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Abstract: Halogen bonding is studied in different structures consisting of halogenated guanine DNA
bases, including the Hoogsteen guanine-guanine base pair, two different types of guanine ribbons
(R-I and R-II) consisting of two or three monomers, and guanine quartets. In the halogenated base
pairs (except the Cl-base pair, which has a very non-planar structure with no halogen bonds) and R-I
ribbons (except the At trimer), the potential N-XeeeO interaction is sacrificed to optimise the N-XeeeN
halogen bond. In the At trimer, the astatines originally bonded to N1 in the halogen bond donating
guanines have moved to the adjacent O6 atom, enabling O-AteeeN, N-AteeeO, and N-AteeeAt
halogen bonds. The brominated and chlorinated R-1I trimers contain two N-XeeeN and two N-XeeeO
halogen bonds, whereas in the iodinated and astatinated trimers, one of the N-XeeeN halogen bonds
is lost. The corresponding R-II dimers keep the same halogen bond patterns. The G-quartets display
a rich diversity of symmetries and halogen bond patterns, including N-XeeeN, N-XeeeO, N-XeeeX,
O-XeeeX, and O-XeeeO halogen bonds (the latter two facilitated by the transfer of halogens from
N1 to O6). In general, halogenation decreases the stability of the structures. However, the stability
increases with the increasing atomic number of the halogen, and the At-doped R-I trimer and the
three most stable At-doped quartets are more stable than their hydrogenated counterparts. Significant
deviations from linearity are found for some of the halogen bonds (with halogen bond angles around
150°).

Keywords: guanine-guanine base pair; guanine ribbons; guanine quartet; density functional theory;
dispersion correction

1. Introduction

The last two decades have seen a huge upsurge in studies on halogen bonding, with overview
articles and reviews also appearing in the literature [1-7]. A halogen bond is a type of o-hole
interaction, where a nucleophile interacts with the positively charged region (dubbed the o-hole) at
the extent of the R-X bond, where X is the halogen and R is typically C but can also be another atom.
Usually, the halogen is covalently bonded to one atom, but it has been shown that halogen-bonded
complexes can also be formed with molecules where the halogen is bonded to two carbon atoms [8].
Halogen bonding plays important roles in many aspects of chemistry and biology, including material
science [9], molecular crystals [10], biological molecules [11], and molecular recognition [12].

Halogen bonding has promising applications in synthetic DNA. As the four canonical DNA bases,
adenine (A), guanine (G), cytosine (C), and thymine (T), are the “letters” of the “genetic alphabet”,
incorporating halogenated bases could extend this alphabet, which may allow engineering of novel
artificial proteins or nucleic acids. However, not many studies exist on halogen bonding in nucleic acid
structures. A density functional theory study at the B3LYP [13-15] level has shown that modified DNA
bases can form halogen-bonded base pairs [16]. The authors considered canonical adenine-thymine
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(AT) and guanine—cytosine (GC) base pairs with either all or one of the hydrogens involved in
hydrogen bonding replaced by Cl, Br, or I. They found that nearly all of the substituted base pairs
form co-planar structures with favourable interaction energies. Another computational study on
halogen bonds in nucleic acids using the ONIOM (Our own N-layered Integrated molecular Orbital
and Molecular mechanics) method [17] considered C-BreeeO-P contacts [18]. Frontera and Bauza
showed through a PDB (protein data bank [19]) survey coupled with MP2 (second-order Moller—Plesset
perturbation theory [20]) calculations that halogenated nucleic acids can form halogen bonds with
protein residues [21]. Other PDB surveys considered halogen bonding in biomolecules including
nucleic acids [11,22]. An experimental study demonstrated that a halogen bond formed between a
brominated uracil and phosphate oxygen can be engineered in a four-stranded DNA junction [23].
In the current study, we investigate halogen bonding in guanine base pairs, quartets, and ribbons.
The inspiration for this study came from a recent computational study by Paragi and Fonseca Guerra
on the self-assembly of guanine nucleobases into quartet and ribbon structures [24]. The study relates
to scanning tunnelling microscopy (STM) experiments where guanine molecules were shown to form
tetramer ring structures on a gold surface; however, these ring structures rearranged into ribbon-like
structures when heated up [25]. Two different ribbon patterns were observed: one where the ribbons
contain an N-HeeeN and an N-HeeeO hydrogen bond between the guanine monomers (type I) and
one where there are alternatively two N-HeeeN hydrogen bonds or two N-HeeeO hydrogen bonds
between adjacent guanine monomers (type II) [26-28]. We were intrigued to see if these quartets
and ribbons would still exist if the hydrogen-bonding hydrogens would be replaced by halogens.
We consider the halogens Cl, Br, I, and At. We do not include F, as this halogen usually does not
form halogen bonds [29]. This has been ascribed to the fluorine’s large electronegativity and tendency
to engage in sp hybridisation, with a resulting influx of negative charge into the region where the
positive o-hole would be [4,30]. As in our previous studies on halogen bonding systems [8,31-33],
we include the radioactive element At as it may help to reveal trends in energy and properties with
increasing halogen size. Astatine is the most polarisable of the halogens considered here [34]. The first
experimental evidence of halogen bonding with astatine was provided in 2018 [35]. In 2020, a coupled
experimental and computational approach identified a 1:1 adduct of BusgPOeeeAtI as the strongest
astatine-mediated halogen bond found so far [36].

