discovery 
and scanning algorithms include tools in the MEME Suite (e.g. 
FIMO [98]), RSAT [99], HOMER [100] (e.g. in PECA), the R package 
motifmatchr [101] (e.g. in SPIDER, IReNA, Cicero), and gimmemo-
tifs [102] (e.g. in CellOracle). While computational approaches are 
cheap and already cover a wide range of TFs, they lack context 
specificity. Moreover, not all TFs have known TFBS, and some 
binding might be ambiguous for TF family members [102]. Besides, 
TF-TF or TF-cofactor interactions, DNA modifications and shape, 
and the orientation of a TFBS all influence TF binding [103, 104]. 
Restricting the search space to accessible REs and/or REs with 
overrepresented TFBS partially overcomes their lack of cell type 
or context specificity, as each cell type will now rely on their 
unique set of accessible and/or overrepresented TFBS (e.g. done 
by SCENIC+ and/or GLUE [9, 85, 105]). 

It is worth noting that the way in which TFBS are represented 
can pose challenges due to varying model capacity as well as 
ease of use. Most TFBS detection methods rely on simple Position 
Weight Matrix (PWM) representing probabilities for nucleotide 
occurrences at specific positions, assuming statistical indepen-
dence between distinct positions in the TFBS. Other represen-
tations exist that might capture more or complementary motif 
characteristics, including high-order PWMs, probabilistic graph-
ical modes, support-vector machine models and deep neural 
networks [REF], although they are rarely seen in (e)GRN inference. 

Open chromatin is no guarantee for TF binding [106]. Pioneer 
TFs also initiate binding in still closed chromatin regions and 
therefore cannot be detected only based on chromatin accessibil-
ity [107]. TFBS footprinting methods on ATAC-seq or pseudobulk 
scATAC-seq data offer a solution to obtain quantifiable evidence 
for those binding events. Briefly, a TF footprint is a pattern char-
acterized by a lower read count at the TFBS compared to its 
surrounding bases as the transposase enzyme competes with the 
TF in the ATAC-seq assay. This information can be extracted by 
methods such as TOBIAS [108], PIQ [109], Wellington [110], or Hint-
ATAC [111] and is also exploited in (e)GRN inference methods such 
as ArchR, IReNA, and Dictys [77, 112, 113]. Footprinting methods, 
however, need a deep sequencing coverage and therefore can 
only be applied at the bulk or pseudobulk level. Alternatively, 
TFBS detection can be restricted to regions with active chromatin 
marks such as H3K27ac and H3K4me1 [72]. Recently, deep learn-
ing approaches such as autoencoders and convolutional neural 
networks are on the rise that combine different assays, priors, 

and sequence information to improve condition-specific TFBS 
prediction [114] and  de novo motif discovery [115]. For example, 
maxATAC makes use of cell line– and TF-specific ChIP-seq data 
from literature as ground truth to learn TFBS from ATAC-seq and 
DNA sequence [114]. 

Having known TFBS detected within open chromatin already 
suffices to characterize TF-RE interactions, as shown in the SPI-
DER seed network [61]. However, TF-RE interaction inference can 
be further improved by regressing or correlating the gene expres-
sion or TFA of the TF with RE chromatin accessibility followed 
by pruning based on the false discovery rate (FDR). GRANIE real-
izes this by comparing correlations of a TF within the (e)GRN 
to the correlation against a set of random TF-RE interactions 
not present in the (e)GRN [71]. FigR performs a peak set enrich-
ment test for TF-RE matches based on a GC-content-matched 
permutated background peak set and correlates RE accessibility 
scores with gene expression levels of tested TFs [73]. scMEGA 
[116] correlates the binding activity for each TF estimated with 
chromVAR [105] on accessible chromatin regions with the TFs 
gene expression. However, care must be taken to not remove 
important true-positive interactions with too stringent filtering 
or if biological assumptions are not met, e.g. for pioneer factors, 
where chromatin remains accessible once it is opened, or in case 
of a temporal delay between the opening of chromatin and TF 
expression [117]. 

