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SUMMARY

Basal cell carcinomas (BCCs) frequently possess immense mutational burdens; however, the 

functional significance of most of these mutations remains unclear. Here, we report that loss of 

Ptch1, the most common mutation that activates upstream Hedgehog (Hh) signaling, initiates the 

formation of nascent BCC-like tumors that eventually enter into a dormant state. However, rare 

tumors that overcome dormancy acquire the ability to hyperactivate downstream Hh signaling 

through a variety of mechanisms, including amplification of Gli1/2 and upregulation of Mycn. 

Furthermore, we demonstrate that MYCN overexpression promotes the progression of tumors 

induced by loss of Ptch1. These findings suggest that canonical mutations that activate upstream 

Hh signaling are necessary, but not sufficient, for BCC to fully progress. Rather, tumors likely 

acquire secondary mutations that further hyperactivate downstream Hh signaling in order to escape 

dormancy and enter a trajectory of uncontrolled expansion.
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In brief

Trieu et al. generate BCC mouse models in which rare macroscopic tumors form alongside 

numerous failed microscopic lesions. Successful macroscopic tumors acquire secondary changes 

that elevate Gli1, Gli2, and/or Mycn levels, causing hyperactivation of downstream Hedgehog 

(Hh) signaling. Loss of p53 and Notch1 also contributes to tumor progression.

INTRODUCTION

Our skin is exposed to the mutagenic effects of UV radiation on a daily basis. While UV 

exposure is a major risk factor for skin cancer, recent deep-sequencing studies have revealed 

that clinically normal, sun-exposed skin can tolerate surprisingly high rates of mutation 

without forming tumors (Fowler et al., 2021; Lynch et al., 2017; Martincorena et al., 2015). 

Indeed, previous studies have suggested that keratinocytes that acquire cancer-associated 

mutations may be actively eliminated from the skin or may persist and carry out normal 

physiological functions (Brown et al., 2017; Murai et al., 2018; Pineda et al., 2019; Ren et 

al., 1997). Why certain tumor-initiated cells fail to maintain dysmorphic growth, whereas 

others display unbridled proliferation, currently remains unclear.

A tumor that arises more frequently than any other is basal cell carcinoma (BCC), the 

world’s most common cancer (Crowson, 2006; Epstein, 2008). Consistent with the high 

mutational rates caused by UV exposure, most BCCs arise sporadically in sun-exposed 

skin; however, Gorlin syndrome patients who inherit one defective copy of PTCH1 are 
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predisposed to forming numerous BCCs (Bonifas et al., 1994; Hahn et al., 1996; Johnson 

et al., 1996). Although rarely lethal, the ubiquity of BCC, which is diagnosed in over 5 

million patients annually, represents a quality-of-life issue for many patients and poses a 

major burden on our healthcare system (American Cancer Society statistics, 2021).

Dysregulated Hedgehog (Hh) signaling is the key feature that drives all BCCs (Kasper et al., 

2012). Normally, Hh signaling is suppressed by PTCH1, whose main function is to inhibit 

SMO, an upstream activator of the pathway. Upon binding to Hh ligands, PTCH1 is itself 

inactivated, allowing SMO to signal through GLI transcription factors to induce target gene 

expression. These targets include those that encode cell cycle regulators, such as MYCN and 

CCND1, as well as core components of the Hh pathway, such as GLI1, PTCH1, and PTCH2, 

which provide both positive and negative feedback (Bonifas et al., 2001; Mill et al., 2005; 

Regl et al., 2002; Tojo et al., 1999).

BCCs are classically driven by mutations that activate upstream Hh signaling, either through 

loss-of-function mutations in PTCH1 (~70% of tumors) or gain-of-function mutations in 

SMO (~10%–20% of tumors). However, BCC is also the most highly mutated cancer, 

with 50–75 mutations/Mb in sporadic tumors and 21–33 mutations/Mb in Gorlin tumors 

(Atwood et al., 2015; Bonilla et al., 2016; Jayaraman et al., 2014; Sharpe et al., 2015). Not 

surprisingly, mutations in the Hh pathway (PTCH1, SMO, SUFU, GLI1/GLI2, and MYCN) 

arise frequently, as do mutations in TP53, Notch signaling (NOTCH1 and NOTCH2), and 

Hippo signaling (YAP1, PTPN14, and LATS1/LATS2; Bonilla et al., 2016; Kilgour et al., 

2021; Di Nardo et al., 2021). These recurrent mutations suggest that tumors initiated by 

loss of PTCH1 or oncogenic SMO may require additional genetic changes to override 

tumor-suppressive controls in the skin; however, this remains to be proven.

The immense mutational burden in BCC complicates the ability to distinguish functional 

mutations from random passenger mutations. To circumvent this problem, we generated 

simpler BCC mouse models that allow rare macroscopic tumors to form alongside numerous 

failed microscopic lesions. By comparing tumors that succeed against those that fail, we 

identify secondary changes that enable nascent tumors to progress to macroscopic disease.

RESULTS

Nascent BCC-like tumors driven by hallmark mutations fail to progress

We and others have previously demonstrated that microscopic BCC-like tumors form 

efficiently after Ptch1 deletion in hair follicle and surface mechanosensory touch dome 

(TD) epithelia (Peterson et al., 2015; Sun et al., 2020). To further assess the growth kinetics 

of these lesions, we analyzed mice expressing tamoxifen (TAM)-inducible Cre recombinase 

under the control of the Gli1 promoter (Gli1-CreERT2), coupled with homozygous Ptch1 
floxed alleles (GP mice) (Ahn and Joyner, 2004; Uhmann et al., 2007). As we previously 

reported, 5 weeks after TAM administration in GP mice, numerous microscopic lesions 

arose from Gli1+ stem cells in the hair follicle and TD (Peterson et al., 2015) (Figures 1A–

1C). Hair follicle-associated tumors resembled nodular BCC, whereas TD-derived tumors 

possessed features reminiscent of infundibulocystic BCC and fibroepithelioma of Pinkus.

