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Past decades have witnessed substantial progress in understanding of neurobiological

mechanisms that contribute to generation of various PTSD symptoms, including

intrusive memories, physiological arousal and avoidance of trauma reminders. However,

the neurobiology of anhedonia and emotional numbing in PTSD, that have been

conceptualized as reward processing deficits - reward wanting (anticipation of reward)

and reward liking (satisfaction with reward outcome), respectively, remains largely

unexplored. Empirical evidence on reward processing in PTSD is rather limited,

and no studies have examined association of reward processing abnormalities

and neurocircuitry-based models of PTSD pathophysiology. The manuscript briefly

summarizes “state of the science” of both human reward processing, and of PTSD

implicated neurocircuitry, as well as empirical evidence of reward processing deficits

in PTSD. We then summarize current gaps in the literature and outline key future

directions, further illustrating it by the example of two alternative explanations of PTSD

pathophysiology potentially affecting reward processing via different neurobiological

pathways. Studying reward processing in PTSD will not only advance the understanding

of their link, but also could enhance current treatment approaches by specifically

targeting anhedonia and emotional symptoms in PTSD patients.

Keywords: posttraumatic stress disorder, reward anticipation, reward outcome, anhedonia, context processing,

emotion regualtion, nucleus accumbens, medial prefrontal cortex

INTRODUCTION

Posttraumatic stress disorder (PTSD) is a highly debilitating psychiatric condition that produces
immense suffering and incurs substantial individual and societal costs. It is often comorbid
with other psychiatric disorders, among them, substance use (SUD) and depression. From the
clinical perspective, PTSD is defined as a Trauma- and Stressor-Related Disorder with four
clusters of symptoms that include intrusive trauma-related memories, avoidance of trauma
reminders, physiological arousal, and negative mood and cognition (DSM-5; American Psychiatric
Association, 2013). Importantly, the cluster of negative cognition/mood incorporate a broad range
of symptoms, including (a) symptoms associated with inability to experience positive emotions
(e.g., happiness, satisfaction, love) previously referred to as “emotional numbing” (b) symptoms of
anhedonia i.e., loss of interest ormotivation to participate in significant activities; and (c) symptoms
that represent a generally negative cognitive-emotional state with exaggerated negative beliefs and
distorted blame of self and others.
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Over the past two decades, substantial body of research,
had explored key neurobiological processes/circuits that could
contribute to generation of PTSD symptoms like, intrusive
memories, hyperarousal, or exaggerated physiological responses
to trauma reminders (1–3), however, the neurobiology of
negative cognition/mood symptoms in PTSD, remain largely
unexplored. Importantly, as we describe in detail below, the
fear learning mechanisms for example implicated in generation
of other PTSD symptoms, do not readily explain generation
of “emotional numbing” or anhedonia. One of the potential
contributors to this is the fact that emotional numbing and
anhedonia symptoms have not been clearly defined in prior
PTSD research (4) and considered as conceptually similar,
as both are characterized by diminished positive effect (5).
However, emerging evidence suggests that emotional numbing
and anhedonia might reflect related but separable processes in
PTSD (with anhedonia focuses on anticipation and approach,
while emotional numbing linked to the diminished capacity to
experience pleasure), and, therefore, potentially generated by
distinct neural circuits (6). Importantly, anhedonia has been
linked to reward processing deficits in PTSD in prior studies (7),
while association of emotional numbing to reward processing has
been less clear (8, 9), although others linked emotional numbing
to reward processing as well (6, 10).

Broadly speaking, reward processing has been conceptualized
in psychological and neuroscience literature as the ability to
feel pleasure when consuming or collecting the reward, as well
as motivation to acquire it, and several components of reward
processing have been identified, including reward wanting (or
reward motivation), reward liking (or reward consumption
associated with feeling of pleasure) and reward learning (11, 12).
On the molecular level, these components of reward processing
have been shown to rely on specific neurobiological mechanisms
(7, 13), but molecular studies of reward processing in humans
are still very limited, and in case of PTSD are almost non-
existent, although, recently it has been suggested that anhedonia
and emotional numbing in trauma-exposed individuals may
be related to reward wanting and reward liking, accordingly
(6). Thus while the nature of “negative cognition” symptoms
suggest abnormal or diminished positive emotional response as
well as low motivation to seek positive emotions, the literature
empirically testing positive emotions (via manipulating reward
empirically) in PTSD is quite limited and the results are not
always consistent (14).