2. Results and Discussion

2.1. Method Comparison

Table 1 compares the interaction energies and selected geometrical parameters calculated at
different levels of theory for the I1,12-substituted R-I dimer.

Table 1. Interaction energies and BSSE (basis set superposition error) values (in kJ/mol) and selected
geometrical parameters (distances in A; angles in degrees) of the I1,12-substituted R-I dimer, calculated
at different levels of theory.

Geometry Energy AEC? BSSE R(IeeeN)  R(IeeeO) /(NIeeeN) /(NIleeeO)
BLYP-D3/SVP BLYP-D3/SVP -55.5 -135 2.58 3.78 178 113
BLYP-D3/SVP BLYP-D3/TZVP -53.2 -2.1

BLYP-D3/TZVP BLYP-D3/TZVP -53.0 -2.0 2.61 3.94 177 110
BLYP-D3/SVP B3LYP-D3/TZVP -54.7 -1.8
B3LYP-D3/TZVP  B3LYP-D3/TZVP -53.2 -17 2.60 3.98 177 107

The dimer contains two potential halogen bonds: an N-IeeeN interaction and an N-leeeO
interaction (see Figure 2; upper part). Potential halogen bond distances and angles are included in
Table 1 (R(IeeeN)//(NIeeeN) for the N-IeeeN interaction and R(IeeeO)//(NIeeeO for the N-IeeeO
interaction). Further discussion on whether these are proper halogen bonds can be found in Section 2.3
below. There are some geometrical differences between the structures optimised with BLYP-D3 and
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B3LYP-D3 coupled with the def2-TZVP basis set. In particular, the R(IeeeO) distance is shorter for
the BLYP-D3/def2-SVP geometry optimisation. This is presumably due to the considerably larger
BSSE, which brings the two monomers closer together. However, the effect on the interaction energy is
negligible when computed using the TZVP level and we therefore decided to optimise structures with
BLYP-D3/def2-SVP and calculate interaction energies with BLYP-D3/def2-TZVP.

2.2. Hoogsteen Base Pair

Figure 1 shows the optimised structures of the Geee1,2X-G HS base pairs. The undoped HS base
pair is not stable at the level of theory employed; it optimised to a C,-symmetric guanine base pair with
N-HeeeO hydrogen bonds (see Figure 1). The halogenated base pairs all have C; symmetry. The Cl-doped
base pair is very non-planar. It contains an N-HeeeO hydrogen bond but no halogen bonds. The dimers
with the heavier halogens are also non-planar but show potential halogen bonds. Their structures retain
the Hoogsteen bonding pattern. All have interaction energies smaller than that for the corresponding
undoped base pair. Table 2 lists the potential halogen bond distances and angles, as well as their vdW ratios.
The vdW ratios are well below 1 for the three XeeeN interactions (X = Br, I, At), just below 1 for the BreeeO
interaction, and above 1 for the JeeeO and AteeeO interactions. This correlates with the nearly linear
/(NXeeeN) and non-linear /(INXeeeO) angles. The very non-linear /(NXeee0O) angles indicate that the
N-XeeeO interaction cannot be classified as a halogen bond in any of these base pairs. Thus, it appears that
the structure of the halogenated base pairs results from optimisation of the N-XeeeN halogen bond at the
expense of the N-XeeeQ interaction. Optimisation of one halogen bond at the expense of another was also
observed for the halogenated AT and CG base pairs [16]. The interaction energies of the Br- and I-doped
base pairs (—34.1 and —48.7 kJ/mol, respectively) are in the same order of magnitude as those of Parker
et al.’s AT base pair with two hydrogens replaced by Br or I (=39.8 and —28.3 k]J/mol, respectively) [16].
However, in our case, the I-substituted base pair is more stable than the Br-substituted base pair.