Trieu et al. Page 3

Cell Rep. Author manuscript; available in PMC 2022 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To examine the long-term fates of these nascent tumors, we collected serial biopsies up 

to 17 weeks post-TAM. Unexpectedly, we observed that hair follicle-associated lesions 

spontaneously regressed over time, leaving behind small residual tumor nests (Figures 1A 

and 1B). In no instance did we observe macroscopic tumors in any GP mice (Figure 

1A). By contrast, TD-derived tumors neither progressed nor regressed between 12 and 17 

weeks post-TAM, although we occasionally observed ~1-mm-diameter papules that did not 

enlarge over time (Figures 1C and 1D). Macroscopic tumors failed to appear, even when we 

followed GP mice up to 25 weeks post-TAM (Figure S1A).

To determine whether the lack of tumor progression is generalizable to lesions originating 

from other stem cell populations, we also targeted Lrig1+ hair follicle stem cells for 

Ptch1 deletion (LP mice) (Powell et al., 2012). Similar to above, we observed nascent 

microscopic lesions in LP mice but no macroscopic tumors (Figures 1E and 1F). Finally, we 

assessed tumor formation following overexpression of a constitutively active form of Smo 

(SmoM2), targeted to either Gli1+ or Lrig1+ stem cells (Mao et al., 2006). Again, abundant 

microscopic BCC-like tumors emerged but no macroscopic tumors (Figure 1G). Altogether, 

these findings demonstrate that nascent tumors initiated by either loss of Ptch1 or gain of 

Smo fail to progress in the most widely studied conditional models of BCC (Figure 1H).

Nascent BCCs become dormant despite constitutively elevated Hh signaling

Sporadic BCCs often arise in aged skin, which undergoes epidermal and dermal changes 

over time (Rittié and Fisher, 2015). To better characterize our BCC model, we asked whether 

aging confers a permissive environment for GP tumors to progress. We therefore induced 

Ptch1 deletion in young or older mice at 4 or 25 weeks of age, respectively, and assessed 

tumor kinetics relative to animals induced at 8 weeks of age, our standard starting point 

(Figure 2A). In all cases, we observed abundant microscopic tumors at 5 weeks post-TAM, 

followed by spontaneous regression of hair follicle-associated tumors at 12–17 weeks post-

TAM (Figures 2B–2D). As before, no macroscopic tumors emerged. These findings indicate 

that the relative age of the tumor (time after initiation), rather than the absolute age of the 

animal, likely determines regression kinetics in our system.

Since BCCs regress in response to pharmacological inhibition of Hh signaling (von Hoff 

et al., 2009), we next asked whether spontaneous tumor regression occurs due to the 

inability to maintain high-level Hh signaling. To measure downstream pathway activity, 

we incorporated a Gli1-responsive β-galactosi-dase (LacZ) allele into GP mice and assessed 

LacZ activity. Alternatively, we quantitated mRNA in situ for the canonical Hh target gene, 

Ptch2. In both cases, we found that Hh pathway activity is maintained even in regressed 

residual tumors (Figures 2E and 2F).

Further characterization of regressing tumors revealed that proliferation is significantly 

reduced between 12 and 17 weeks post-TAM (Figure 2E), concordant with previous findings 

in Ptch1-deficient skin lesions (Nitzki et al., 2010). This reduction was detected in both hair 

follicle- and TD-derived tumors in GP mice (Figures 2G and 2H), as well as in hair follicle-

derived tumors in LP and SmoM2 mice (Figures 2I, S1B, and S1C). Notably, regressed GP 

tumors were not apoptotic and did not express classic markers of senescence, such as p16 

and p21 (Figures S2A and S2B). Interventions such as treating the skin with a phorbol ester 
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tumor promoter failed to restore proliferation, while depilation caused hair follicles to enter 

the anagen growth phase without affecting neighboring regressed lesions (Figures S2C and 

S2D). These findings indicate that nascent tumors initiated by deletion of Ptch1 eventually 

become suspended in a dormant state where cells are neither highly proliferative, apoptotic, 

nor senescent—features that somewhat resemble those of dormant hair follicle stem cells.

Nascent tumors exhibit hair follicle progenitor-like organization and persist upon Notch1 
deletion

Given the parallels between spontaneously regressed GP tumors and slow-cycling hair 

follicle stem cells, we next investigated whether, conversely, nascent proliferating tumors 

might resemble growing hair follicles. Indeed, we previously reported that BCCs can 

possess two molecularly distinct cellular sub-compartments: peripheral basal layer cells with 

high Hh pathway activity and interior suprabasal tumor cells with elevated Notch signaling, 

as assessed by staining for cleaved Notch1 intracellular domain (NICD) (Eberl et al., 2018) 

(Figure 3A). Notably, these features are recapitulated in the normal-growing hair follicle 

bulb, where basal layer matrix progenitor cells exhibit high Hh target gene expression and 

give rise to NICD+ suprabasal progeny (Figures 3B and 3C).

NOTCH1 and NOTCH2 are among the most frequently mutated genes in BCC, and we 

previously showed that loss of Notch1 enables tumors to persist when Hh signaling is 

inhibited pharmacologically (Eberl et al., 2018). To test whether Notch also modulates 

tumor progression, we generated GP mice harboring additional homozygous Notch1 
conditional deletion alleles (GPN1 mice) (Yang et al., 2004). In contrast to GP mice, 

GPN1 animals developed extensive, microscopic hair follicle-associated lesions that did not 

undergo spontaneous regression (Figures 3D and 3E). In spite of their increased persistence, 

however, these tumors still reduced their proliferation over time, which was again not 

reversible by phorbol ester treatment (Figures 3F and S3A). Overall, these findings indicate 

that losing Notch1 promotes tumor persistence but does not enable these lesions to escape 

dormancy. Thus, even after developing substantial microscopic tumor burdens that persisted 

up to 17 weeks post-TAM, GPN1 mice were largely devoid of macroscopic BCC-like 

tumors, with rare exceptions (Figure 3G; Table S1), which we will discuss in greater detail 

below.

