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We present an experimental demonstration of a general
entanglement-generation framework, where the form of the
entangled state is independent of the physical process used to
produce the particles. It is the indistinguishability of multiple
generation processes and the geometry of the setup that give
rise to the entanglement. Such a framework, termed entangle-
ment by path identity, exhibits a high degree of customizability.
We employ one class of such geometries to build a modular
source of photon pairs that are high-dimensionally entangled in
their orbital angular momentum. We demonstrate the creation of
three-dimensionally entangled states and show how to incremen-
tally increase the dimensionality of entanglement. The generated
states retain their quality even in higher dimensions. In addition,
the design of our source allows for its generalization to various
degrees of freedom and even for the implementation in inte-
grated compact devices. The concept of entanglement by path
identity itself is a general scheme and allows for construction of
sources producing also customized states of multiple photons. We
therefore expect that future quantum technologies and funda-
mental tests of nature in higher dimensions will benefit from this
approach.
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The transition from two- to multidimensional entangled quan-
tum systems brings about radical improvements in the dis-

tribution and processing of quantum information. Such systems
play an important role in secure high-dimensional superdense
coding schemes (1–3); they offer improved noise resistance and
increased security against eavesdropping (4, 5); and they are ben-
eficial or even indispensable for fundamental experiments, such
as tests of local realism (6–9) or the prospect of teleportation of
the entire information stored in a photonic system (10–12). Vari-
ous degrees of freedom, such as frequency (13), time bin (14–16),
and path (17, 18), have been employed so far for the generation
of high-dimensionally entangled states. In this paper, we present
an experimental proof-of-principle demonstration of a conceptu-
ally different framework of generating high-dimensionally entan-
gled states. Multiple spontaneous parametric down-conversion
(SPDC) processes are employed, but none of them individually
produces entanglement. The entanglement is built in a manner,
where not intrinsic properties of a photon-production process,
but rather the geometry of the setup governs the structure of the
final entangled state. This method amounts to the concept known
as entanglement by path identity (19, 20), which was discovered
recently with the help of a computer program (21). Utilizing
this concept leads to a simple yet versatile design of a source of
high-dimensional entanglement. In the following, we present the
experimental implementation of this source adapted to the orbital
angular momentum (OAM) of photons. Nevertheless, the scheme
is not linked to a specific degree of freedom and is valid for other
degrees of freedom as well.

The OAM of photons is an in principle unbounded dis-
crete quantity and as such has been used extensively (22–26)
to prepare high-dimensionally entangled photonic states. In the

traditional way, the OAM-entangled photon pairs are produced
in a single SPDC process (27). Albeit convenient, this process
exhibits several drawbacks. For example, photon pairs generated
in this way have a nonuniform distribution of OAM (28–31).
The maximally entangled states can then be generated either by
postprocessing techniques, such as Procrustean filtering (32, 33),
or by preprocessing of the pump beam. In a recently demon-
strated approach (34, 35), a superposition of OAM modes is
imprinted by holograms into the pump beam, which translates
via down-conversion into maximally entangled states of two
photons.

Our technique offers several important advantages over the
traditional approach. The source of entangled photon pairs
enables us to engineer the state for our needs as both phases and
magnitudes in a high-dimensional quantum state can be adjusted
completely arbitrarily. One is not limited by the conditions of the
employed SPDC processes. This way, various families of states
can be produced, such as high-dimensional maximally entangled
Bell states that are demanded by applications such as high-
dimensional quantum dense coding (36), entanglement swapping
(37), or quantum teleportation (38). By proper adjustment of
the state’s magnitudes the nonmaximally entangled states max-
imizing the violation of high-dimensional Bell inequalities (6,
39) can be also produced. The experimental implementation
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of our source has a modular structure, where adding a single
module leads to increasing the entanglement dimension by one.
High brightness of our source is possible as all photons are pro-
duced already in the desired modes and no photons have to be
discarded by postselection.

This work is organized as follows. After a brief introduction to
the concept of entanglement by path identity, we describe the
experimental design of our source. Then we demonstrate the
scalability and versatility of our method by generating several dif-
ferent states in two and in three dimensions. We verify the quality
of the produced entangled quantum states using quantum state
tomography.