GeeeG G eee1,2CI-G G eee1,2Br-G

szi el

J
G eee] 2| G)§ G oeeel, ZAtG‘%
o
R -48.7 -60.1
°)

Figure 1. Optimised structures of the undoped and doped Geee1,2X-G (X = F, Cl, Br, I, At) base pairs
starting from Hoogsteen structures, with their interaction energies (in kJ/mol).

-109.6

Table 2. Selected geometrical parameters (distances in A; angles in degrees) and van der Waals ratios
(vdW) for the Geee1,2X-G dimers (X = Br, I, At).

System R(XeeeN) R(XeeeO) vdW(XeeeN) vdW(XeeeO) /(NXeeeN) /(NXeeeQ)
Geeel 2Br-G 2.59 3.26 0.76 0.97 173.1 137.2
Geeel2]-G 2.60 3.99 0.74 1.14 179.5 122.3

Geeel 2At-G 2.63 4.34 0.74 1.23 179.4 117.8
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2.3. Ribbons R-1

The R-I dimers and trimers are shown in Figure 2. Selected geometrical parameters and vdW
ratios are given in Table 3. The unsubstituted dimer is a Cp-symmetric reverse Hoogsteen base
pair. It contains an N-HeeeN and N-HeeeO hydrogen bond. Bhattacharyya et al. calculated an
interaction energy of —65.0 k]/mol for this base pair with HF/6-31G(d,p) [37] and —73.6 k]/mol at the
B3LYP/6-31G(2d,2p) level [38], both smaller than the —80.5 kJ/mol calculated by us. This is presumably
due to the missing correlation in the HF calculations and B3LYP’s inability to account for dispersion
effects [39]. Reverse Hoogsteen G-G and A-A base pairs were found to occur in homo-DNA (a DNA
homologue with the standard 2’-deoxyribofuranose replaced by 2’,3’-dideoxyglucopyranose) [40,41].
Doping with halogens makes the dimers non-planar and reduces the symmetry to C;. Like for the
halogenated HS base pairs, the potential N-XeeeO halogen bond has been sacrificed to optimise the
N-XeeeN halogen interaction, which is a proper halogen bond in all substituted dimers (vdW ratios
below 0.8; Z(NXeeeN) angles 177-179°). As for the HS base pair, the interaction energy of the Br-doped
dimer (—36.1 kJ/mol) is smaller, and that of the I-doped dimer larger (—53.2 k]/mol), than those of the
AT base pair with two Br or I atoms, respectively [16]. The addition of a third guanine monomer leaves
the geometry of the dimer unit qualitatively unchanged for the undoped trimer and the trimers with
Cl, By, and I halogens (Table 3), with the Cl-, Br-, and I-doped trimers containing two N-XeeeN and no
N-XeeeO halogen bonds. In the At-substituted trimer, however, the halogen bond pattern has changed.
One of the astatines in the right and middle guanine moved from N1 to O6, creating two O-XeeeN
halogen bonds (vdW ratios 0.73 and 0.69 and Z(OXeeeN) angles 170 and 168°) instead of N-XeeeN
halogen bonds. The change in halogen bonding site in the right-most guanine molecule also allows
an additional N-XeeeX halogen bond (vdW ratio 0.83; angle 177°) and the change from N-XeeeN to
O-XeeeN halogen bond in the left dimer allows the formation of an N-XeeeO halogen bond (vdW ratio
0.78; angle 161°). The interaction energies of the substituted trimers increase upon increasing the
atomic number of the halogen. For the At-substituted trimer, we also calculated the interaction energy
with respect to the constituent monomers, i.e., two 1,6-At-G and one 1,2-At-G molecules (value in
brackets in Figure 2). This value shows how strongly the bases interact but ignores the energy required
to deform two 1,2-At-G to 1,6-At-G molecules. For all trimers, the interactions are cooperative: Ecoop is
-7.9,-29,-3,7, -9.6, and —32.7 kJ/mol for the undoped, Cl-, Br, I-, and At-doped trimers, respectively
(calculated using the interaction energies with respect to 1,2-X-G monomers). The large value for the
At-substituted trimer shows a large increase in stability due to the additional halogen bonds facilitated
by the transfer of two hydrogens from N1 to O6.

Table 3. Selected geometrical parameters (distances in A; angles in degrees) and van der Waals ratios
(vdW) for the R-I dimers and trimers.