Furthermore, reward processing deficits have been also
proposed to be the underlying mechanism of PTSD-
major depression (MDD) and PTSD-substance use (SUD)
comorbidities (15). Impaired reward processing has been
consistently reported in MDD- and SUD-diagnosed patients,
and MDD and SUD comorbidities are very frequent in PTSD
patients (rates of 30–50% and 20–45% for PTSD-MDD and
PTSD-SUD samples, respectively). Both comorbidities have also
been marked by a more complicated clinical course with greater
functional impairment and less favorable treatment results
(16–19). Therefore, a better understanding of the underlying
neurobiological mechanisms, including those involved in reward
processing deficits, is urgently needed.

To date, empirical evidence of changes in reward processing
in PTSD is both limited and equivocal, and no studies so
far have examined the association of reward processing
abnormalities and neurocircuitry-based models of PTSD
pathophysiology, in spite of the emerging evidence implicating
abnormal context processing in both (20, 21). Furthermore,
existing neurocircuitry-based models of PTSD pathology do
not specifically address reward processing deficits as well
as the symptoms of anhedonia and emotional numbing
in PTSD. Thus, a parsimonious explanation of PTSD
pathology that incorporates reward processing deficits
is still warranted. In the following paragraphs we briefly
review the neurocircuits implicated in PTSD pathophysiology
and symptoms development, the neurobiology of reward
systems, and finally the emerging findings on reward
processing in PTSD. We conclude by identifying the key
gaps in the literature to date as well as outline direction
for future research that will allow a more comprehensive
understanding of PTSD neurobiology, inclusive of reward
system related symptoms.

NEUROBIOLOGY OF PTSD: CIRCUIT
DYSREGULATION

Over the past two decades, both studies using animal models
(22–24) and functional neuroimaging research in humans have
implicated PTSD-specific changes in neural circuits involving
fear learning, memory and emotional processing (25, 26).
More specifically, hyper- activation of insula, amygdala, and
dorsal anterior cingulate cortex (dACC), as well as hypo-
activation in ventral medial PFC (vmPFC) and impaired
hippocampal function have been consistently reported (2, 27,
28). Furthermore, PTSD has been found to be associated with
decreased functional connectivity within Default Mode Network
(DMN, linked to self-referential processing and mind wandering
with key nodes in PCC, vmPFC /sgPFC, and hippocampus),
increased connectivity within Salience Network (SN, responsible
for salience/threat detection and comprised of amygdala, insula
and dACC), as well as with specific patterns of DMN-SN
functional desegregation (26, 29–31). Alterations in relationships
of DMN and SN with other networks such as Frontoparietal
Network (FPN, involved in “top- down,” control emotional
regulation and includes prefrontal cortical regions such as
dlPFC), Dorsal Attention Network (DAN, involved in top-
down voluntary orienting and comprised of MFG, posterior
parietal lobe and frontal eyes fields) and Ventral Attention
Network (VAN, linked to alerting and reorienting attention to
unexpected stimuli and comprised of inferior frontal gyrus and
temporal parietal junction regions) have been also reported.
Specifically, increased FPN-SN connectivity (29) decreased
DMN-FPN connectivity (32) as well as increased connectivity of
DMN, SN with attention networks (33, 34) have been detected.

Our group had theorized that these neural circuits
abnormalities subserve distinct brain functions, contributing to
different aspects of PTSD symptomatology, like fear learning
(FL), threat detection (TD), executive function/emotion

Frontiers in Psychiatry | www.frontiersin.org 2 May 2021 | Volume 12 | Article 559401

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Lokshina et al. Reward Processing in Posttraumatic Stress Disorder

regulation (EF/ER), and context-processing neurocircuits
(CP) (20).

Fear Learning (FL) Circuitry
This circuitry enables fear acquisition, fear generalization and
fear extinction processes, and altered fear extinction and fear
overgeneralization have been repeatedly reported in PTSD (35,
36). These processes involve the basolateral complex of the
amygdala (BLC), where fear learning takes place. Amygdala
and BLC subnetworks are interconnected with the vmPFC
and the hippocampus, that work in conjunction to regulate
fear/extinction learning. Indeed, impaired extinction recall
in PTSD is manifested in hyperactivation of amygdala and
hypoactivation of mPFC, raising the possibility that the fear
learning deficit in PTSD might stem from extra amygdala
regulatory regions (20).