Entanglement by Path Identity
Consider a simple experimental setup consisting of two nonlin-
ear crystals that are aligned in series and coherently emit photons
via SPDC, as shown in Fig. 1 A and B. The pump power for both
crystals is set sufficiently low such that events when either crystal
emits multiple photon pairs as well as events when both crystals
each simultaneously generate a photon pair can be neglected.
The propagation paths of the down-converted photons coming
from the two crystals are carefully overlapped. As a result, once
the photon pair leaves the setup, no information can be obtained,
not even in principle, in which crystal the pair was created (40–
42). The down-conversion processes in both crystals are adjusted
such that photon pairs may be emitted only into the fundamental
mode |0, 0〉 with zero quanta of OAM∗ . Importantly, no entan-
glement is generated by either of the two crystals. (In practice, a
small contribution of higher-order OAM modes is also present.
For the detailed discussion see SI Appendix, Spiral spectrum.)

Suppose now that two mode shifters are inserted into the
setup. These add an extra quantum of OAM to each photon
originating in the first crystal and thus act as the only possi-
ble source of which-crystal information. As the down-conversion
processes in the two crystals are (apart from the OAM) indis-
tinguishable, the resulting state of a detected photon pair is a
coherent superposition

|ψ〉= 1√
2

(|0, 0〉+ e iϕ|1, 1〉). [1]

In Eq. 1, ϕ is the phase between the two SPDC processes
imparted by a phase shifter and numbers in ket vectors refer to
the OAM quanta of respective photons.

The generation of entangled states as described above is a
specific example of the concept termed entanglement by path
identity. This concept can be readily generalized for production
of high-dimensionally entangled states (19). When the num-
ber of crystals in the series is increased to d , and the number
of phase and mode shifters is accordingly increased to d − 1,
high-dimensionally entangled states of the following form are
produced as

|ψ〉=
d−1∑
`=0

c`|`, `〉, [2]

where d is the state dimension and c` are complex amplitudes
(Fig. 1 C and D). The magnitudes of c` can be set by pump-
ing each crystal independently with properly adjusted power. By
using different mode shifters for either of the two photons in a
down-converted pair, completely arbitrary states can be created.
Interestingly, the widely used cross-crystal scheme is the simplest
example of the above approach, where two-particle states are
entangled in polarization (43–45).

*Parameters of the two SPDC processes are chosen such that photon properties such as
frequency, polarization, and OAM are identical for both crystals and also higher-order
OAM modes are highly suppressed.

A

B

C

D

Fig. 1. Basic concept. Gray boxes labeled with underlined uppercase letters
represent nonlinear crystals, each pumped coherently and each generat-
ing with a small probability a pair of photons via an SPDC process. Each
generated photon pair is in OAM state |0, 0〉 with a small contribution
of higher-order terms. The two down-converted photons then propagate
along their paths in the direction indicated by the arrows and acquire
phase shifts ϕi as well as additional quanta of OAM due to phase and
mode shifters. (A) The pump beam, represented by an arrow, gives rise to
an SPDC process in crystals A and B. Photons generated in crystal A are
reflected into crystal B such that their paths are overlapped with paths
of photons generated in crystal B. As a consequence, the two coherent
SPDC processes in crystals A and B are indistinguishable and the generated
photon pairs leave the setup in a two-dimensionally entangled Bell state
1/
√

2 (|0, 0〉+ exp (iϕ)|1, 1〉). The quantum of OAM is imparted to the pho-
ton by a spiral phase plate shown in Inset. (B) A schematic picture of the
setup in A, where the pump beam is not shown. (C) The addition of the
third crystal to the setup increases the entanglement dimension by one. The
resulting state is thus 1/

√
3 (|0, 0〉+ exp (iϕ̄1)|1, 1〉+ exp (iϕ̄2)|2, 2〉), where

ϕ̄1 =ϕ2 and ϕ̄2 =ϕ1 +ϕ2. (D) One can stack multiple setups from A to
acquire a series of d crystals that produces a d-dimensionally entangled
state 1/

√
d(|0, 0〉+ exp (iϕ̄1)|1, 1〉+ · · ·+ exp (iϕ̄d−1)|d− 1, d− 1〉), where

the relative phases ϕ̄i =
∑d−1

j=d−i ϕj are adjusted by an appropriate choice
of phase shifters ϕj . The magnitudes of the individual modes are
modified by varying the power with which the respective crystals are
pumped.