System R(XeeeN) R(XeeeO) vdW(XeeeN) vdW(XeeeO) /(NXeeeN) /(NXeeeQ)
(1,2C1-G), 2.58 3.24 0.78 0.99 178 135
(1,2Br-G), 2.57 3.47 0.76 1.03 179 124
(1,2I-G)3, 2.58 3.78 0.73 1.08 178 113
(1,2At-G), 2.60 3.74 0.73 1.06 177 111
(1,2C1-G)3 2.54/2.54 3.47/3.35 0.78/0.77 1.06/1.03 176/178 125/135
(1,2Br-G)3 2.52/2.51 3.45/3.34 0.74/0.74 1.02/0.99 178/178 124/126
(1,2I-G)33 2.53/2.52 3.76/3.67 0.72/0.71 1.07/1.05 178/179 109/116

(1,2At-G)3 2.52/2.47 2.77/3.53 0.73/0.69 0.78/1.00 143/146 161/138
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Figure 2. Optimised structures of the 1,2X-Geee1,2X-G R-I dimers and trimers (X = H, Cl, Br, I, At),
with their interaction energies (in kJ/mol). The interaction energy in brackets for the At-substituted

trimer is calculated with respect to two 1,6At-G monomers and one 1,2At-G monomer.

2.4. Ribbons R-II

Figure 3 shows the optimised R-II dimers and trimers, whereas selected geometrical parameters
and vdW ratios have been collected in Table 4. In contrast to the R-I trimers, the R-II trimers contain
two different constituent dimers: one containing two N-XeeeN interactions (dimer 1) and one with two
N-XeeeO interactions (dimer 2). The R-II trimers were first optimised; subsequently, starting structures
were obtained for the geometry optimisations of the dimers by removing one of the outermost guanines.
The undoped dimer 1 has C; symmetry. It is non-planar, with the guanines twisted out of plane. It is
the least stable of the three different guanine-guanine dimers considered in this work. Bhattacharyya
et al. calculated an interaction energy of —34.0 kJ/mol for this base pair, at the B3LYP/6-31G(2d,2p)
level [38], again smaller than the —49.5 kJ/mol calculated by us. The Cl-dimer has C; symmetry. It is
also non-planar, with a slight twist of one guanine accompanied by an opposite twist of the second
guanine. The Br-dimer is planar with Cp, symmetry. The I- and At-dimers have no symmetry elements.
In the latter two, one N-XeeeoN interaction is optimised at the expense of the second one. For the
R-II dimer 2, the undoped, I-, and At-substituted dimers have C, symmetry, whereas the CI- and
Br-substituted dimers have C; symmetry. The undoped dimer is a reverse Watson—-Crick base pair.
Such base pairs occur in RNA, contributing to its structural complexity [42]. Mitra et al. calculated an
interaction energy of —107.9 k]/mol for the reverse Watson—Crick GG base pair (with methyl groups at
the 9-position) at the M05-2X/6-31G++(2d,2p) level of theory [43], close to our result of —110.3 k]/mol.
All dimers 2 contain two symmetry-related N-XeeeO halogen bonds. Again, the interaction energy
of the Br-doped dimers (both 1 and 2) is smaller, and those of the I-doped dimers larger, than those
of the AT base pair with two Br or I atoms, respectively [16]. The symmetry elements in the dimer
disappear in the trimer. The undoped, Cl-, and Br-containing trimers have clearly two N-XeeeN
and two N-XeeeO halogen bonds. Like for the dimer 1, in the I- and At-trimer, one of the N-XeeeN
halogen bonds is sacrificed to optimise the other N-XeeeN halogen bond. Unlike for the ribbons R-I,
the interactions in the trimers are not always cooperative: Ecogp is —1.9, 1.4, —6.1, 0.3, and —9.4 kJ/mol
for the undoped, Cl-, Br-, I, and At-containing trimers, respectively.
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Figure 3. Optimised structures of the 1,2X-Geee1,2X-G ribbon II dimers and trimers (X = H, Cl, Br, I,
At), with their interaction energies (in kJ/mol).
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Table 4. Selected geometrical parameters (distances in A; angles in degrees) and van der Waals ratios
(vdW) for the R-II dimers and trimers.