Threat Detection (TD) Neurocircuitry
It controls a more general ability to detect and orient to salient
cues in the environment, whether positive or negative, and
alterations in threat detection could provoke hypervigilance and
bias toward trauma cues. Salience or threat detection is subserved
by the salience network (SN) regions involving anterior ACC,
insula/operculum and amygdala. PTSD patients indeed exhibit
hypervigilance and study liked PTSDwith attentional bias toward
threat and, consequently, exaggerated threat detection (26),
manifested in heightened responsivity of insula, amygdala, dACC
and increased connectivity within SN (37).

Emotional Regulation/Executive Function
(EF/ER) Neurocircuitry
A different cognitive emotional function that had been linked
to PTSD pathophysiology is emotional regulation/executive
function (EF/ER). EF/ER neurocircuitry regulates one’s ability
to modulate emotions by engaging higher cognitive/executive
functions, such as redirecting attention away from emotional
stimuli, engaging cognitive reappraisal etc. It involves prefrontal
cortical regions, including dorsolateral, ventrolateral, lateral
orbitofrontal, dorsomedial PFC as well as dACC. PTSD has been
characterized by exaggerated emotional responses, diminished
ability to redirect attention from emotional stimuli, and
diminished capacity for reappraisal or suppression of emotions
(38, 39). Decreased activation of dlPFC and dmPFC, as well as
decreased connectivity between DMN and FPN, in contrast to
increased connectivity of DMN with attention networks, have
been detected in PTSD (40, 41).

Context Processing (CP) Circuitry
Finally, more recently we have proposed that context processing
abnormalities may serve as a parsimonious model explaining
various PTSD symptoms/deficits (20). Context processing (CP)
circuitry supports representation and retrieval of general or
“background” information in the environment, and this circuitry
is critical to modulate responses to various but especially
ambiguous cues to best fit the current situation. This circuitry
is dependent on pattern completion and pattern separation
functions performed by hippocampus, and its interconnection

with mPFC and thalamic nuclei, such as nucleus reunions.
PTSD have been associated with context processing deficits, and
it has been suggested that impairments in pattern separation
and pattern completion processes could lead to dominance
of fear over safety memories, inappropriate cue-related
behavioral responsivity, and hypervigilance. Hypoactivation of
hippocampus and vmPFC and reduced connectivity between
these regions have been indeed reported in PTSD (42).

Interestingly, while deficits within CP circuitry have been
implicated in a core PTSD pathology (43), it has been primarily
investigated in the situations of fear, threat and danger. However,
patients with PTSD demonstrate difficulties in understanding
contextual nuances in various situations, including the non-
threating one; for example when reward is expected (44), and
context processing had been identified as one of the key aspects
in addiction ((45)), and as we had mentioned addiction is
highly prevalent in PTSD patients. PTSD has been associated
with altered expectancy and lower satisfaction with reward (7,
14), and changes in activation of the regions associated with
reward processing, including nucleus accumbens (NAc) have
been reported in PTSD, raising the question regarding the role
context processing deficits in reward processing abnormalities in
PTSD and in PTSD/SUD comorbidity. In the next paragraph, we
will describe the neurobiology of reward processing, and then
provide evidence of PTSD-related alterations in it.

NEUROBIOLOGY OF REWARD
PROCESSING

Animal Studies
Reward processing is a multi-faceted construct, and three
distinct components of reward functioning have been proposed,
including reward wanting (or reward motivation), reward liking
(or reward consumption) and reward learning (11, 12). Reward
wanting is defined as anticipatory motivation toward obtaining
a reward, reward liking is linked to experience of pleasure
associated with receiving a reward, while reward learning refers
to learning about cues and actions associated with reward,
as well as to adaptation of one’s behavior based on this
knowledge (11). Decades of animal research have provided a
rich account of the neurobiological mechanisms underlying these
three components (46–48).