Setup
The experimental implementation presented here is based on
the scheme in Fig. 1C with two main modifications. The pump
and down-converted beams for each crystal are separated by two
Mach–Zehnder interferometers, such that both wavelengths can
be manipulated separately. This way, phases as well as magni-
tudes of individual modes in the quantum state can be adjusted
independently. For technical reasons, the down-converted pho-
ton pairs were not emitted in a perfectly collinear manner, but
had a slight angular deviation of roughly 1◦. This leads to a
nonperfect operation of the mode shifter, which functions prop-
erly only when both photons propagate through its center. As a
countermeasure, we place the mode shifter into the pump beam
instead of the down-conversion beam. For details refer to SI
Appendix, Detailed setup and Coherence conditions.
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The setup, presented in Fig. 2, was designed to produce three-
dimensionally entangled states. Each dimension in the generated
quantum state corresponds to one of three nonlinear crystals A,
B, or C in the setup. In Fig. 2 this correspondence is empha-
sized by enclosing the crystals with associated elements into
boxes labeled 1st dim, 2nd dim, and 3rd dim. The laser beam
is split into three paths to pump each crystal separately. The
pump beam for crystal A possesses zero quanta of OAM and
so do the down-converted photons, which exit the crystal in state
|0, 0〉. (Apart from the predominant |0, 0〉 component, also effec-
tively negligible contributions of higher-order OAM terms are
present in the photons’ state, as detailed in SI Appendix, Spiral
spectrum.) The pump beam for crystal B acquires four quanta of
OAM due to a spiral phase plate (SPP), which is inserted into
the beam and plays the role of the mode shifter. Consequently,
each down-converted photon generated in crystal B carries two
quanta of OAM and the pair is produced in state |2, 2〉. Similarly,
the pump beam for crystal C also acquires four quanta of OAM,
but an additional mirror is used to invert the sign of the OAM
value from 4 to −4, effectively subtracting eight quanta of
OAM. Down-converted photons coming from crystal C are then
produced in state |−2,−2〉. The resulting quantum state reads

|ψ〉=α|0, 0〉︸ ︷︷ ︸
crystal A

+ βe iϕ1|2, 2〉︸ ︷︷ ︸
crystal B

+ γe iϕ2 |−2,−2〉︸ ︷︷ ︸
crystal C

. [3]

Magnitudes α, β, and γ of the entangled state can be changed by
adjusting the relative pump power for each crystal. The relative
phases ϕ1 and ϕ2 are set by positioning two trombone systems
that act as phase shifters. By employing only the first two stages
of the setup, namely parts in boxes labeled 1st dim and 2nd dim,
two-dimensionally entangled states are created. In ref. 46 a sim-
ilar experimental setup was used to generate three-dimensional
(3D) nonentangled states of photons in Fock representation.

We use type II SPDC in all three crystals. To measure the
entangled state, we first deterministically separate the two down-
converted photons by a polarizing beam splitter. Two spatial light
modulators in combination with single mode fibers are used to
perform any projective measurement for OAM modes (27). The

single photons are then detected by avalanche photon detec-
tors and simultaneous two-photon events are identified by a
coincidence logic.

Finally, the resulting quantum states are characterized by com-
plete quantum state tomography. We use a maximum-likelihood
reconstruction technique (47) to estimate the physical density
matrices of the detected photon pairs. Also, using the fidelity
bound derived in ref. 48, the minimum generated entanglement
dimensionality is found.

Experimental Results
The high flexibility of our setup in producing various states is
demonstrated in Table 1, where fidelities for different three-
dimensionally (and also two-dimensionally) entangled states are
presented. These data demonstrate our ability to control the rel-
ative phases and magnitudes of the generated quantum states.
Most notably, we are able to create three mutually orthogo-
nal and maximally entangled states in three dimensions |ψ1〉,
|ψ2〉, and |ψ3〉 with an average fidelity of 87.5± 2.2%. These
states represent three of nine two-party 3D Bell states, which
are important for example in high-dimensional quantum tele-
portation (38) or high-dimensional superdense coding schemes
(1). The orthogonality of these states does not follow directly
from the orthogonality of OAM modes, but indeed from dif-
ferently adjusted phases in the quantum states. Fidelity bounds
derived in refs. 48 and 49, which are calculated as a sum of
squares of all but the smallest Schmidt coefficients of a given
reference state |ψi〉, are used to determine the entanglement
dimensionality of the corresponding measured states. When the
fidelity F of the experimentally measured density matrix exceeds
the associated fidelity bound, the created state is at least three-
dimensionally entangled. The presented states |ψ1〉 through |ψ4〉
are indeed entangled in three dimensions, as their fidelities F
satisfy F > 2/3≈ 0.67 and the same is true for |ψ5〉 for which
F > 9/11≈ 0.82. Likewise, fidelities for two-dimensional (2D)
states