System R(XeeeN) R(XeeeO) vdW(XeeeN) vdW(XeeeO) /(NXeeeN) /(NXeeeQ)
Dimer 1
(1,2C1-G), 2.83 0.86 166
(1,2Br-G), 2.85 0.84 163
(1,21-G), 2.65/4.52 0.75/1.28 177/97
(1,2At-G), 2.55/4.19 0.71/1.17 178/91
Dimer 2
(1,2C1-G), 2.75 0.84 166
(1,2Br-G), 2.79 0.83 161
(1,21-G), 2.94 0.84 155
(1,2At-G), 2.86 0.81 153
(1,2C1-G)3 2.86/2.81 2.72/2.77 0.87/0.85 0.83/0.85 165/167 167/165
(1,2Br-G)3 2.82/2.85 2.74/2.83 0.83/0.84 0.81/0.84 165/160 163/159
(1,21-G)3 2.63/4.50 2.73/3.23 0.74/1.28 0.78/0.92 177/97 153/147
(1,2At-G)3 2.56/4.16 2.68/3.13 0.72/1.17 0.76/0.88 178/91 160/146

2.5. G-Quartets

G-quartets are structural motifs occurring in G-quadruplexes, which are higher-order DNA and
RNA structures formed by sequences that are rich in guanine [44]. G-quartets consist of four guanine
bases, interacting through Hoogsteen base pairing. Figure 4 shows the optimised structures of the
1,2X-G quartets. Some selected geometrical parameters are available in the Supplementary Materials
(Table S1).

We located two structures for the undoped G-quartet: an Sy-symmetric quartet and a C4p-symmetric
quartet, both containing Hoogsteen GG base-pair hydrogen bonds. The S4 quartet is slightly more
stable than the Cy, quartet, in agreement with previous results [45,46]. The absence of imaginary
frequencies indicates that the S4-symmetric quartet is a true minimum on the potential energy surface.
We find one imaginary frequency for the Cyy, quartet, in agreement with previous calculations at the
B3LYP/6-311G(d,p) level [46] but in disagreement with the B3LYP/DZVP results of Meyer et al. [45],
which found four imaginary frequencies. Unlike the previous studies, no quartet with bifurcated
hydrogen bonds was located. Attempts to optimise such a structure resulted in the S4-symmetric
quartet. Paragi and Fonseca Guerra calculated an interaction energy of —331 kJ/mol with BLYP-D and a
basis set of triple-zeta quality [24], somewhat larger than our value of 320-322 kJ/mol. However, Paragi
and Fonseca Guerra’s result is not corrected for BSSE. We calculate BSSE values of —12 to —13 kJ/mol
for the unsubstituted quartets, which accounts for most of the difference between our results and those
of Paragi and Fonseca Guerra. It should also be noted that Paragi and Fonseca Guerra optimised the
quartets with planar constraint to mimic the adsorption onto a gold surface.

For the Cl-doped quartet, two Cp-symmetric and two C4-symmetric structures were located. The
most stable quartet (AECP = —105.6 kJ/mol) is a Cy-symmetric structure with a central CleeeCl] halogen
bond (vdW ratio 0.88; but with /N-CleeeCl angles of 148°, on the border of being true halogen bonds)
and four (two-by-two identical) N-CleeeN halogen bonds (vdW ratios of 0.87 and 0.88; angles 166 and
156°, respectively). The next quartet (AEY = —81.0 kJ/mol) has also C; symmetry, and contains four
(two-by-two symmetric) N-CleeeN halogen bonds (all vdW ratios 0.76; angles 176 and 179°). It has
a slight “bowl” structure. The CleeeQO distances are too large to classify the N CleeeO interactions
as halogen bonds. The third most stable Cl-quartet (AE“T = —63.9 kJ/mol) is C4-smmetric. It has
four symmetry-related N-CleeeN halogen bonds (vdW ratio 0.87; angle 163°). Four CI atoms form
a square in the central cavity linked by CleeeCl halogen bonds (vdW ratio 0.90; /N-CleeeC] 174°).
The fourth Cl-quartet has a positive interaction energy when the energy of the 1,2CI-G molecule is
used as reference. In this quartet, the Cl atoms originally bonded to N1 have moved to the adjacent
06 oxygen. If the 1,6Cl-G monomer (with one Cl attached to O6) is used to calculate the interaction
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energy, it becomes negative (~101.9 k]/mol; number in brackets in Figure 2), showing that the bases
interact favourably.