Reward Wanting
This component has been consistently found to be controlled by
mesolimbic and mesocortical dopamine (DA) pathways. More
specifically, DA neurons in ventral tegmental area (VTA) have
been shown to target nucleus accumbens (NAc), amygdala, and
hippocampus in the mesolimbic pathway and cortical regions
including mesial (MFC) and orbitofrontal cortices (OFC),
in the mesocortical pathway (49, 50). Importantly, evidence
from animal studies have indicated that when dopamine is
reduced, reward motivation is impaired (51, 52). In addition,
glutamate afferents convey signals to the NAc about motivational
stimuli from prefrontal cortex, basolateral amygdala, and ventral
hippocampus (53). Additionally, the NAc receives excitatory
afferents from the thalamus and projects back via ventral
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pallidum (VP) to midline and intralaminar thalamic nuclei that
projects to prefrontal cortex, thus completing cortico–striato–
pallidal–thalamic loops/cortical-basal ganglia circuit (46, 54, 55).

Reward Liking
In contrast to reward wanting, reward liking is primarily
mediated not by DA projections but by the opioid system that
is responsible for generation of pleasurable reactions at specific
sites in limbic structures, or “opioid hotspots,” one of them
being in the medial shell of NAc, while another in the posterior
part of the ventral pallidum. In addition to the opioid system,
endocannabinoids have been shown to enhance “liking” reactions
in a NAc hotspot that overlaps the mu opioid site (48, 56). It has
been proposed that hedonic hotspots may be functionally linked
together into an integrated hierarchical circuit that combines
multiple areas in the forebrain, such as parabrachial nucleus, as
well as in the brainstem (47, 57). Figure 1 illustrates brain circuits
involved in reward wanting and liking.

Reward Learning
It has been shown to be encoded by fast phasic DA bursts in VTA
that activate DA receptors in NAc, in a circuit with prefrontal
cortex (in contrast to reward wanting, where DA acts not on
fast, but on the intermediate time scale). When outcome is better
than expected (positive reward prediction error), D1 receptors,
sensitive to higher DA concentrations in NAcc are activated,
whereas when an unexpected reduction of reward occurs
(negative reward prediction error), D2 receptors are activated
which lead to depressed activity of DA neurons. In addition to
VTA-NAc projections, the afferents from lateral habenula to VTA
and mesopontine rostromedial tegmental nucleus (RMTg) have
been found to be implicated in reward learning, and specifically
in negative reward prediction error (58–60).

Human Studies
In human research however, most of the studies have focused
on two components of reward processing, reward anticipation
(or anticipatory phase) and reward outcome (or consummatory
phase), roughly corresponding to reward wanting and reward
liking in animal studies (61–63). It is important to note here that
reward outcome may incorporate a broader range of processes
than reward liking alone, as not only emotional/affective
components included, but also cognitive appraisal of reward
delivery. In addition, both reward anticipation and reward
outcome may incorporate aspects of reward learning, when
expectation of the reward has been shaped, and individual
compares predicted and actual gains or losses.

In general, empirical findings regarding neurobiological
mechanisms underlying aforementioned components of reward
processing are generally consistent with animal research.

Reward Anticipation and Reward Outcome Activation

Patterns
In some of the earlier studies (64), reported similar patterns of
activation between two phases of reward processing. Activations
in nucleus accumbens (NAc), sublenticular extended amygdala
(SLEA), and thalamus have been reported during both the

anticipation and reward outcome phases, while activation in
orbitofrontal cortex (OFC) has been revealed only during the
reward outcome phase. Interestingly activations of the NAc,
SLEA, and hypothalamus have been shown to increase in
response to high monetary gains in the reward outcome phase,
as well as to higher expected value of monetary gains in the
anticipation phase.

However, others (65, 66) have reported differential
activation during two phases of reward processing, and this
has been replicated in recent studies and by different research
groups (63, 67, 68).