∣∣Φ+
〉

and
∣∣Φ−〉 satisfy F > 1/2. With the state |ψ5〉 we

demonstrate the ability to adjust relative magnitudes of terms
in the quantum superposition. A nonmaximally entangled state
with uneven magnitudes, very similar to |ψ5〉, provides the

SPP BS

Down-converted beam

Pump beam

DMPBSLens TS

DetBPF SLMMirror Crystal

SPP BS

Down-converted beam

Pump beam

DMPBSLens TS

DetBPF SLMMirror Crystal

Fig. 2. Experimental setup. Three-dimensional states are created by elements in boxes labeled 1st dim, 2nd dim, and 3rd dim. Three periodically poled KTP
crystals A, B, and C are pumped with a continuous-wave laser beam at the central wavelength of 405 nm. Frequency-degenerate down-converted photons
created by type II collinear SPDC propagate along identical paths into the detection system shown in box Detection. Photons originating in crystal B are
created in |2, 2〉 OAM mode because of a spiral phase plate (SPP +4) inserted after the first beam splitter (BS). In addition, photons originating in crystal
C are created in | − 2,−2〉 mode due to an extra mirror that effectively works as a −8 mode shifter as is explained in the main text. The pump beam is
separated from the down-conversion beam by dichroic mirrors (DM) and a band-pass filter (BPF). Before detection, the two down-converted photons are
separated on a polarizing beam-splitter (PBS). The state tomography in the OAM degree of freedom is done by projective measurements (27) where specific
holograms are projected on two spatial light modulators (SLMs). The reflected photons are subsequently coupled into single-mode fibers and detected by
single-photon detectors (Det). The resulting signals are postprocessed by a coincidence counting module (&). The relative phases ϕ1 and ϕ2 can be adjusted
by phase shifters implemented with trombone systems (TS). The magnitudes of individual terms in the quantum state are controlled by setting the splitting
ratio of the beam splitters. For the detailed diagram of the experimental setup see SI Appendix.
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Table 1. Fidelities F(|ψ〉, ρ) = Tr(|ψ〉〈ψ|ρ) between several two-
and three-dimensionally entangled states |ψ〉 and their
experimental realizations ρ

State Fidelity F

|Φ+〉= 1/
√

2(|0, 0〉+ |2, 2〉) 0.904± 0.005
|Φ−〉= 1/

√
2(|0, 0〉− |2, 2〉) 0.891± 0.005

|ψ1〉= 1√
3
(|0, 0〉+ |2, 2〉+ | − 2,−2〉) 0.870± 0.005

|ψ2〉= 1√
3
(|0, 0〉+ω|2, 2〉+ω−1| − 2,−2〉) 0.852± 0.007

|ψ3〉= 1√
3
(|0, 0〉+ω−1|2, 2〉+ω| − 2,−2〉) 0.903± 0.006

|ψ4〉= 1√
3
(|0, 0〉− |2, 2〉− |− 2,−2〉) 0.890± 0.004

|ψ5〉= 1√
22

(2|0, 0〉+ 3|2, 2〉+ 3| − 2,−2〉) 0.848± 0.008

States |ψ1〉, |ψ2〉, and |ψ3〉 form an orthonormal set of maximally entan-
gled states in three dimensions (ω= e2πi/3). State |ψ5〉 is a manifestation
of our ability to control not only relative phases in the quantum state, but
also relative magnitudes. The error estimates are calculated by propagation
of Poissonian statistics of coincidence counts and do not take into account
possible systematic errors. For detailed discussion of experimental data refer
to SI Appendix, State tomography results.

maximal violation of the 3D generalization of the Bell inequal-
ities (6, 39). The generation rates of our setup are around
1,200 Hz for the 3D states and around 1,400 Hz for the 2D
states. It is important to mention here that these count rates are
the actually detected ones. All losses from the detection scheme,
such as spatial light modulators, detectors, and other optical ele-
ments, are already included. With the constant total pump power
the two rates should be equal. The reason why the former is
smaller is that an SPDC process is less efficient when pumped
by a beam with a nonzero number of OAM quanta, as is the case
for crystals B and C. This effect is not present when all crystals
are pumped by a fundamental mode as proposed in the scheme
in Fig. 1.

