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Non‑Hermitian topology 
in rock–paper–scissors games
Tsuneya Yoshida*, Tomonari Mizoguchi & Yasuhiro Hatsugai

Non-Hermitian topology is a recent hot topic in condensed matters. In this paper, we propose a 
novel platform drawing interdisciplinary attention: rock–paper–scissors (RPS) cycles described by 
the evolutionary game theory. Specifically, we demonstrate the emergence of an exceptional point 
and a skin effect by analyzing topological properties of their payoff matrix. Furthermore, we discover 
striking dynamical properties in an RPS chain: the directive propagation of the population density in 
the bulk and the enhancement of the population density only around the right edge. Our results open 
new avenues of the non-Hermitian topology and the evolutionary game theory.

In these decades, the notion of the topology has played a central role in condensed matter physics1–5. Analysis 
of topological aspects of condensed matters dates back to integer quantum Hall systems6 which exhibit robust 
chiral edge modes induced by the topology of the Hermitian Hamiltonian in the bulk7–9. While these robust edge 
modes are originally reported for quantum systems, they have been extended to various disciplines of science10–20. 
In particular, the notion of topology has been extended to an interdisciplinary field21,22; the emergence of topo-
logical edge modes has been predicted22 for networks of rock–paper–scissors (RPS) cycles which are described 
by the evolutionary game theory23–28.

Among the variety of topological phenomena, non-Hermitian topology29–34 has become one of the recent 
hot topics because it results in novel phenomena which do not have Hermitian counterparts. A representative 
example is the emergence of exceptional points (EPs)35–38 and their symmetry-protected variants39–45 on which 
eigenvalues of the non-Hermitian Hamiltonian touch both for the real- and imaginary-parts. Another typical 
example is a non-Hermitian skin effect46–52 which is extreme sensitivity of the eigenvalues and eigenstates to the 
presence/absence of boundaries. As is the case of the Hermitian topology, the above non-Hermitian phenomena 
have also been reported in a variety of systems53–62 (e.g., photonic systems53–56 and quantum systems57–60,63).

Despite the above significant progress, topological phenomena of the evolutionary game theory, which attract 
interdisciplinary attention, are restricted to the Hermitian topology. Highlighting non-Hermitian topology of 
such systems is significant as it may provide a new insights and may open a new avenue of the evolutionary 
game theory.

In this paper, we report non-Hermitian topological phenomena in the evolutionary game theory: an EP 
and a skin effect in RPS cycles. The EP in the single RPS cycle is protected by the realness of the payoffs which 
is mathematically equivalent to parity-time (PT) symmetry. Our linearized replicator equation elucidates that 
the EP governs dynamics of the RPS cycle. Furthermore, we discover striking dynamical phenomena in an RPS 
chain induced by the skin effect: the directive propagation of the population density in the bulk and the enhance-
ment of the population density only around the right edge. These dynamical properties are in sharp contrast to 
those in the Hermitian systems. The above results open new avenues of the non-Hermitian topology and the 
evolutionary game theory.

Results
EP in a single RPS cycle.  Firstly, we demonstrate the emergence of an EP at which two eigenvalues touch 
both for the real- and imaginary-parts.

Consider two players play the RPS game (see Fig. 1a) whose payoff matrix is given by64–67

with a real number � . Here, players choose one of the strategies (s1, s2, s3) = (“R", “P", “S") . The payoff of a player 
is AIJ when the player chooses the strategy sI and the other player chooses sJ ( I , J = 1, 2, 3 ). For � = 0 , this game 

(1)A(�) =

(

0 − 1 1
1 0 − 1
−1 1 0

)

+ �

(

0 0 0
0 1 − 1
0 − 1 1

)

,
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is reduced to the standard zero-sum RPS game where the sum of all players’ payoff is zero for an arbitrary set 
of strategies.

The above payoff matrix exhibits an EP, which can be deduced by noting the following two facts. (1) The 
first (second) term is anti-Hermitian (Hermitian). (2) For an arbitrary � , eigenvalues ǫn ( n = 1, 2, 3 ) form a pair 
ǫn = ǫ∗

n′ ( n  = n′ ) or are real numbers ǫn ∈ R . This constraint arises from the realness of the payoffs

where the operator K takes complex conjugate. Equation (2) can be recognized as PT symmetry by regarding � as 
a momentum (for more details, see Sect. S1 of Supplemental Material [68]). For � = 0 , the energy eigenvalues are 
aligned along the imaginary axis due to the anti-Hermiticity of A(� = 0) . Increasing � , two eigenvalues touch at a 
critical value �c so that they become real numbers when the second term is dominant. At � = �c , the EP emerges.