Reward Anticipation
Knutson et al. (66) have reported that NAc is primarily
recruited by anticipation of monetary reward, and when
anticipated rewards are not obtained (reward prediction error),
NAc is suppressed In addition to NAc, medial caudate and
medial prefrontal cortex (mPFC) have been activated during
anticipation of reward. Interestingly, the activations observed
in NAc and mPFC that were proportional to the magnitude
of anticipated reward have been replicated in further studies
(67, 68), and the mPFC activation has also traced anticipated
probability of rewards (69, 70). On the other hand, activations
in medial caudate and thalamus traced not only the magnitude
of the reward, but also of anticipated punishment. A meta-
analysis of 20 fMRI studies suggested that the NAc responds
robustly during anticipation of monetary gains, but not during
the outcome phase (71), and it has been replicated in recent
studies (63). Furthermore, activations in NAc have been linked
to reward prediction error, with decreased activity of NAc being
detected when rewards are omitted or smaller than expected (72).

Reward Outcome
For the reward outcome, ventromedial PFC (vmPFC) has been
activated, while omission of anticipated rewards has suppressed
vmPFC activity (63, 65, 73). Additionally, dorsal caudate and
parietal cortex have been recruited in reward outcome condition.

Animal and Human Research: Conceptual
and Methodological Disparities
What could be the source of these differences in findings between
human and animal research?

Understanding at the Molecular Level
First, some of the differences in underlying components of
reward processing might be difficult to detect in human research,
as these are described on a molecular level (such as involvement
of opioid system in nucleus accumbens (NAc) for reward liking,
and dopamine (DA) afferents to NAc in reward wanting),
while human reward studies on a molecular level are yet to
be performed.

Regions of Interest (ROI) Used
Second, without invasive approaches it is very hard to target
small regions, such as NAc core and shell, or lateral habenula.
Thus, while animal studies could target directly NAc core
and shell for wanting and liking components, respectively,
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FIGURE 1 | (A) Brain Circuits Involved in Reward Wanting (Anticipation). Reward wanting include mesolimbic and mesocortical dopamine pathways (shown in blue).

DA neurons in ventral tegmental area (VTA) target nucleus accumbens (Nac), basolateral amygdala, and hippocampus in mesolimbic pathway, and cortical regions

(mPFC) in mesocortical pathway. In addition, glutamate afferents convey signals to the NAc from mPFC, basolateral amygdala, hippocampus, and thalamus (shown in

green). NAc projects via ventral pallidum (VP), to thalamic nuclei, that projects to prefrontal cortex, thus completing cortico-striato-pallidal-thalamic loops (shown in

purple). (B) Brain Circuits Involved in Reward Liking (Outcome). Reward liking link together “opiod hotspots,” one of them being in the nucleus accumbens (Nac) shell,

while another in posterior part of ventral pallidum (VP) (shown in yellow). It has been proposed that liking may be sub-served by a hierarchical circuit that in addition to

NAc and VP includes areas in the forebrain, such as parabrachial nucleus, as well as in brainstem. Cortico-striato-pallidal-thalamic loops include projections from

mPFC to NAc; NAc in turn projects via VP, to thalamic nuclei, which then targets mPFC (shown in purple). PFC, prefrontal cortex; NAc, nucleus accumbens; VP,

ventral pallidum; VTA, ventral tegmental area; BLA, basolateral amygdala; Hpc, hippocampus; Thal, thalamus; PBN, parabrachial nucleus. *Background photo

courtesy of Dr. Leonard E. White.

human studies sometimes examined a larger ventral striatum
region that includes not only NAc, but also olfactory tubercle,
and sometimes rostroventral putamen and the medial caudate
nucleus (62, 63, 74).

Type of Reward Used
Lastly, in contrast to animal studies that used food for reward (or
drugs in addiction models), the aforementioned human research
has primarily focused on abstract reward, such asmonetary gains.
Some human studies incorporated pleasant pictures (75–77), or
happy faces (72, 78, 79) as positive rewarding stimuli, and in these
studies, activations in the ventral striatum have been reported
during the reward outcome phase.

Monetary gains, pleasant pictures, and happy faces – rewards
most often used in human studies have been all conceptualized
as abstract or secondary rewards, in contrast to pleasant tastes,
smells, touch, sounds, and sights often considered as the primary
rewards (63, 79–82). Haber and Knutson (62) have hypothesized
that for primary rewards, the anticipation recruits ventral
striatum and orbitofrontal cortex (OFC), while the reward itself
elicits only OFC, and that primary rewards tend to activate more
posterior OFC regions, while abstract rewards - more anterior
OFC regions (62). Sescousse et al. (83) have also shown that
monetary gains tend to engage the most anterior portion of the
OFC, while primary rewards, food, have been represented in
the anterior insula. Clearly, more empirical support is needed

for these hypotheses. One can also wonder whether greater
involvement of cortical regions, like the mPFC, in human
research is also facilitated by (a) the abstract character of rewards
used in human studies and (b) the engagement of cognitive
appraisal of reward outcomes in human subjects.