Loss of p53 is not sufficient to drive BCC tumor progression

TP53 is also commonly mutated in BCC, and loss of Trp53 promotes tumorigenesis in 

an irradiated model of BCC; however, the mechanism by which p53 modulates BCC 

progression remains unclear (Ponten et al., 1997; Wang et al., 2011, 2017). Indeed, our 

previous studies demonstrated that deleting Trp53 affects neither initial tumor formation 

nor drug-induced regression (Eberl et al., 2018). To examine whether loss of p53 affects 

later stages of tumor progression, we first confirmed that p53 is highly expressed in basal 

layer cells in GP tumors, which again mimics the expression pattern seen in basal matrix 

progenitors in the normal-growing hair follicle (Xue et al., 2019) (Figures 4A–4C).

We next generated GP mice harboring homozygous Trp53 conditional deletion alleles 

(GPP53 mice) (Marino et al., 2000) and observed that nearly all microscopic GPP53 lesions 
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still underwent spontaneous regression (Figures 4D and 4E). As seen in GP and GPN1 

mice, GPP53 tumors similarly exhibited reduced proliferation over time (Figure 4F), and 

we confirmed that dormant regressed lesions deleted p53, as expected (Figure 4D). Along 

with our previously published data (Eberl et al., 2018), these findings suggest that losing 

p53 does not affect tumor initiation, persistence, dormancy, or drug response. In contrast 

to GPN1 mice above, GPP53 animals harbored lower microscopic tumor burdens following 

spontaneous regression. Nonetheless, most GPP53 mice developed at least one macroscopic 

tumor between 12 and 17 weeks post-TAM (Figure 4G). Below, we explore the pathological 

and molecular features that distinguish these macroscopic tumors from failed microscopic 

lesions.

Macroscopic tumors vary histologically

Irradiated Ptch1-heterozygous mice have previously been reported to develop multiple types 

of skin tumors (Mancuso et al., 2006; Wang et al., 2011). We therefore assessed the 

histology of macroscopic tumors from GPP53 and GPN1 mice and determined that most 

tumors can be classified into three categories (Figure 5A): type 1 tumors most resembled 

human BCC and formed dense basaloid nests with peripheral palisading. Rare type 2 

tumors had myoepithelial features, such as expression of α smooth muscle actin (SMA). 

Finally, type 3 tumors were composed of numerous cell islands with stromal involvement, 

reminiscent of trichoblastoma. Whereas GPP53 mice mostly developed type 1 tumors, 

GPN1 mice formed both type 1 and type 3 tumors, with the latter subtype predominating in 

mice aged beyond 20 weeks post-TAM. In GPP53 mice, type 3 tumors displayed extensive 

Notch pathway activation (Figure 5A). The incidence and distribution of macroscopic 

tumor subtypes is summarized in Table S1. For all studies below, we focus exclusively 

on characterizing type 1 BCC-like tumors.

A subset of macroscopic tumors acquire downstream Hh pathway hyperactivation

What enables rare macroscopic tumors to “break through,” when millions of other Ptch1-

deleted cells in the skin fail to progress? Since the inability to maintain high-level 

proliferation appears to be a common roadblock for nascent tumors arising in GP, LP, GPN1, 

GPP53, and SmoM2 mice, we reasoned that macroscopic tumors likely acquire mutations 

that confer sustained replicative ability. To identify these somatic changes, we performed 

whole-exome sequencing (WES) on 16 macroscopic GPP53 tumors and 5 GPN1 tumors, 

along with matched normal control tissue.

Although overall mutational burdens varied widely among tumors, the dominant genomic 

alterations were somatic DNA copy number changes, with far fewer single-nucleotide 

variations and insertion/deletions (Figures S4A and S4B; Data S1). In particular, we 

detected two recurrent amplifications: 7/16 GPP53 tumors acquired copy number gains in 

regions of chromosome 1 encompassing Gli2, while 4/16 GPP53 tumors acquired gains in 

regions of chromosome 10 encompassing Gli1 (Figures 5B–5D, S5A, and S5B). These 

amplifications were often accompanied by smaller copy number changes on the same 

chromosome, and notably, no tumor exhibited amplification of both Gli1 and Gli2. Since 

these genes encode the key transcriptional mediators of Hh signaling, we next validated 

that GPP53 tumors with amplified chromosome 1 possessed increased Gli2 mRNA, whereas 
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tumors with amplified chromosome 10 had increased Gli1 mRNA (Figure 5E). As expected, 

regressed microscopic lesions presumably lacking these mutations had lower levels of both 

transcripts and displayed less Hh pathway activation (Figure 5E). Overall, our findings are 

consistent with previous studies showing that forced overexpression of either transcription 

factor induces BCC formation (Grachtchouk et al., 2000; Nilsson et al., 2000). Unlike these 

overexpression systems, however, a key distinction here is that GPP53 tumors spontaneously 

acquired Gli amplifications, which are similarly detected in 8% of human BCCs (Bonilla et 

al., 2016). These findings suggest that a subset of tumors initiated by loss of Ptch1 acquire 

secondary mutations to further hyperactivate downstream Hh signaling in order to drive 

progression.

Macroscopic tumors converge upon Mycn upregulation

Although we observed recurrent Gli amplifications, 5/16 macroscopic GPP53 tumors and 

5/5 macroscopic GPN1 tumors did not possess either mutation (Figure S5A). Working 

from a list of 70 commonly mutated genes in BCC compiled by Villani et al. (2021), 

from previous studies (Bonilla et al., 2016; Jayaraman et al., 2014), and from the Catalog 

of Somatic Mutations in Cancer (COSMIC) database, we further noted that, among the 

five GPP53 tumors without Gli amplification, three tumors had copy number gains in 

either Yap1 or Kif7 or copy number loss of Ptch2 (Figures S5A and S5B). These changes 

may potentially explain how 3/5 GPP53 tumors progressed to macroscopic disease without 

amplifying Gli (Adolphe et al., 2014; Debaugnies et al., 2018; Li et al., 2012; Maglic et al., 

2018).