The most stable Br-containing quartet is C4-symmetric, with N-BreeeO hydrogen bonds (vdW
ratio 0.80; angles 166°) and a square of four bromines in the centre forming BreeeBr halogen bonds
(vdW ratio 0.88; Z/N-CleeeBr 176°). It is similar to the Cl-quartet 3. The second Br-quartet, which
is similar to the Cl-quartet 2, has C; symmetry and four N-BreeeN halogen bonds (vdW ratios 0.71
and 0.72; angles 179 and 176°). The four N-BreeeO contacts are not halogen bonds: two have a vdW
ratio above 1 and, whereas the other two have vdW ratios below 1 (0.92), their N-BreeeO angles
(101°) are too far from linearity for halogen bonds. The third Br-quartet is S4-symmetric; the guanine
bases are slightly twisted out-of-plane. It contains four symmetry-related N-BreeeO halogen bonds
(vdW ratios 0.73; angles 171°). The fourth Br-quartet is also S4-symmetric. It contains four N-BreeeN
halogen bonds. The N-BreeeO contacts can just be considered proper halogen bonds with vdW ratios
comfortably below 1 (0.81) but with rather non-linear N-HeeeO angles (148°). The fifth Br-quartet
has C4 symmetry. It contains four N-BreeeN halogen bonds (vdW ratio 0.77; angle 175°) and four
bifurcated halogen bonds, consisting of one strong O-BreeeBr halogen bond (vdW ratio 0.77; angle
169°) and a weaker O-BreeeO halogen bond (vdW ratio 0.95; angle 150°). The bromine atoms have
moved from N1 to O6. The structure is similar to Cl-quartet 4, except that, in the latter, the O-CleeeO
interactions cannot be considered halogen bonds because of their vdW ratios above 1 (1.14).

Figure 4. Cont.
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Figure 4. The optimised X-quartets (X = Cl, Br, I, At). The symmetry and interaction energy (in kJ/mol)
are listed below the structure. The interaction energy in brackets is calculated with respect to four
1,6X-G monomers (for Cl-G4 4, Br-G4 5, and At-G4 1), three 1,6X-G monomers, and one 1,2X-G monomer
(At-G4 2) or two 1,6X-G monomers and two 1,2X-G monomers (At-G4 3).

Like Br-quartet 5, the most stable I-quartet is C4-symmetric with four identical N-IeeeN halogen
bonds (vdW ratio 0.73; angle 174°) and bifurcated halogen bonds with a strong O-leeel halogen
bond (vdW ratio 0.78; angle 162) and weaker O-leeeO halogen bond (vdW ratio 0.93; angle 154°).
Like Cl-quartet 4 and Br-quartet 5, the halogen has moved from N1 to the adjacent O6. The next
I-quartet is a Cp-symmetric bowl-like structure with four (two-by-two symmetry-related) N-leeeN
halogen bonds (vdW ratios 0.70 for all four bonds; angles 179° and 177°). It is similar to Cl-quartet
2 and Br-quartet 2. The third I-quartet has no symmetry elements. Two of the N-IeeeN interactions
can be classified as halogen bonds (vdW ratios of 0.72 and 0.76; angles 170 and 168°). Moreover,
two of the N-IeeeQ interactions are halogen bonds (vdW ratios 0.68 and 0.69; angles 178 and 174°),
as well as one of the N-leeeN interactions (vdW ratio 0.81; angle 177°). The fourth I-quartet has
C4 symmetry. It contains four N-leeeO halogen bonds (vdW ratios 0.68; angles 173°). The fifth
most stable I-quartet has no symmetry elements. It contains four N-leeeO halogen bonds (vdW
ratio 0.68-0.69; angle 173-175°). The sixth most stable I-quartet is S;-symmetric and contains four
N-IeeeO halogen bonds (vdW ratios 0.68; angles 173°). The last three I-quartets have similar energies;
however, they differ slightly in structure. Whereas the iodines bonded to the amino group point
alternatively up and down from the approximate plane of the molecule in the C; and S4-symmetric
structures, they point the same way in the C4-symmetric structure.