In summary, both animal and human research have indicated
the importance of cortical- basal ganglia circuits in reward
processing, with an established role of NAc in anticipation of
reward, and less clearly defined roles for cortical regions (like
OFC and mPFC) during both anticipation and reward outcome
phases in human studies. Furthermore, animal and human
studies have shown that OFC encodes the value of available
outcomes (84–86). Importantly, it has been demonstrated that
the medial OFC maintains a representation of the expected
reward associated with particular cues (87–89). Clearly, for both
animal and especially human research, additional work will be
required to better understand the specific roles of these regions
in responses to different type of rewards, in different species, both
on the molecular and the brain circuits levels.

REWARD PROCESSING IN PTSD

Limited prior research has suggested potential alterations
in reward anticipation and outcome components of reward
processing, with PTSD patients exhibiting both lower expectancy
and lower satisfaction with reward, as evident from less effort
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expanded to view positive rewarding stimuli (7, 10). However,
only a few studies have examined neural mechanisms associated
with these two components in PTSD. Furthermore, while some
agreement can be found among studies of the reward outcome
phase, evidence regarding reward anticipation is inconclusive
at best.

Reward Outcome
Several studies have indicated that PTSD patients, compared
to trauma-exposed controls, exhibit decreased ventral striatal
and decreased medial prefrontal cortex (mPFC) activation to
reward (relative to loss) (10, 90). Admon et al. (91) have reported
that PTSD-related decrease in striatal responses to reward is
not present prior to deployment, i.e., before trauma exposure
and PTSD development. Importantly, same striatal responses
to reward (relative to loss) have been linked to anhedonic
PTSD symptoms severity (10). It is noteworthy that in these
studies, reward condition has been compared to loss (punishment
condition), therefore, the task included not only positive, but also
negative reinforcement, potentially engaging different/additional
mechanisms. When the response to positive/rewarding stimuli
has been compared to the neural one, no differences in ventral
striatum activations have been detected among the groups,
however decreased dmPFC responses to positive stimuli have
been detected in PTSD patients. In concert, in study by (92)
reduced dmPFC activity in response to a positive social audio-
script (presumably rewarding) has been related to higher severity
of emotional numbing or “inability to experience positive
emotions” in PTSD. In addition, increased insula responses have
been related to decreased positive affect in response to rewarding
stimuli in PTSD patients (92).

Reward Anticipation
The existing evidence regarding reward anticipation component
brain circuitry, as already stated, is very limited and rather
contradictory. Elman et al. (10) reported no differences in
neural activation patterns during expectation of reward,
however altered response of NAc has been observed during
the expectation of an aversive outcome, which is at odds
with the results of meta-analysis mentioned earlier (71).
Furthermore, a recent study in PTSD patients reported
higher activation in the NAc, putamen, and amygdala during
anticipatory phase (14), which is counterintuitive, if the
diminished reward motivation in PTSD is indeed present.
Interestingly, a recent resting-state study, that compared
patterns of functional connectivity in PTSD and comorbid
PTSD-major depression (MDD) reported that patients
with comorbid PTSD and depression, exhibited decreased
connectivity in striatal-subcortical pathways, such as nucleus
accumbens (NAc)-thalamus, and NAcc-hippocampus, as well
as decreased connectivity between basolateral amygdala and
orbitofrontal cortex, all correlated with the severity of depressive
symptoms (93). In this study, however, distinct clusters of PTSD
symptoms (including negative mood and cognition) have not
been specifically studied.