The emergence of the EP is supported by Fig. 1b. For � = 0 , the energy eigenvalues are pure imaginary due 
to anti-Hermiticity of A(� = 0) . As � is turned on, two eigenvalues approach each other, and the EP emerges at 
� = �c =

√
3 . One can also characterize the topology of this EP by computing the Z2-invariant ν45

with P(E, �) = det[A(�)− E1] . Here, sgn(x) takes 1 ( −1 ) for x > 0 ( x < 0 ), and DiscEP(E, �) denotes discrimi-
nant of P(E, �) . For the 3× 3-matrix A(�) , DiscEP(E, �) = (ǫ1 − ǫ2)

2(ǫ1 − ǫ3)
2(ǫ2 − ǫ3)

2 holds. Figure 1c plots 
the Z2-invariant as a function of � . Corresponding to the emergence of the EP, the Z2-invariant jumps at � = �c , 
elucidating the topological protection of the EP.

Dynamical properties and the EP.  Suppose that a large number of players repeat the above game whose 
dynamics is described by the replicator equation [see Eq. (4)]. In this case, the EP governs the dynamical behav-
iors when the population density slightly deviates from a fixed point; the population density shows an oscillatory 
behavior for 0 ≤ � < �c , while such a behavior disappears for �c < � due to the emergence of the EP.

Firstly, we linearize the replicator equation. When a large number of players repeat the game, the time-
evolution is described by the replicator equation

where x denotes the population density ( 
∑

I xI = 1 ), and eI is a unit vector whose I-th element is unity. The sec-
ond term vanishes when the payoff matrix A is anti-symmetric. However, in order to access the non-Hermitian 
topology, the second term is inevitable which makes the argument in Ref.22 unavailable.

Nevertheless, we can still obtain the following linearized equation

which is mathematically equivalent to the Schrödinger equation. This mathematical equivalence reveals that the 
dynamics of the RPS cycle (i.e., a classical system) can be understood in terms of quantum physics. Here, δx is 
defined as δx = x − c with c = (1, 1, . . . , 1)T/N0 , and N0 denotes dimensions of the matrix A. Key ingredients 
are the following relations:

(2)KA(�)K =A(�),

(3)ν(�) =sgn[DiscEP(E, �)],

(4)∂te
T
I · x = e

T
I · x

(

e
T
I Ax − x

TAx

)

,

(5)∂tδx =
1

N0
Aδx,

(6)
∑

J

AIJ = 0 and
∑

J

AJI = 0,
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Figure 1.   (a) Sketch of the RPS cycle. The arrows denote dominance relationship between the strategies for 
� = 0 ; “R” beats “S”; “S” beats “P”; “P” beats “R”. The second terms proportional to � are introduced between 
sites connected by the double line. (b) The real- and imaginary-parts of eigenvalues as functions of � . An 
eigenvalue of A(�) is zero for an arbitrary � (see horizontal dashed lines). (c) The Z2-invariant characterizing the 
EP. The dashed vertical lines in panels (b,c) denote � = �c.
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for an arbitrary I. This equation guarantees that c denotes a fixed point. Linearizing the replicator equation around 
this fixed point, we obtain Eq. (5) as detailed in the “Methods”.

The linearized replicator equation indicates that the dynamics is governed by the spectrum of A. In particular, 
the imaginary-part of the eigenvalues results in oscillatory behaviors.

To verify the above statement, we numerically solve the replicator Eq. (4). Figure 2 plots the time-evolution 
of the population density for several values of � . For � = 0 , the matrix A(�) is reduced to the payoff matrix of 
the standard zero-sum RPS game. In this case, the eigenvalues of A are pure imaginary, which results in the 
oscillatory behavior (see Fig. 2a). This oscillatory behavior is also observed in the phase plot (see Fig. 2b), where 
the orbit forms a closed loop. The above oscillatory behavior is also observed for � = 0.5 (see Fig. 2c,d), which 
is due to the imaginary-part of the eigenvalues. We also note that the deviation δx is enhanced as t increases, 
which is because the real-part of the eigenvalues is positive (see Fig. 1b). Further increasing � induces the EP (see 
Fig. 1b), and the eigenvalues become real. Correspondingly, the above oscillatory behavior is not observed for 
� = 2 (see Fig. 2e,f), The above numerical data verify that the EP governs the dynamics around the fixed point 
c ; the oscillatory behavior of the RPS cycle disappears as the EP emerges. We note that for � < 0 , the fixed point 
corresponds to evolutionary stable strategy. A similar EP emerges also in this case which governs the dynamics.