For the remaining tumors lacking these mutations, we decided to take a different tack to 

understand how they overcame dormancy. We reasoned that all type 1 macroscopic tumors, 

regardless of mutational status, must share certain downstream outputs that set them apart 

from failed microscopic lesions. For instance, we confirmed that all GPP53 and GPN1 

macroscopic tumors are highly proliferative (Figure 6A). We also determined that all type 

1 tumors have reduced Notch signaling (Figure 6A). Finally, we noted that all macroscopic 

tumors, regardless of genotype, Gli mutation status, or Hh pathway activity, possess high 

levels of Mycn (Figure 6A).

We next extended these analyses to human BCCs of different subtypes. Indeed, we observed 

high proliferation and reduced Notch in most tumors, although a subset possessed NICD+ 

cells in the suprabasal compartment, as we have previously noted (Eberl et al., 2018) 

(Figure 6B). In addition, all tumors had increased MYCN, which was either uniformly 

high throughout the tumor or enriched at the basal periphery, as has also previously been 

reported (Figure 6B) (Brandl et al., 2019; Freier et al., 2006). Altogether, we conclude that 

three characteristics—high proliferation, reduced Notch, and high MYCN—are often seen 

in BCC. These features are also shared by all type 1 macroscopic tumors in our system, 

irrespective of mutational status.

MYCN overexpression promotes key features of tumor progression

MYCN amplification occurs in 12% of human BCCs, while focal mutations that lead to 

protein stabilization have been detected in 30% of these tumors (Bonilla et al., 2016; 
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Freier et al., 2006). As noted above, nascent GP lesions resemble growing hair follicles, 

and consistent with this theme, we observed enriched Mycn protein and RNA in the basal 

layer of both early tumors and hair follicle-matrix progenitors (Figures 7A and S6A–S6C). 

In contrast, expression of other Myc family members (Myc and Mycl) was not as highly 

enriched in these compartments (Figures S6A–S6C). In GP microscopic tumors, cells with 

high Mycn are more likely to be proliferative (Figures 7B and 7C), suggesting a role in 

cell-cycle regulation (Ellis et al., 2019).

To directly test the role of Mycn in our system, we generated mice expressing Gli1-
CreERT2, coupled with Cre-inducible reverse Tet transactivator (rtTA), and a bidirectional 

tetracycline-responsive element (TRE)-driven MYCN/luciferase (GT mice) (Swartling et al., 

2010) (Figure 7D). In this system, GT mice are first injected with TAM to activate rtTA 
expression, which subsequently drives MYCN/luciferase overexpression in the presence of 

doxycycline (DOXY). Following 12–20 weeks of continuous DOXY treatment, GT mice 

formed dysmorphic anagen hair follicles but no tumors (Figure 7E).

Having validated this system, we next incorporated these genetic elements into our Ptch1-

deficient model (GPT mice). Tumors were initiated by TAM and allowed to grow for 5 

weeks before mice were shifted onto DOXY-chow to activate MYCN expression for an 

additional 12 weeks. We noted that transgene expression was localized primarily to the 

tumor suprabasal compartment (Figures 7F and 7G), which may either reflect biased TRE 
promoter activity or inward movement of transgene-expressing basal layer tumor cells. 

Regardless, MYCN overexpression induced massive proliferation in nascent tumors (Figure 

7F). Strikingly, we also observed that Notch activation was re-localized away from the 

tumor suprabasal compartment to cells residing just inside of the basal layer, possibly 

reflecting early suprabasal cells that express lower levels of the transgene (Figure 7G). These 

results indicate that MYCN overexpression is sufficient to promote key features of tumor 

progression—increased proliferation and reduced Notch—that we observed in human BCC 

and mouse type 1 BCC-like tumors.

Despite these findings, most GPT mice did not form macroscopic tumors, likely because 

MYCN overexpression caused increased apoptosis (Figure 7F). In 4/16 GPT mice, however, 

we observed small palpable tumors, which contained transgene-expressing basaloid cells 

(Figure 7H). We did not allow these lesions to continue growing due to frequent 

gastrointestinal-related morbidity in GPT mice. Similar to GPN1 and GPP53 macroscopic 

tumors, these rare GPT tumors likely also acquired additional somatic mutations that 

enabled them to progress. Collectively, our findings argue that loss of Ptch1 by itself is 

not sufficient for full BCC progression and that secondary mutations—resulting in loss of 

Notch1 or p53, increased Gli, and/or gain of Mycn—contribute functionally to the critical 

transition from microscopic to macroscopic disease.

DISCUSSION

Our skin is the most highly mutated organ, and mutations in cancer-associated genes, such 

as NOTCH1/2, TP53, and RAS, are frequently detected in photoaged epithelia (Fowler et al., 

2021; Lynch et al., 2017; Martincorena et al., 2015; Ren et al., 1997). Previously, we and 
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others have observed that mutant cells with aberrant Notch1 or p53 can persist long term in 

the epidermis without forming tumors (Figures S6D and S6E; Table S2) (Murai et al., 2018; 

Veniaminova et al., 2019). Targeted expression of oncogenic Kras in hair follicle stem cells 

also causes only temporary tissue disruption that normalizes over time (Brown et al., 2017; 

Pineda et al., 2019). Along a similar vein and consistent with previous findings (Nitzki et al., 

2010), we report here that loss of Ptch1 or gain of Smo, both hallmark mutations in BCC, 

induces nascent tumors that do not progress.