Linear and three-dimensional approaches to 
characterize RE-TG interactions 
Besides their connection to TFs, REs also need to be linked to 
potential TGs. Chromatin three-dimensional architecture, e.g. 
obtained from ChIA-PET [118], Hi-C [119], or scSPRITE [120], 
gives experimental evidence of physical chromatin interactions 
between REs and TGs. However, these data are often not available 
for the same sample on which (sc)RNA- and (sc)ATAC-seq were 
performed and suffers even greater sparsity than scATAC-seq. 
Each Hi-C interaction requires two reads bound to different 
regions, resulting in a quadratic increase in sequencing depth to 
probe all pairings. While features such as Topologically Associated 
Domains (TADs) can be confidently detected, they possess a 
median size of ∼1 Mb [121, 122]. This resolution is, however, 
insufficient to comprehensively call interactions between 
enhancers and promoters, since the majority of interactions occur 
within a range of 0.5 Mb around the TSS [63, 123, 124]. Methods 
like capture-C [125] or promoter capture-Hi-C [119] can increase 
resolution by only investigating interactions of specific promoter 
or enhancer bait sequences. Another problem is that chromatin 
contact, chromatin accessibility, and transcriptomics data cannot 
yet be measured together in the same cell. Methods that rely on 
Hi-C data such as scREMOTE [126] bypass this problem by using 
databases of measured Hi-C interactions as baseline, such as the 
4D Nucleome Data Portal [127]. However, most methods instead 
constrain the potential number of RE-TG interactions by setting 
a distance cut-off on the linear genome starting from the TSS of 
a TG, either with a hard threshold (mostly ±100–250 kb from the 
TSS) or weighted by distance from the TSS (based on exponential-
or partial decay, power-law function, or logarithmic functions 
(Fig. 5)) [70, 85]. The chosen distance cut-off has a strong impact 
on the resulting (e)GRN: if the threshold is set too small, relevant 
regulatory interactions might be missed; if the threshold becomes 
too large, regulatory interactions combinatorically explode with 
false-positive interactions. Generally, the ATAC-seq signal is 
enriched around the TSS, especially in the promoter region [128], 
and shows decreasing chromatin accessibility as well as a lower
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Figure 5. Different default distance thresholds for candidate RE-TG interactions. Methods that apply a hard threshold on the genomic distance around 
a TSS consider every interaction of all RE-TG pairs located within the defined window. The up- and downstream distance is identical for most but not 
all GRN inference tools. Other methods impose a distance-dependent weight function by altering the strength of RE-TG interactions dependent on their 
distance. These weights can follow distinct functions, including exponential decay, partial decay, logarithm, or a power law. Partial decay applies a weight  
function only for a defined genomic range, e.g. by only weighing interactions the region further away than ±5 kb from the TSS. Some methods are also 
capable of integrating chromatin contact information or entirely depend on them (scREMOTE). Figure created with BioRender.com. 

number of chromatin contacts further away from the promoter 
[ 129, 130]. However, despite their overall lower frequency, long-
range RE-TG interactions can be crucial for development, as the 
example of an 850 kb distant RE crucial for limb development 
in mice demonstrates [131, 132]. Distance-dependent weight 
functions cannot account for this and will most likely miss such 
interactions. 

Inference of RE-TG interactions 
While REs and their candidate TGs inferred based on a distance 
threshold or chromatin contacts already constrain the number of 
possible interactions, they need further refinement. Most meth-
ods solve this by applying correlation, regression, probabilistic 
models, or deep learning. These approaches differ in the way they 
model chromatin accessibility, either as a binary on/off signal or 
as a quantitative variable based on read counts. Correlation-based 
approaches mostly exploit the correlation between RE accessi-
bility and TG expression, combined with multiple hypothesis 
testing. ArchR applies Pearson correlation on paired cells con-
taining measures of gene expression and chromatin accessibility, 
respectively, and filters interactions based on correlation coef-
ficient thresholds [77]. Methods such as GRANIE, Corces [63], 
FigR, scAI, and IReNA calculate correlation coefficients between 
candidate RE-TG pairs. To filter out low-confidence interactions, 
they calculate a background distribution based on the correla-
tion of randomly sampled RE-TG pairs to estimate the FDR for 
filtering out low-confidence interactions [63, 71, 73, 112, 133]. 
Similarly, perturbation approaches set either gene expression or 
chromatin accessibility to zero and calculate the correlation with 
the other modality, while only keeping the RE-TG interactions 
with sufficient difference between perturbed and nonperturbed 
correlation coefficients, for example, scAI [133]. PECA performs a 
tissue crossing correlation by dividing bulk samples into groups 
of high and low openness and calculates a fold change of TG 
expression as well as promoter accessibility for the high openness 
group compared against a random group of the same size [134]. 