The most stable At-quartet is a bowl-shaped C4-symmetric structure with four N-AteeeN halogen
bonds (vdW ratio 0.72; angle 174°), four O-AteeeO halogen bonds (vdW ratio 0.90; angle 157°),
and four O-XeeeX halogen bonds (vdW ratio 0.79; angle 157°). The inner astatine atoms moved
from N1 to O6. It is similar to Cl-quartet 4 (even though this lacks proper O-CleeeO halogen bonds),
Br-quartet 5, and I-quartet 1. The next At-quartet does not have symmetry elements. It displays
four N-AteeeN halogen bonds (vdW ratios 0.71-0.72; angles 175-176°). If the distance from N1 or
O6 to the halogen is used to determine which atom the astatine is bonded to, then, in three of the
guanines, the inner At atom is bonded to O6, and in the fourth guanine, it is bonded to N1. There is
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a combination of N-AteeeAt, O-AteeeAt, and O-AteeeO halogen bonds, as indicated in the figure.
The third At-quartet is C;-symmetric, with four N-AteeeN halogen bonds (vdW ratios 0.72-0.73; angles
178-177°), two N-Ateee At halogen bonds (vdW ratio 0.80; angle 175°), and two O-AteeeAt halogen
bonds (vdW ratios 0.81; angles 157°). The fourth At-quartet is S4-symmetric with four N-AteeeO
halogen bonds (vdW ratio 0.68; angle 173°). The fifth At-quartet has C; symmetry; it contains four
N-AteeeN halogen bonds (vdW ratios 0.70-71; angles 179-174°) and two N-AteeeO halogen bonds
(vdW ratio 0.84; angle 161°). The last At-quartet is C4-symmetric with four N-AteeeO halogen bonds
(vdW ratio 0.69; angle 175°). At-quartets 4 and 6 have a similar structure; however, in the S4-symmetric
structure, the astatines on the amino group are pointing alternatively up and down, whereas in the
C4-symmetric structure, they point in the same direction.

Chlorination and bromination leads to less stable quartets. However, the most stable iodinated
quartet has an interaction energy very close to the undoped quartet, and the three most stable astatinated
quartets are more stable than the unsubstituted quartet.

3. Methodology

The structures considered include guanine—guanine (GG) base pairs with Hoogsteen (HS) base
pairing, dimer and trimer ribbons with N-HeeeN and N-HeeeO hydrogen bonds between the
monomers (R-I ribbons), dimer and trimer chains with two N-HeeeN hydrogen bonds or two
N-HeeeO hydrogen bonds between the monomers (R-II ribbons), and G-quartets with Hoogsteen base
pairing (see Scheme 1). Halogenated structures were created by replacing the hydrogens that form
H-bonds in the GC base pair, i.e., the hydrogen attached to N1 and one of the hydrogens attached to
N2 (see Scheme 1 for atom labelling) by a halogen (X = Cl, Br, I, or At). In the base pairs, only the
hydrogens forming the hydrogen bonds were replaced; in all other structures, the corresponding
hydrogens of all guanine substituents were replaced.

Hoogsteen base pair R-I ribbon

R-Il ribbon

Scheme 1. Guanine structures considered in this work. Atom labelling is shown for one of the guanines
in the Hoogsteen base pair.

The structures were optimised using the BLYP density functional [13,15] augmented with a D3
dispersion term [47] with Becke-Johnson (BJ) damping [48,49], using the def2-SVP basis set [50].
We chose this functional in combination with the D3 dispersion term because the BLYP-D method
showed excellent performance for systems of stacked nucleic acid base pairs and quartets [51].
Interaction energies, corrected for basis set superposition error (BSSE) using the counterpoise
(CP) procedure [52], were computed at the BLYP-D3 level using the def2-TZVP basis set [50]
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(see Supplementary Materials Section S1 for details on the calculation of CP-corrected interaction
energies and BSSE values). For the I1,12-substituted R-I dimer, geometry optimisations were also
carried out at the BLYP-D3/TZVP and B3LYP-D3/TZVP levels of theory. All calculations were done
using the Orca 4.1.1 program [53,54] and used the def2/] auxiliary basis set [55] and integration Grid
7. The optimised structures are available in the Supplementary Materials (Table S2). Note that the
def2 basis sets use the def2-ECP effective core potential for heavy atoms (in this case, iodine and
astatine). In some cases, we encountered convergence problems with the SCF (self-consistent field),
mainly during the CP calculations (see Supplementary Materials Section S2).

Criteria used to classify interactions as halogen bonds include (i) the requirement that the
interatomic distance divided by the sum of the van der Waals radii [56,57] of the constituent atoms,
labelled the vdW ratio, is smaller than 1, and (ii) that the halogen bond angle is “not too far
away” from being linear. Though halogen bonds tend to be linear, in previous work we found
that significantly non-linear halogen bonds (150-160°) may exist in complex environments with
competing interactions [32,33]. Thus, we deem angles over 150° compatible with the interaction being
a halogen bond.