Given the high failure rate for tumor-initiated cells in the skin, it is likely that both 

cell-intrinsic and cell-extrinsic factors suppress tumor progression. Indeed, an idiosyncratic 

feature of the skin is the periodic phases of hair growth and regression, with the anagen 

growth phase favoring tumor formation and the telogen resting phase associated with 

tumor regression (Grachtchouk et al., 2011; Mancuso et al., 2006; Oro and Higgins, 2003; 

Pineda et al., 2019; White et al., 2014). In our GP model, nascent BCC-like tumors share 

some resemblance to growing hair follicles, including basal layer enrichment for multiple 

factors—high Hh pathway activation, proliferation, p53, and Mycn—as well as suprabasal 

activation of Notch signaling (Figure 3C). Thus, it is conceivable that early tumor growth 

and spontaneous regression are linked to the hair cycle. However, since regressed tumors in 

our model remain dormant even during subsequent anagen, other factors likely cause tumor 

exhaustion over time.

In mice, the absence of macroscopic BCCs has been a major shortcoming of both the 

conditional Ptch1-deletion and SmoM2-overexpression models, confirming that tumors 

do not progress, regardless of how upstream Hh signaling becomes activated or which 

Cre driver is utilized (Brandes et al., 2020; Grachtchouk et al., 2003; Kasper et al., 

2011; Mao et al., 2006; Peterson et al., 2015; Wang et al., 2017; Youssef et al., 2010). 

Indeed, previous studies have shown that nascent BCC-like tumors induced by non-targeted 

Ptch1 deletion similarly regress due to macrophage-induced tumor differentiation (Nitzki 

et al., 2010). During postnatal brain development, Ptch1-heterozygous mice also exhibit 

transient hyperplasia in the external granular layer, a site of medulloblastoma formation, that 

subsequently regresses (Thomas et al., 2009). These data suggest that lesions initiated by 

loss of Ptch1 or gain of Smo likely encounter steep obstacles across multiple organ systems. 

Since BCC mouse models likely do not recapitulate the full set of mutations seen in human 

tumors, this may explain why animal models often fail to yield macroscopic tumors.

While our findings in mice indicate that Ptch1 loss alone is insufficient for inducing 

macroscopic tumors, Gorlin patients can develop numerous BCCs, seemingly arguing that 

loss of heterozygosity of a single tumor suppressor, in most cases PTCH1, can lead to 

palpable tumors. However, although the average mutational burden in Gorlin BCCs is lower 

than in sporadic BCCs (Chiang et al., 2018; Sharpe et al., 2015), the mutational load in 

Gorlin tumors is still higher than that of many internal tumors. In addition, TP53 mutations 

are present in ~40% of Gorlin BCCs, similar to sporadic tumors (Chiang et al., 2018). 

Finally, Gorlin BCCs can manifest a variety of histologic subtypes (Rehefeldt-Erne et al., 

2016), and Gorlin patients can also develop basaloid follicular hamartoma (BFH), a benign 

hair follicle tumor (Besagni et al., 2021; Chikeka et al., 2021; Ponti et al., 2018; Requena 

and Sangueza, 2017). While the connection between BFH and BCC remains unclear, some 
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have speculated that these neoplasms are variations of the same disease (Ponti et al., 2018). 

Indeed, previous studies have shown that downstream Hh signaling strength can modulate 

BFH versus BCC tumor phenotype in mice (Grachtchouk et al., 2003, 2011). Altogether, 

these data suggest that secondary somatic mutations may play functional roles in modulating 

tumor phenotype in Gorlin patients, possibly during the transition from BFH-like lesions to 

BCC.

In contrast to Ptch1-conditional mice, Ptch1-heterozygous animals form macroscopic BCCs 

following irradiation, but how these tumors progress remains unknown (Aszterbaum et al., 

1999; Chaudhary et al., 2015; Wang et al., 2017). Transgenic overexpression of either 

GLI1 or Gli2 from an exogenous promoter also induces macroscopic BCC-like tumors 

(Grachtchouk et al., 2000; Nilsson et al., 2000). While these studies demonstrate that 

high-level downstream Hh pathway activity can induce tumorigenesis, GLI amplification 

is not regarded as a primary driver of human BCC. Indeed, nearly all human BCCs 

possess canonical mutations in upstream Hh pathway components, including tumors that 

possess GLI amplifications (Bonilla et al., 2016). This suggests that constitutive activation 

of upstream Hh signaling, mediated by primary cilia, may be critical for unlocking the 

full potential of secondary mutations that activate downstream components of the pathway. 

In line with this, GPP53 tumors in our study acquired Gli amplifications spontaneously, 

without additional experimental manipulation, again arguing that Ptch1-deficient lesions 

must hyperactivate both upstream and downstream Hh signaling in order to progress.

It is important to note that the prevalence of Gli amplification in our GPP53 model is higher 

than in human BCCs, where analogous amplifications are seen in 8% of tumors and may 

drive resistance to SMO antagonists (Atwood et al., 2015; Bonilla et al., 2016; Buonamici 

et al., 2010; Sharpe et al., 2015). Since our mice are not exposed to UV radiation, this 

likely affects the spectrum of mutations that arises in our models. Apart from direct Gli 
amplification, there are likely many ways by which BCCs can hyperactivate downstream Hh 

signaling. For instance, Gli activity can be enhanced by aPKC, transforming growth factor 

β (TGFβ), and AP-1 (Atwood et al., 2013; Yao et al., 2020), while the phosphatidylinositol 

3-kinase (PI3K)/Akt and epidermal growth factor (EGF) pathways can cooperate with 

canonical Hh signaling to promote downstream activity (Chow et al., 2021; Eberl et al., 

2012; Kim et al., 2016).