Some methods also perform additional pruning steps, such as 
removing interactions with negative correlation (GRANIE), priori-
tization TGs included in a high number of peak–gene interactions 
(FigR), or intersecting predictions with interactions from external 
sources such as ENCODE and ChIA-PET (PECA) [71, 73, 134]. 

Regression approaches employ predictive models to estimate 
a response variable, such as TG expression, TG promoter chro-
matin accessibility, or RE chromatin based on a regressor variable, 
such as TF expression or TF activity. If regression uses multiple 
regressors, the pairwise interaction strength between RE and TG 
is calculated either with importance scores (e.g. SCENIC+) or pre-
diction coefficients (e.g. for multiple linear regression, CellOracle) 
that quantify how much a single predictor contributes to estimate 
a response variable. The interaction strength can then be used 
to rank and filter interactions. Methods such as DIRECT-NET and 
SCENIC+ apply gradient boosting to predict gene expression or 
promoter accessibility from enhancer accessibility [9, 83]. Sna-
pATAC goes the other way around and uses TG expression to 
predict the binary state of potential REs with logistic regression 
[135, 136]. SCENT assumes that binarized RE accessibility follows 
a Poisson distribution and uses a Poisson-generalized linear model 
to predict gene expression, while at the same time modeling 
confounding factors such as mitochondrial counts, UMI counts, 
and batch effects [130]. The significance of coefficients for each RE 
is then assessed with a nonparametric bootstrapping procedure 
that allows for an effective type I error control and detection of 
causal variants in enhancers [130]. Overall, inference of RE-TG 
interactions is still mostly done using linear regression, and little 
effort is made to account for sparsity and nonlinearity. 

Direct inference of TF-TG interactions 
Another class of methods makes use of chromatin accessibility 
and transcriptomics data to predict TF-TG interactions without 
explicitly modeling REs in the resulting GRN. Prior based methods 
(e.g. MERLIN-P(-TFA), PANDA [137] or inTRINSiC [138]) construct 
matrices containing putative interactions based on chromatin

BioRender.com
BioRender.com


10 | Loers and Vermeirssen

accessibility data and subsequently integrate them with tran-
scriptomics data to infer a GRN. Recent benchmarking approaches 
demonstrated increased performance when integrating prior 
knowledge as opposed to expression data alone, especially 
for probabilistic models such as MERLIN-P [58]. Specifically 
developed for single-cell applications, CellOracle creates a base 
GRN of candidate regulatory interactions from scATAC-seq data 
by first linking TFs via TFBS detection within accessible regions 
and subsequently applying Cicero to couple accessible REs to TGs 
[35]. Interactions of this initial network are further pruned by 
predicting TG expression from TF expression with a regularized 
linear machine learning method. Also, deep learning approaches 
such as Convolutional Neural Network for Coexpression (CNNC) 
[36] transform gene expression data of gene pairs into image-like 
objects and infer relationships as well as causality between genes, 
while considering prior data such as chromatin accessibility. 
Finally, MTLRank utilizes a Multi-Task Learning Rank approach 
with scATAC-seq-derived TFA and scRNA-seq-derived gene 
expression based to predict TG velocity instead of gene expression 
[139]. The generated models are subsequently interrogated to 
rank TF-TG interactions with deep SHapley Additive exPlanations 
(SHAP) that measure the importance of TFs for regulation. 
GRN inference methods directly predicting TF-TG interactions 
incorporate RE information in the background. Since they process 
both data modalities independently, they are good choices when 
paired modalities are not available or if users want to incorporate 
prior information of any kind. 

TF-RE-TG inference 
To infer TF-RE-TG interactions, methods predominantly imple-
ment one out of two different strategies. The first strategy infers 
interactions in a transitive manner by connecting TF-RE and 
RE-TG interactions via the shared RE node. Examples of meth-
ods using this strategy are Direct-Net, GRANIE, and SCENIC+. 
Moreover, SCENIC+ additionally uses random forest regression 
or gradient boosting to calculate TF-TG importance scores and 
refines TF-RE-TG modules with a Gene Set Enrichment Analysis 
(GSEA) to filter out eRegulons with a small amount of TGs as well 
as RE-TG interactions with negative correlation [9]. 