We close this part with three remarks. Firstly, so far, we have seen the emergence of the EP in the RPS game by 
changing � . We note that symmetry-protected exceptional rings are also observed by introducing an additional 
parameter (see Sect. S2 of Supplemental Material [68]), whose topology is also characterized by the Z2-invari-
ant ν . Secondly, although Refs.69–72 discuss topology of interaction networks among strategies (i.e., interaction 
topology), it differs from the topology discussed in this paper. Thirdly, we note that EPs are also reported for 
active matters73,74. We would like to stress, however, that significance of this paper is to reveal the emergence 
of the EPs and how they affect the dynamics in systems of the evolutionary game theory which describes the 
population density of biological systems and human societies.

Skin effect in an RPS chain.  Now, we discuss a one-dimensional system showing the skin effect whose 
origin is the non-trivial topology characterized by the winding number48,49. Because of this non-trivial topology, 
switching from the periodic boundary condition (PBC) to the open boundary condition (OBC) significantly 
changes the spectrum. Correspondingly, almost of all right eigenstates are localized around the right edge which 
are called skin modes.

The above skin effect can be observed in an RPS chain illustrated in Fig. 3a. Applying the Fourier transforma-
tion, the payoff matrix is written as

λ

t

λ

λ

λ

λ

λ

Figure 2.   Dynamical properties of the RPS game (1). Panels (a,c,e) display the time-evolution of the 
population x for � = 0 , 0.5, and 2, respectively. The data are obtained by employing a fourth order Runge-
Kutta method68 with discretized time tn = n�tRK with �tRK = 0.05 . We set the initial condition as 
x(t = 0) = (1− δ0, 1+ δ0/2, 1+ δ0/2)/3 with δ0 = 0.1 . The time-evolution is computed up to tn = 120 . 
Panels (b,d,f) are phase plots for x . The arrows denote the direction of the dynamics (�x1,�x2,�x3) which is 
computed by �xI = xI (e

T
I Ax − x

TAx)�t with �t = 0.1 . The black crosses denote the fixed point specified 
by c = (1, 1, 1)/3 . In panels (b,d,f), the blue line denotes the population density x(t) plotted in panels (a,c,e), 
respectively.
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under the PBC. Here, xk is defined as xT
k
= (xkA, xkB) with xkα = 1

Lx

∑

RI
eikRI xRIα and α = A, B . Sets of RI 

and αI are specified by I ( xI = xRIαI ). For the explicit form of the payoff matrix in the real-space, see Sect. S3 of 
Supplemental Material [68].

Figure 3b plots the spectrum of the payoff matrix for � = −0.5 . When the PBC is imposed, eigenvalues form 
a loop structure as denoted by blue lines in Fig. 3b. Accordingly, the winding number31,48,49 defined as

takes −1 for ǫref = 1 , which implies the skin effect. Indeed, imposing the OBC significantly changes the spectrum 
(see red dots in Fig. 3b). Correspondingly, almost all of the right eigenvectors are localized around the edges, 
meaning the emergence of skin modes (see Fig. 3c). T﻿he above data (Fig. 3b,c) indicate that the skin effect is 
observed in the RPS chain. Here, we note that the spectrum and skin modes are almost unchanged under the 
following perturbation to the edges (see Sect. S3 of Supplemental Material [68]): attaching site at I = 2Lx + 1 
and tuning diagonal elements to AII = � only for I = 1, 2Lx + 1 so that Eq. (6) holds (see Fig. 3a). We refer to 
this boundary condition as OBC’.