Regardless of Gli amplification status, all type 1 macroscopic tumors upregulated Mycn, 

which plays critical roles in many tumors, including nervous system cancers, prostate 

cancer, and retinoblastoma (Rickman et al., 2018; Wu et al., 2017). We further demonstrated 

that MYCN overexpression induces certain features of tumor progression, including 

increased proliferation and reduced differentiation. Notably, Mycn is a downstream target 

of Hh signaling (Hatton et al., 2006; Mill et al., 2005) (Figure S6F), yet this gene is still 

frequently mutated in BCC (Bonilla et al., 2016; Freier et al., 2006). This further supports 

the view that neither loss of Ptch1 nor gain of Smo is sufficient for tumor progression. 

Rather, mutations that augment MYCN levels may provide a secondary boost for tumors 

to sustain high-level proliferation while limiting differentiation. Collectively, these data 

indicate that MYCN is likely situated at a critical nexus for driving BCC progression and 

possibly drug resistance.
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In summary, by utilizing BCC models that largely fail to progress, we identify genetic 

factors that enable rare tumors to succeed. Our findings suggest that BCC formation is 

guided by the acquisition of somatic secondary mutations. Activation of upstream Hh 

signaling, via loss of Ptch1 or gain of Smo, initiates nascent tumors that eventually regress 

and become dormant unless additional mutations are acquired. Concomitant loss of Notch1 

prevents tumor regression, and loss of p53 likely increases genomic instability; however, 

neither is sufficient for macroscopic tumors to form. Ultimately, tumor-initiated cells must 

acquire additional changes that either directly or indirectly cause exuberant downstream Hh 

pathway activation in order to progress. These findings may explain why some BCCs persist 

after pharmacological inhibition of upstream Hh signaling, while highlighting the possibility 

that essential downstream factors, such as MYCN, may represent critical targets for therapy.

Limitations of the study

While our study suggests a role for secondary mutations in driving BCC progression, 

mouse BCC-like tumors likely do not recapitulate the full panoply of mutations seen in 

human BCC, since mice are not typically exposed to UV radiation. Thus, other genetic 

and epigenetic changes may contribute to the progression of human tumors. Mutations 

within intergenic regions of the chromosome are not detected by WES and may also 

affect tumor progression in our system. While all BCC-like tumors in our study exhibited 

increased Mycn, it remains unclear how this occurs in tumors lacking Gli amplification. 

Aside from Hh signaling, other pathways, such as PI3K/Akt, have been reported to modulate 

Mycn expression or stability (Liu et al., 2021). Loss of Trp53 may also be necessary for 

overriding cellular controls that guard against excessive Mycn and induce cell death. Finally, 

the mechanisms underlying tumor dormancy and spontaneous regression remain unclear. 

Given the parallels between nascent BCC formation and hair follicle regeneration, a deeper 

understanding into how hair follicles normally develop, cycle, and regress may inspire 

additional novel insights into the biology of these tumors.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Sunny Wong (sunnyw@umich.edu).

Materials availability—All reagents generated in this study are available from the lead 

contact.

Data and code availability

• WES data generated for this study are available through the NCBI SRA Run 

Selector (BioProject: PRJNA782990).

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this work is 

available from the Lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Unless otherwise indicated, 8 week-old mice were induced with a single 

intraperitoneal injection of tamoxifen (TAM) at 5 mg/40 grams body weight. GPT mice 

were induced with TAM and later transferred to 200 mg/kg doxycycline-containing chow 

for 12 weeks. For animal strain information, please see the Key resources table. All studies 

were performed on mice of both genders in a mixed genetic background, using littermate 

animals for comparisons whenever possible. All mice were maintained in specific pathogen 

free housing and were used in accordance with regulations established by the University of 

Michigan Unit for Laboratory Animal Medicine.

Human samples—De-identified human BCC samples embedded in paraffin were 

obtained through study protocol HUM00042233, HUM00075822 and HUM00051875, in 

accordance with procedures approved by the Institutional Review Board at the UM Medical 

School.

METHOD DETAILS

Immunofluorescence—Skin biopsies were fixed in 3.7% formalin overnight for paraffin 

embedding. For frozen sections, samples were fixed in 3.7% paraformaldehyde at 4°C for 1 

h, rinsed in PBS, sunk in 30% sucrose overnight and embedded into OCT. Frozen sections 

were probed with antibodies against the following antigens: p21 (1:100, Cell Signaling) and 

p16 (1:100, Invitrogen). Paraffin sections were antigen-retrieved by boiling slides in 1 mM 

EDTA, pH 8.0, for 10 min, and probed with antibodies against the following antigens: K14 

(1:1,000, Biolegend), Ki67 (1:100, Cell Signaling and BD Biosciences), α smooth muscle 

actin (1:500, Cell Signaling), cleaved caspase-3 (1:100, Cell Signaling) and luciferase 

(1:1000, Novus). Staining was amplified using the TSA Fluorescein Plus kit for antibodies 

against the following targets: p53 (1:5000, Novocastra), NICD (1:500, Cell Signaling) and 

Mycn (1:500, Cell Signaling). Amplification was performed for 2 min, 4 min and 10 min, 

respectively, following manufacturer’s instructions. Image processing was performed using 

Adobe Photoshop with the Auto-Blend feature applied to maximize image sharpness across 

focal planes.

RNA in situ hybridization—RNA in situ staining was performed using the RNAscope 

2.5 brown kit (ACD). Paraffin slides were antigen-retrieved by boiling in RNAscope 

retrieval buffer for 15 min, treated with protease for 30 min and incubated with target probes 

at 40°C for 2 h. Probe detection was performed according to manufacturer’s instructions. 

Paraffin slides were counterstained with hematoxylin. Please see the Key resources table for 

information on RNAscope probes.

LacZ visualization—Frozen sections were incubated at 37°C in 1 mg/mL X-gal dissolved 

in 5 mM potassium ferrocyanide and 5 mM potassium ferricy-anide for 30 min, and 

counterstained with nuclear fast red.