The second strategy infers TF-RE-TG interactions in an inte-
grated manner where all three components are simultaneously 
considered in the model. Considering three-way interactions 
enables the investigation of different modes of regulation and 
allows, for example, to distinguish cases where a TF acts as 
pioneer factor, opposed to a TF that binds to already open 
chromatin [69]. TRIPOD uses a unique non-parametric model-
free Spearman’s test for detecting conditional associations and 
three-way interactions between TF, RE, and TG [69]. For this, they 
use two tests that investigate relationships between RE and TG 
while keeping TF expression constant, as well as relationships 
between TF and TG while keeping RE accessibility constant 
[69]. Additionally, TRIPOD investigates whether the magnitude of 
change in the third variable depends on the association between 
the other pairwise variables [69]. PECA [134] aims to jointly 
characterize relationships between four elements, namely, TFs, 
TGs, REs and additionally expression of chromatin remodelers 
(CRs) by utilizing a probabilistic model conditioned on TG, RE 
and CR. 

Pando uses TF-RE pairs as independent variables to predict TG 
expression with a generalized linear model. Here, transcriptomics 
and chromatin accessibility data are joint dependent variables, 
and fitted coefficients are further pruned using ANOVA with 
multiple hypothesis correction [84]. HuMMuS, on the other hand, 

first connects several omics layers such as TF-TF interactions, RE-
TG interactions, TF-TG interactions and chromatin contact data, 
and subsequently applies a Random Walk with Restart to infer 
several outputs including TF-TG, TF-RE and RE-TG interactions 
as well as highly connected communities within the (e)GRN [75]. 
Deep learning approaches such as LINGER first learn weights of 
a neural network for different tissues from bulk data, and in 
a second run refine the learned weights with single-cell data 
[140]. Both TFs and REs are represented in the input layer and 
interconnect in the second network layer to predict expression of 
one gene in the output layer. 

Dynamic (e)GRN inference 
Many biological processes have developmental or time course 
aspects, including timing and initiation of developmental cues, 
gene expression dynamics, cellular fate decisions, cell-cycle 
dynamics, and homeostatic regulation to ensure a proper balance 
between cell proliferation and cell death, all tightly controlled 
by gene regulation. However, omics are profiled at a given 
instance in time, generating a “snapshot” of the underlying 
system. Even when measuring different time points of the same 
system, each measurement remains a discrete snapshot, and 
real-time resolutions are hard to achieve. While the majority of 
(e)GRN inference algorithms also model static networks based on 
snapshot data, alternative notions of time like “pseudotime” can 
be extracted from snapshot data, which position cells according 
to their current state of development. Early methods such as 
VeloCyto [141] and scVelo [142] use unspliced RNA as predictor 
for future spliced RNA to determine rate and direction of changes 
in gene expression over time, leading to pseudotime ordering. 
However, those early methods were shown to fail in some 
instances, and careful assessment of results is required [143]. 
CellRank tries to predict the future state of a cell by generating 
cell–cell transition matrices, which, in addition to pseudotime 
inference, allow the detection of initial and terminal cell states 
along trajectories [144]. 

The pseudotime ordering of cells is then considered by spe-
cific algorithms to improve (e)GRN inference or model temporal 
regulatory events. IReNA uses averaged gene expression of cells 
with similar pseudotime and demonstrates more accurate GRN 
inference in comparison to raw gene expression when compared 
against ChIP-seq and perturbation-based ground truth data. Also, 
deep learning approaches such as MTLRank demonstrated perfor-
mance improvements predicting velocity instead of gene expres-
sion [139]. Dictys partitions cells along a trajectory into bins, 
generates bin-specific eGRNs, and combines those to one dynamic 
eGRN with Gaussian kernel smoothing [113]. scMTNI incorporates 
pseudotime information in form of a lineage tree and infuses this 
prior knowledge about cell state relationships into their model to 
subsequently infer lineage-specific GRNs [145]. Finally, scKinetics 
simultaneously aims to solve the GRN inference task and velocity 
prediction in an iterative manner using an expectation maximiza-
tion algorithm [146]. 