Point group symmetry was determined using GaussView [58], in some cases using the loosest
tolerance for detecting symmetry. For the trimers, cooperativity is defined as follows:

ECUUV = AEfrfmer - AEL%I:nerl - AEfi:ilr)nerZ @
where AE;:Z.I; o and AEgl.fn o are the interaction energies of the constituting dimers in the trimer, and
the “CP” superscripts indicate that the interaction energies are counterpoise-corrected.

4. Conclusions

We investigated the effect on structure and stability of replacing the hydrogen-bonding hydrogens
in various guanine-based structures with halogens. The systems studied include guanine—guanine
base pairs (in the Hoogsteen form), two different types of ribbons (R-I and R-II) consisting of two
and three guanines, and guanine quartets. In the base pairs and R-I ribbons, which contain potential
N-XeeeN and N-XeeeO interactions, a trend was observed to optimise the N-XeeeN halogen bond at
the expense of the N-XeeeQ interaction. This is the case for the Br-, I-, and At-containing base pairs,
all halogenated R-I dimers, and the Cl-, Br-, and I-containing R-I trimers. The Cl-doped base pair has a
distorted structure with a hydrogen bond but no halogen bonds. The undoped Hoogsteen base pair is
not stable on the BLYP/def2-SVP potential energy surface; however, doping with heavier halogens (Br,
I, At) restores the Hoogsteen pattern. In the At-doped R-I trimer, the hydrogens originally attached
to N1 in the two halogen bond donating monomer units have moved to the adjacent O6, facilitating
O-AteeeN instead of the N-AteeeN halogen bonds as well as forming an additional N-AteeeO and
N-Ateee At halogen bond. The R-II trimers contain two different dimers, with either two potential
N-XeeeN (dimers 1) or two potential N-XeeeO interactions (dimers 2). The Cl- and Br-doped dimers
1 contain two equivalent N-XeeeN halogen bonds, but in the I- and At-containing dimers, one of
the interactions is lost. This is presumably due to the larger size of I and At, which makes it more
difficult to accommodate both halogens in halogen-bonding positions. It is presumably more efficient
to optimise one halogen bond instead. The dimers 2 all contain two equivalent N-XeeeO halogen
bonds. The halogen bond pattern is the same in the trimer as in its constituent dimers. The halogenated
G-quartets display a range of halogen bond patterns. In some structures, the N-XeeeN halogen bond
is optimised at the expense of the N-XeeeO interaction. However, in other structures, the N-XeeeO
halogen bond is optimised instead, whereas there are also structures where the N-XeeeN and N-XeeeO
halogen bonds co-exist. Some structures manage to incorporate XeeeX halogen bonds, either by
adopting very non-planar structures or by moving the inner halogens from the N1 to the adjacent O6
atom. The latter structures become more important for the heavier atoms: whereas, for the Cl- and
Br-quartets, this was the least stable structure, the most stable I- and At-quartet feature O6-XeeeX
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halogen bonds. In fact, the three most stable At-quartets feature O6-XeeeX halogen bonds. Our results
indicate that halogenated bases can be incorporated into nucleic acid structures, which is relevant for
the incorporation of unnatural halogenated bases into synthetic DNA and other nucleic acid structures.

In general, substitution of the hydrogen-bonding hydrogens by halogens leads to a decrease
in stability, though the interaction energy of the At-doped R-I trimer just exceeds that of its
hydrogen-containing counterpart, whereas the interaction energies of the three most stable At-doped
quartets comfortably exceed that of the hydrogen-containing quartet. The At-doped R-II dimer 1 has an
interaction energy nearly identical to the unsubstituted dimer (—49.1 vs. —49.5 k]/mol). This shows that
halogen bonds containing iodine or astatine can be similar, or stronger, in stability than corresponding
hydrogen bonds. In all structures, the interaction energy increases with the increasing atomic number
of the halogen. This is in disagreement with the results of Parker et al. for the canonical base pairs,
where, in most cases, the Br-doped base pairs are more stable than the I-doped base pairs [16]. A recent
study performing relativistic quantum calculations on complexes formed between halide anions and a
series of Y3C-X (Y = F to X, X = I, At) halogen bond donors revealed the weaker donation ability of
At3C-At compared to I3C-I [59]. However, in most cases reported in the literature, heavier halogens
form stronger halogen bonds.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/18/
6571/s1. Section S1: Calculation of CP-corrected interaction energies; Section S2: Conversion problems; Table
S1: Selected geometrical and van der Waals ratios for the (1,2X-G)4 quartets (X = Br, I, At); Table S2: Cartesian
coordinates of the undoped and halogenated reverse Hoogsteen base pairs, R-I and R-II ribbons, and G-quartets.
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