Phorbol ester treatment—100 μL of 12-O-Tetradecanoylphorbol-13-acetate (TPA, 

Sigma) dissolved at a concentration of 0.25 mg/mL in ethanol was topically applied onto 
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shaved GP and GPN1 mice for 2 consecutive days. Two days after treatment, dorsal skin was 

collected.

DNA extraction—DNA was harvested using the DNeasy Blood & Tissue kit (Qiagen). 

Tumor and paired liver samples (15–25 mg) were minced in ATL buffer containing 

proteinase K and incubated overnight at 56°C. The next day, digested tumor and liver 

samples were processed according to the manufacturer’s instructions.

Whole exome sequencing (WES)—WES was performed on macroscopic GPP53 and 

GPN1 tumors, and on matched liver samples. All sequencing and analyses were performed 

by Novogene. Briefly, 1 μg of DNA was used for library preparation using the Agilent 

SureSelectXT Mouse All Exon kit. Fragmentation was performed to generate 180–280 

bp fragments and assessed on the Agilent Bioanalyzer 2100 system for quality control. 

Captured libraries were sequenced using Illumina NovaSeq 6000. Reads were aligned with 

Burrows-Wheeler Aligner (BWA; v0.7.17) using the mm10 reference genome. Conversion 

to BAM files was performed using Picard (v2.18.9). Single-nucleotide variants (SNVs) 

and InDels were identified by GATK (v4.0), followed by ANNOVAR to annotate variants. 

Somatic SNVs and InDels were identified by MuTect and Strelka, respectively. Somatic 

copy number variants (CNVs) were called by Control-FREEC (v11.4), using the setting 

minCNAlength parameter = 2. Low confidence CNV changes annotated as “genomic 

superduplications” with CNV = 1 or 3 were omitted from analyses. CNV plots were 

generated using CNVkit with default settings.

QUANTIFICATION AND STATISTICAL ANALYSIS

Tumor measurements—Tumor area was quantitated from 3 representative fields per 

sample, and an overall average was calculated for each animal and time point. Final values 

were normalized relative to that of tumors, 5 weeks post-TAM. TD tumors were quantitated 

by inspecting ~1 cm of skin H&E histology, and normalizing to the length of the section. 

Cell proliferation was quantitated from 3 representative fields per sample and expressed 

as the percentage of Ki67 + tumor cells/K14 + total tumor cells. p53 + tumor cells were 

counted at the tumor periphery (basal) or interior (suprabasal) compartments. Three random 

fields were assessed for each sample, and a single average was calculated for each animal 

and compartment. Similar methods were used to quantitate Mycn and Ki67 overlap.

Quantitating in situ Intensity—The Color Threshold function in ImageJ was used to 

highlight areas of staining and to filter out background. The total signal area was then 

measured using the Analyze Particles function. For Ptch2, the total signal area was divided 

by the total number of tumor cells to obtain the average signal per cell. For Mycn, Mycl and 

Myc, the signal area was quantitated separately for the basal and suprabasal compartments.

Statistics—For comparisons between two groups, an unpaired t test was performed to 

calculate statistical significance. A Wilcoxon rank sum test with continuity correction was 

used to calculate p values for non-parametric data depicted by box and whisker plot. For 

comparisons with greater than two groups, one-way ANOVA with posthoc test (Tukey’s 
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method) was performed. For beeswarm plots, statistical significance was calculated using a 

linear mixed model using the Ime4, ImerTest and emmeans packages on R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Upstream Hh pathway activation is necessary, but not sufficient, for BCCs to 

progress

• Failed nascent tumors become dormant and may spontaneously regress over 

time

• Secondary mutations enable rare tumors to overcome barriers to progression

• Increased Mycn promotes BCC progression
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Figure 1. Microscopic tumors initiated by activation of upstream Hh signaling fail to progress
(A) Histology of hair follicle (HF)-associated GP tumors, 5–17 weeks post-TAM. Right 

photo shows shaved dorsal skin devoid of palpable tumors, 17 weeks post-TAM.

(B) Quantitation of HF-associated tumor area.

(C) Histology of touch dome (TD)-derived GP tumors (arrow), 5–17 weeks post-TAM. 

Right photo shows view of small TD papules, ~1 mm diameter.

(D) Quantitation of TD-derived tumor area, in arbitrary pixel units per cm.

(E) Histology of HF-derived LP tumors, 5–17 weeks post-TAM.

(F) Quantitation of LP tumors.

(G) Histology of microscopic HF-associated SmoM2 tumors arising from Lrig1+ stem cells 

(left, 15 weeks post-TAM) or Gli1+ stem cells (right, 20 weeks post-TAM).

(H) Schematic of GP tumor kinetics.

Data are represented as mean ± SEM, with significance calculated by one-way ANOVA. **p 

< 0.01. Scale bars, 50 μm. Blue scale bar, 1 mm.
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Figure 2. Microscopic tumors exhibit reduced proliferation over time
(A) Schematic for TAM induction and skin biopsy in GP mice. Mice were also biopsied at 

the end of the experiment.

(B) GP tumors regress by 17 weeks post-TAM, regardless of induction scheme.

(C) Quantitation of tumor area in early-induced GP mice.

(D) Same as (C) but for late-induced GP mice.

(E) GP tumors maintain elevated Hh signaling, as assessed by LacZ (top panels) and Ptch2 
mRNA (middle panels), but reduce their proliferation over time, as assessed by Ki67 (green, 

lower panels). Red, keratin 14 (K14).

(F) Quantitation for Ptch2 in HF-associated GP tumors.

(G) Quantitation of proliferation in HF-associated GP tumors.

(H) Same as (G) but for touch-dome-derived GP tumors.

(I) Quantitation of proliferation in LP tumors.
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For (E)–(I), analysis was performed on tumors arising from the standard induction scheme. 

Data are represented as mean ± SEM, with significance calculated by one-way ANOVA. 