Another approach towards more dynamic networks is to first 
build a predictive model from snapshot data and afterward 
perturb TF expression within that model. The resulting expression 
changes are then transmitted through the (e)GRN to predict 
future time points. Existing models usually implement regression 
frameworks, and examples include CellOracle, SCENIC+, Intrin-
sic, RENIN or scREMOTE [9, 35, 126, 138, 147]. After generating cells 
with perturbed gene expression vectors, they can be compared 
to original expression to investigate direction and magnitude of 
potential differentiation trajectories. However, predictive methods
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are limited due to simplified assumptions (e.g. linearity) and are 
applied in a more exploratory context. Lastly, a few tools also 
try to incorporate multiple discrete time points into the (e)GRN 
inference or analysis process. For example, TimeReg first infers 
networks with PECA2 at each time point, and driver regulators 
for core regulatory modules are studied across time points [148]. 
Pando first integrated developmental time points into a unified 
embedding and associates specific (e)GRN modules with stages 
of organoid development and segregation events during brain 
regionalization, highlighting how valuable time series data can 
be to understand complex biological systems [84]. However, time-
point integration so far remains limited to few tools, and there is 
still a great potential of improvement, in generating time series 
data, in modeling dynamic time in current data and integrating it 
into (e)GRNs. 

Conclusions 
The integration of gene expression and chromatin accessibility for 
(e)GRN inference has improved network quality and allowed to 
investigate more causal and mechanistic interactions. However, 
the high number of publications on archives indicates that the 
development of eGRN inference methods is still highly active. 
The process of network inference contains several critical sub-
problems to solve, including the coupling of data modalities; the 
definition of a potential enhancer–gene interaction space; and 
the establishment of trustworthy TF-TG, RE-TG, and TF-RE-TG 
relationships. Methodologically, most methods pursue either a 
predictive strategy, such as correlation, regression, or probabilistic 
models to predict either GRNs or eGRNs, while upcoming methods 
also explore deep learning or try to consider temporal dynamics 
in the models [9, 69, 71, 139]. Interestingly, most methods already 
rely on paired modalities, while most (high quality) datasets 
still come from separate cells, which requires a good integration 
strategy. 

For the identification of TF binding, TFBS detection and over-
representation are still a common choice, but comes with the 
drawbacks that not all TFs have well-characterized nonambigu-
ous TFBS, and the capacity of a PWM model is limited in fully 
characterizing binding sites (Supplementary File 1). However, the 
number of characterized TFBS significantly grew over the past 
years, as shown by the impressive collection of 1553 human TFs in 
SCENIC+ [9]. Deep learning approaches that combine chromatin 
accessibility with sequence encodings could increase condition-
specific RE modeling, but still suffer from low TF coverage regard-
ing training data [114]. We expect deep learning models to rise 
as predominant means to model REs, but this development has 
still to be accompanied by an increase in trustworthy, condition-
specific training data (e.g. ChIP-seq). 

Another controversial question raised when constructing 
(e)GRNs is the selection of potential regulatory regions for a TG. 
Most current methods apply a wide range of different thresholds 
and weights on the linear chromosome as workaround, but there 
is no consensus on which distance is best suited to balance the 
combinatorial explosion of RE-TG pairs against an increasing 
number of false positives. Moreover, mechanisms of enhancer-
mediated regulation are not yet fully understood [2] and novel 
mechanistic discoveries are still frequently published [149]. 
Different thresholds also render (e)GRN inference methods less 
comparable across studies. We believe that current efforts in 
integrating (predicted) chromatin contacts might deliver the edge 
to resolve the choice of candidate regulatory interactions in the 
future [119, 150]. 