The above skin effect results in striking dynamical properties: the directive propagation of the population 
density in the bulk and the enhancement of the population density only around the right edge. The directive 
propagation is observed by imposing the PBC. Figure 4a–d indicate that the propagation only to the right 
direction is enhanced. This phenomenon can be understood by noting the following facts as well as linearized 
approximation: (1) as t increases, each mode is enhanced corresponding to Reǫn ; (2) the group velocity of each 
mode is proportional to −∂kImǫn . Because of the loop structure resulting in W = −1 , the modes propagating 
to the right are more enhanced than the ones propagating to the left.

The enhancement of the population density at the right edge is observed by imposing OBC’. We note that 
Eq. (6) is satisfied for OBC’ while it is not for OBC. As shown in Fig. 4e–h, the population density around the 
right edge is enhanced as t increases. This phenomenon is due to the skin modes whose eigenvalues satisfy 
Reǫn > 0 . The above dynamical behaviors are unique to non-Hermitian systems; turning off � , iA(� = 0) becomes 
Hermitian and the above behaviors disappear (see Sect. S3 of Supplemental Material [68]).

We close this part with two remarks. Firstly, we note that a similar behaviors can be observed for another 
RPS chain, implying ubiquity of the skin effect (see Sect. S4 of Supplemental Material [68]). Secondly, Ref.21 has 
analyzed an RPS chain whose payoff matrix is Hermitian up to the imaginary unit i. We would like to stress, 
however, that our aim is to observe non-Hermitian topological phenomena which are not accessible with the 
model in Ref.21. In this non-Hermitian case, we need to take into account the second term of Eq. (4).

Discussion.  We have proposed a new platform of non-Hermitian topology in an interdisciplinary field, i.e., 
RPS cycles described by the evolutionary game theory. Specifically, by analyzing the payoff matrix, we have 
demonstrated the emergence of the EP and the skin effect which are representative non-Hermitian topological 
phenomena. In addition, our linearized replicator equation has revealed that the EP governs the dynamics of the 
population density around the fixed point. Furthermore, we have discovered the striking dynamical phenom-

(7)A(k) =
(

0 1− e−ik

−1+ eik − 2i sin k

)

+ �

(

−2 1+ e−ik

1+ eik − 2

)

,

(8)W =
∮

dk

2π i
∂k log det[A(k)− ǫref1],

Figure 3.   (a) Sketch of the RPS chain for Lx = 4 with an additional site at I = 9 . The arrows describes payoffs. 
The terms proportional to � are introduced between sites connected by double lines. As shown in this panel, 
I takes I = 1, 2, 3, . . . . For the PBC, I + 2Lx = I holds. Dashed line denotes the unit cell. For J = 1, 2, . . . , 
R2I−1 = R2I holds. (b) Spectrum of the RPS chain for � = −0.5 . The data colored with blue are obtained under 
the PBC. Here, the shade of color denotes k/π . The data denoted by red dots are obtained for Lx = 15 and the 
OBC. (c) Amplitude of the right eigenvectors φR

In ( n = 1, 2, . . . , 2Lx ) as functions of I for Lx = 15 . Red (gray) 
lines denote data for the OBC (PBC).
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enon in the RPS chain: the directive propagation of the population density in the bulk and the enhancement of 
the population density only around the right edge which are induced by the skin effect.

Our results pose several future directions which we discuss below. The experimental observation is one of the 
central issues. In particular, our results provide a first step toward the observation of the non-Hermitian topology 
beyond natural science because the game theory describes a wide variety of systems from biological systems25,75 
to human societies26–28,76,77; for instance, dynamics of human cooperation has been discussed in Refs.76,77. The 
experimental observation in such a system is considered to be a significant step to the application of topological 
phenomena beyond natural science. In addition, as is the case of equatorial wave18, our result may provide a 
novel perspective of well-known phenomena for biological systems such as bacteria25 and side-blotched lizards75; 
dynamics of such systems may be understood in terms of exceptional points. We also note that the topological 
classification for systems described by the game theory is also a crucial issue to be addressed.

Methods
Derivation of the linearized replicator equation.  Here, we derive Eq. (5). We start with noting Eq. (6) 
results in the relations Ac = 0 and cTA = 0 which mean that c = (1, 1, 1, . . . , 1)T/N0 is a fixed point. By making 
use of the above relations we have

From the second to the third line, we have used the relations Ac = 0 and cA = 0 . In the last line, we have dis-
carded the second and third order terms of δx.

Because (eTI · c) = 1/N0 for an arbitrary I, we have

which is equivalent to Eq. (5).
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