Significance for beeswarm plots was calculated using a linear mixed model. **p < 0.01; 

***p < 0.001. Scale bars, 50 μm. See also Figures S1 and S2.
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Figure 3. Notch1-deficient microscopic tumors do not undergo spontaneous regression
(A) GP tumors have elevated Hh target genes, as assessed by Ptch2 mRNA, in peripheral 

basal cells (top panels) and high NICD (green) in interior suprabasal cells (lower panels). 

Red, K14.

(B) In the growing anagen hair follicle, basal matrix progenitor cells directly abutting the 

dermal papilla (yellow, dotted) express high Ptch2 (top panels), whereas their suprabasal 

progeny express high NICD (green, bottom panels).

(C) Schematic for basal progenitors (red) and suprabasal progeny (green) in the hair follicle 

bulb. IRS, inner root sheath.
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(D) Histology of HF-derived GP tumors that are either Notch1-heterozygous (GPN1-Het) or 

deleted (GPN1-knockout [KO]), 5–17 weeks post-TAM. Right panels, tumor proliferation as 

assessed by Ki67 (green), 17 weeks post-TAM.

(E) Quantitation of GPN1-Het and GPN1-KO tumor area.

(F) Quantitation of GPN1-KO tumor proliferation.

(G) Photo and histology of GPN1-KO macroscopic tumor.

Data are represented as mean ± SEM, with significance calculated by one-way ANOVA. 

Significance for beeswarm plots was calculated using a linear mixed model. *p < 0.05; ***p 

< 0.001. Scale bars, 50 μm. See also Figure S3 and Table S1 for animal numbers.
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Figure 4. p53-deficient microscopic tumors largely do not progress
(A) Peripheral basal tumor cells express p53 (green) in GP mice, 5–17 weeks post-TAM.

(B) Basal matrix progenitors directly abutting the dermal papilla (dotted) also express p53 

(green) in the growing hair follicle.

(C) Quantitation for p53 in GP basal and suprabasal tumor compartments, 5–17 weeks 

post-TAM.

(D) Histology of HF-derived GP tumors that are either p53-heterozygous (GPP53-Het) or 

deleted (GPP53-KO), 5–17 weeks post-TAM. Right panels, validation of p53 loss (green) in 

GPP53-KO tumors, 17 weeks post-TAM.

(E) Quantitation of GPP53-Het and GPP53-KO tumor area.

(F) Quantitation of GPP53-Het and GPP53-KO tumor proliferation.

(G) Photo and histology of GPP53-KO macroscopic tumors.

Data are represented as mean ± SEM, with significance calculated by one-way ANOVA. 

Significance for beeswarm plots was calculated using a linear mixed model. **p < 0.01; 

***p < 0.001. Scale bars, 50 μm. Ruler marks, 1 mm. See also Table S1 for animal numbers.
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Figure 5. Characterization of GPP53 and GPN1 macroscopic tumors
(A) Histologic classification of macroscopic tumors (top panel) and immunohistochemistry 

for NICD (green, middle panels) and α smooth muscle actin (SMA) (green, lower panels). 

Red, K14 staining. All examples shown are from GPP53 mice.

(B) Table showing tumors with somatic Gli1 or Gli2 copy number gains (+++, amplified). 

Asterisk, GPP53-Het tumor.

(C) Representative DNA copy number plot of a GPP53 tumor that amplified a region of 

chromosome 10 containing Gli1.

(D) Same as (C) but of a different GPP53 tumor that amplified a region of chromosome 1 

containing Gli2.
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(E) mRNA in situ staining for Gli1 (top panels), Gli2 (middle panels), and Ptch2 (lower 

panels) in GPP53 tumors (microscopic or Gli1- or Gli2-amplified) and in macroscopic 

GPN1 tumors.

Scale bars, 50 μm. See also Figures S4 and S5.
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Figure 6. Macroscopic GPP53 and GPN1 tumors share common features with human BCCs
(A) Immunohistochemistry for Ki67 (red, top panels), NICD (green, middle panels), and 

Mycn (green, lower panels) in GPP53 tumors, sub-divided by Gli amplification status (non-

amplified, Gli1-amplified, or Gli2-amplified), and in macroscopic GPN1 tumors lacking Gli 
amplification. Regardless of genotype, all macroscopic tumors (dotted) express higher levels 

of Mycn relative to adjacent microscopic lesions (asterisks).

(B) Same markers as in (A), probing human BCCs sub-divided by histological subtype. Two 

representative examples of nodular BCCs with variable marker expression are shown.

Scale bars, 50 μm.
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Figure 7. MYCN overexpression promotes tumor progression
(A) Peripheral basal tumor cells and basal matrix progenitors in anagen hair follicles express 

Mycn (green). Dotted region, mesenchymal dermal papilla.

(B) Co-localization of Mycn (green) and Ki67 (red) in microscopic GP tumor, 5 weeks 

post-TAM.

(C) Quantitation showing that Mycn+ basal tumor cells are more likely to be proliferative.

(D) Schematic for MYCN/Luciferase overexpression system.

(E) Histology of dysmorphic anagen hair follicles (arrow) expressing MYCN (green) and 

Luciferase (red) in GT mice.

(F) Microscopic GPT tumors expressing MYCN/Luciferase (red, dotted) display increased 

Ki67 (green, left panel) and cleaved caspase 3 (green, right panel).
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(G) Microscopic GP tumors possess extensive suprabasal NICD expression (left panel, 

green), whereas GPT tumors expressing MYCN/Luciferase (right panel, red) re-localize 

NICD to suprabasal tumor cells just inside of the basal layer.

(H) Immunohistochemistry showing expression of Luciferase (green, left photo) and 

exogenous MYCN/endogenous Mycn (green, middle photo) in macroscopic GPT tumor 

(right photo).

p values were calculated by a Wilcoxon rank-sum test with continuity correction. ***p < 

0.001. Scale bars, 50 μm. Blue scale bar, 1 mm. See also Figure S6 and Tables S1 and S2 for 

animal numbers.
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