Sparsity of single-cell data poses a big problem, especially for 
genes with low gene expression or chromatin accessibility. When 
modeling RE-TG interactions explicitly, binary, or quantitative 
chromatin accessibility scores are prone to be missed due to 
data sparsity, thus limiting the number of interactions that can 
be recovered. Metacells and scaling up the number of observed 
cells, e.g. by creating a cell atlas that integrates different samples, 
studies, or omics assays [151, 152], are ways of overcoming this. 
While atlas-level data will prove an invaluable source to study 
development and disease, eGRN inference methods will also need 
to deal with atlas-specific features, e.g. the potential loss of 
biological variability when normalizing for technical biases as a 
result from the integration process. Also, the integration process 
of unpaired scRNA-seq and scATAC-seq data is challenging but 
crucial for GRN inference. Since many methods rely on correla-
tions or regression between features of both omics, multimodal 
data integration needs to preserve biological dependencies across 
both feature vectors and account for batch effects. This process is 
additionally complicated by the potential nonlinear relationships, 
kinetic differences, and temporal shifts [153]. Moreover, overcor-
rection can occur especially under strong batch effects or when 
cell type proportions are mismatched between omics and lead to 
pairing cells that do not share the same cell type or state [154]. 
Combining algorithmic development, the fast-growing amount of 
data, and constant improvements in single-cell sequencing tech-
nologies will help tackle this problem and increase the robustness 
of (e)GRN inference. 

Most methods still do not consider dynamic changes over pseu-
dotime or real timepoints. Dynamic changes are already predicted 
by several tools; however, they usually infer pseudotime based 
on the same RNA-seq data as the network and thus introduce 
some bias and “double dipping” effects where data are used 
twice for two prediction tasks [155]. This could be overcome with 
multimodal data, where tasks are separated between orthogonal 
omics. A second approach to studying the dynamic behavior of 
rewiring in (static) networks is done by introducing perturbations. 
Perturbed cell states can also indicate a developmental direc-
tion of cells upon changes in TF expression, allowing to gen-
erate hypotheses for trajectories, drug response, or therapeutic 
escape. 

Given an inferred (e)GRN, experimental validation remains a 
critical task. Comparison against literature curated and database 
regulatory interactions such as OmniPath or orthogonal data such 
as ChIP-seq or perturbation screens can be used to approximate 
ground truth but might have limited credibility since they often 
lack context specificity or are themselves derived from high-
throughput technologies [88, 156, 157]. Additional measures such 
as TF protein abundance and post-translational modification, TF 
binding and cooperativity, regulatory activity of REs, and chro-
matin contacts and TF perturbation can give complementary 
views on mechanisms involved in gene regulation [153]. Overall, 
it is best practice to assess as many metrics as possible to gain 
a more accurate picture of how well a method performs. When 
interpreting different metrics, it is important to consider their 
specific meaning and scope, their limitations, and their origin 
(e.g. neutral benchmark versus benchmarking of novel methods 
by their authors) to not draw false conclusions and to avoid 
overoptimism [158]. 

Future perspectives 
For the future of (e)GRN inference, many directions have been 
proposed, focusing on multimodal integration, scaling, sparsity,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae382#supplementary-data
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Figure 6. Future directions of (e)GRN inference. “Modeling causality,” for example, establishing event chains from SNPs over gene regulation toward 
downstream biological processes such as misregulation of a disease-relevant metabolite (M1), in combination with publicly available GWAS data, 
not only add confidence to edges in an (e)GRN but also enable mechanistic interpretability. “Integration of multiple modalities” add complementary 
perspectives to (e)GRN inference. “Quantitative modeling” can integrate multiple regulatory influences into one integrated or multiple complementary 
models. Figure created with BioRender.com. 

the 3D genome, TFBS predictions, causality and benchmarking 
[ 153, 159, 160]. We focus here on three main directions that we 
believe have great potential to further enhance our understanding 
of gene regulation, namely, quantitative modeling, causality, and 
multimodal integration (Fig. 6). 

First, more quantitative modeling strategies can help to fine-
tune (e)GRN inference. This could include modeling coregulation 
of multiple TGs, e.g. by incorporating knowledge of global TF 
binding patterns across the genome, or by directly modeling 
biophysical processes [161]. For example, right now repression and 
activation are often predicted with the same model and defined 
by the sign (positive or negative) of an interaction. However, 
both might have different underlying mechanisms, and using 
separate models might improve individual predictions. Another 
strategy could be to model (e)GRNs for a whole tissue without 
splitting (e)GRN inference tasks to one network per cell type, but 
instead model the cell type information as explicit parameter. 
Additionally, cells are often not isolated entities and communicate 
and interact with each other and influence gene regulation [162]. 
Considering additional models such as cell–cell communication, 
chromatin remodeling, or pseudotime inference directly in the 
inference step can further benefit the quality of these additional 
models as well as the (e)GRN inference [163]. Furthermore, direct 