The real parts of the density matrices for three of the states
presented in Table 1 are displayed in Fig. 3. There, the mea-
surement results (solid bars) are compared to the theoretical
expectations (translucent bars). The average fidelity 87.3± 2.2%
of three-dimensionally entangled states does not decrease signif-
icantly when compared to the average fidelity of 89.8± 0.9% of
2D states. The quality of the entangled states is thus mostly unaf-
fected when going from two to three dimensions and indicates
that our approach can be feasible for even higher dimensions.
The fidelities reported in Table 1 do not reach unity for two
main reasons. First, imperfect coherence of the SPDC pro-
cesses amounts to roughly 5% decrease in the fidelities for all

reported states irrespective of their dimensionality. The main
limitation for achieving higher coherence is slight distinguishabil-
ity of the SPDC sources, which we attribute to small differences
in the spectral and polarization degrees of freedom of the down-
converted photons. Second, an imprecise setting of local phases,
slight misalignment, and the presence of higher-order OAM
modes lead to an extra decrease of fidelities, which varies for
different states. This explains the range 85 to 90% of fidelities
for different 3D states. Nevertheless, none of these imperfec-
tions are of fundamental nature. We analyze the causes of these
imperfections in detail in SI Appendix and therefore facilitate
technical improvements in future development iterations. Com-
plete state tomography data are presented in SI Appendix, State
tomography results.

Alternative Designs
The modular structure of the setup gives rise to the scalability
of our scheme in the sense that to increase the entanglement
dimension by one requires a mere addition of a single crystal
and a single mode shifter (SPP). To further improve the perfor-
mance, some modifications to our experimental implementation
can be made. We adopted the Mach–Zehnder interferomet-
ric configuration in our experiment. This gives us freedom to
access and manipulate the pump and down-conversion beams
separately with no need of custom-made components. The dis-
tance between two successive crystals in our current setup is
600 mm. Due to these large interferometers, active stabiliza-
tion is inevitable. However, scaling down the distances and
employing integrated fabrication techniques as used in microchip
fabrication lead to significantly more stable interferometers. An
alternative approach is to circumvent interferometers completely
by, for example, using wavelength-dependent phase shifters and
q plates (50, 51), which is inherently stable.

The framework of entanglement by path identity can be eas-
ily employed to generate hyperentangled states. Our source of
photon pairs can be modified to produce polarization–OAM
hyperentanglement when the noncollinear type II SPDC process
is utilized in each crystal. This way, the two photons are already
created in a polarization-entangled state and due to the geome-
try of the setup they become also entangled in OAM. In addition,
the framework represents a more efficient alternative to tradi-
tional techniques to generate multipartite entanglement (19).
For instance, in the case of the 3D three-photon Greenberger–
Horne–Zeilinger (GHZ) state, the design based on the entangle-
ment by path identity produces entangled states with probability
that is eight times larger than when one uses the traditional
approach based on interference (12).

A B C

Fig. 3. Examples of the three-dimensionally entangled states |ψ1〉, |ψ4〉, and |ψ5〉 produced (Table 1). With our method we can control the relative phases,
as demonstrated in A and B, as well as relative magnitudes, as shown in C. Only real parts are shown; imaginary parts lie in the range (−0.12, 0.12) for all
cases. Background noise contributions lie in the range (−0.04, 0.04) for all cases and are explicitly shown only in A. This background is omitted in B and
C to improve readability. Green (solid) and orange (hatched) bars represent positive and negative values of reconstructed density matrices, respectively.
Gray translucent bars represent the theoretical expectation. Fidelities of the measured states with their reference states are 87.0± 0.5%, 89.0± 0.4%, and
84.8± 0.8%, respectively.
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Conclusion
We performed a proof-of-principle experiment of a method
called path identity to generate high-dimensionally entangled
quantum states. In contrast to previous entanglement creation
schemes, here the form of the created quantum state is not
dependent on the photon pair creation process itself, but the
geometrical arrangement of the setup. Besides its conceptual dif-
ference, our approach has two core strengths: a simple and a
modular design. The simple geometry-based approach allows us
to design an experimental layout that creates versatile and high-
dimensionally entangled photon pairs in OAM. These states can
be readily utilized in various applications such as superdense cod-
ing, high-dimensional quantum teleportation, and violations of
generalized Bell inequalities.

We confirmed the modularity of our source by generating
different entangled quantum states in two and three dimen-
sions. Thereby we found that the average fidelity of the created

states is not decreasing significantly. Thus we believe that extend-
ing this modular arrangement is possible and will lead to even
higher-dimensionally entangled states in the future. Another
very appealing feature of our method is that different families
of spatial modes can be used. It is, therefore, possible to cre-
ate high-dimensional entangled photon pairs in specific modes
optimized for free-space communication or even fiber-based
systems.

Data Availability. All study data are included in this article and
SI Appendix.
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