integration of GRN inference with tasks such as dimensional-
ity reduction, pseudotime inference, or timepoint incorporation 
is promising to preserve more biological signals compared to 
stepwise approaches, as recently demonstrated by scTIE [164]. 
Quantitative modeling can be a way of consolidating the current 
mechanistical knowledge into the models, which constrains them 
in a more biological meaningful way to get the most information 
out of the (still-often-limited) data and will allow to interpret 
the underlying biology more directly. This can be done by taking 
advantage of probabilistic as well as deep learning models or 
combinations of both. Finally, foundation models, such as those 
pioneered by scGPT, which are trained on vast amounts of data 
and fine-tuned to specific use cases, bear promise to effectively 
distill critical biological insights for which individual datasets lack 
statistical power [165]. 

Second, modeling of causality in (e)GRN inference needs to 
go beyond regression or correlation. While true, confounder-free 
causality will probably remain unachievable, the key is to collect 
as much evidence as possible and reconstruct the most likely 
chain of events that lead to a certain regulatory outcome. This 
can include incorporation of binding information, chromatin con-
tact links to confirm looping events, incorporation of temporal 
and spatial information, perturbation experiments of single or
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multiple regulators, control for nonregulatory influences such 
as functional relationships in protein complexes or pathways, 
and foundational knowledge on the role of cofactors and medi-
ators. Interactions between all components can also benefit from 
conditional tests, similar to TRIPOD. Also, integration of genetic 
information such as Single Nucleotide Polymorphisms (SNPs) and 
Copy Number Variations (CNVs) and Genome-Wide Association 
Studies (GWAS) data can help understand the causes of (e)GRN 
rewiring, especially in disease context. We believe that establish-
ing causality is not only crucial for inferring correct interactions 
and eliminating false positives but also directly aids the interpre-
tation of (e)GRNs and thus making them a more attractive model 
to address complex biological questions. 

Third, the integration of additional data modalities allows com-
plementing evidence from other omics and filling in regulatory 
blind spots and mechanisms that RNA- and ATAC-seq data cannot 
pick up [6]. The inclusion of spatial omics will enable us to 
investigate distribution of edges along cell type boundaries and 
trajectories [166], improve classification of subpopulations and 
cell states, and cell–cell communication. Existing chromatin con-
tact data already helps to refine RE-TG interactions, and increased 
availability of Hi-C with kb or base-pair resolutions and single-
cell Hi-C bear great potential to further improve this. DNA methy-
lation was shown to influence TF binding and can deliver infor-
mative features for (e)GRN inference [167]. Parallel measures of 
proteins, e.g. derived from CITE-seq, can reveal post-translational 
regulatory effects [168, 169]. Measures of histone modifications 
such as H3K27me3, H3K4me1, and H3K27ac allow to character-
ize poised enhancers, add causality, and further complete the 
picture of gene regulation. Investigation of actively perturbed 
systems reduces dependency on natural variation for GRN infer-
ence and allows for direct investigation of downstream effects 
caused by regulators [157]. Also, omics of external origin such as 
microbiome-induced gut metabolomics contain regulatory cues 
and should not be neglected when studying regulation from a 
system-wide perspective [6]. Finally, the inclusion of spatial omics 
will enable us to investigate distribution of edges along cell type 
boundaries and trajectories [166], improve classification of sub-
populations and cell states, and cell–cell communication. In con-
clusion, we believe that integrating many complementary omics 
has the potential to rapidly grow our knowledge and improve 
(e)GRN inference if it is done in a meaningful and mechanistically 
informed way. 

Key Points 
• Gene regulatory network inference greatly benefited 

from single-cell technologies and parallel measure-
ments of complementary omics layers such as transcrip-
tomics and chromatin accessibility data. 

• GRN inference methods resolve TF-RE, RE-TG and TF-
(RE)-TG interactions by relying on diverse TFBS detec-
tion, correlation, regression, probabilistic models and 
deep learning approaches, with some inference steps 
being streamlined in the community and others solved 
in very diverse ways. 

• Future developments will likely focus on the incorpora-
tion of more omics layers, efficient integration of larger 
data resources and studies, quantitative modeling, incor-
poration of spatial and temporal dimensions as well as 
on in silico perturbation. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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