In sum, the empirical findings on PTSD-related changes
in neurobiological mechanisms of reward anticipation and

outcome are rather limited. Decreased mPFC activation
during the outcome phase in PTSD patients has been
reported across number of the studies (91, 94) however,
diminished activations of ventral striatum (NAc presumably)
have been reported in some studies (10), but not others
(95). Furthermore, the question of PTSD-related changes
during reward anticipation remains wide open, as one study
reported increased activation of NAc in PTSD patients,
while others showed no changes in NAc (10). Clearly
additional studies are urgently needed to: (a) determine
whether and what kind of reward processing abnormalities
are indeed present in PTSD, and (b) are they linked to the
mechanisms generating “negative cognition” or contributing to
PTSD/SUD and PTSD/MDD comorbidity. Finally, additional
work will be needed to establish the links between PTSD
related pathophysiology described in previous paragraph
to neurobiological alterations underlying reward processing
in PTSD.

GAPS AND FUTURE STUDIES

So, what are the key areas that need to be addressed to answer
the question whether reward processing deficits are involved
in anhedonia and emotional numbing symptoms (specifically,
included in the negative mood and cognition symptoms cluster)
in PTSD?

Delineating Neural Mechanisms of Distinct
Components of Reward Processing
First, while animal research has outlined three components
of reward processing (reward wanting, reward liking, and
reward learning), and delineated specific brain regions and
neural mechanisms that subserve these functions, the homology
to human research so far is largely limited to the reward
anticipation phase.

Understanding the Reward Outcome
Phase
With respect to reward “liking” the participation of nucleus
accumbens (NAc) has to be further confirmed, but importantly
the limited human research raises the possibility that the reward
outcome phase might incorporate a broader range of processes,
not limited to hedonic reactions, including cognitive evaluation
of the received rewards, and thus engaging additional cortical
regions. This could explain the involvement of cortical regions
like mesial (MFC) and orbitofrontal cortices (OFC) in some
human studies.

Type of Reward Used
It is also possible that different types of rewards trigger different
hedonic reactions. In animal studies the primary reward –
commonly food, has been investigated, while in humans, the
major focus has been devoted to the abstract rewards, such as
money gains or pleasant pictures. It is possible that the abstract
nature of the reward engages cortical regions. However, it has also
been suggested that different parts of OFC may be implicated in
primary vs. abstract rewards. Thus, specific roles of OFC, mPFC
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FIGURE 2 | (A) Hypothetical pathway implicated in PTSD pathology: impaired context processing linked to alterations in reward processing. Impaired context

processing reflected in diminished activity of medial PFC may affect the reward anticipation via altering the activity of glutamate afferents from medial PFC to nucleus

accumbens (NAc), which may lead to decreased activation of NAc. Furthermore, as Nac projects to ventral pallidum, which in turn projects to prefrontal cortex via

thalamic nuclei, the activity of this cortical loop may be changed. (B) Hypothetical pathway implicated in PTSD Pathology: impaired emotion regulation linked to

alterations in reward processing alterations in emotion regulation (such as inability to switch attention from trauma-related cues, or diminished cognitive appraisal)

reflected in decreased activation of dorsolateral PFC and dorsomedial PFC may lead to diminished positive affect with altered activity of opioid system in nucleus

accumbens (NAc) and ventral pallidum (VP). Decreased activity of NAc and VP may be present, and weaker connections with areas in forebrain, such as parabrachial

nucleus (PBN), could be detected. mPFC, medial prefrontal cortex; NAc, nucleus accumbens; VP, ventral pallidum; VTA, ventral tegmental area; BLA, basolateral

amygdala; Hpc, hippocampus; Thal, thalamus; PBN, parabrachial nucleus.

and other regions, in reward processing in general and in human
reward outcome in particular, have to be further delineated.

Understanding at the Molecular Level
Furthermore, research on reward processing in humans have
primarily (and almost exclusively) focused on circuit level
dysregulation, which presents a limited perspective, as distinct
neurotransmitters and modulatory systems within the same
regions (NAc) may be important for different components
of reward processing, such as opioid system for reward
liking, and DA for reward wanting. Future research should
examine human reward processing on molecular level within the
anatomical context.

Regions of Interest (ROI) Used
Furthermore, some of the human research and especially
research that involves patients groups like PTSD, is not
consistent with respect to the choice of regions of interest
(ROI). While some studies have examined involvement of
NAc (in line with animal studies), others reported results
using a broader - “ventral striatum” ROI. Furthermore, few
studies have discussed the involvement of regions like dorsal
striatum, dorsal putamen and caudate, that are more likely to be
involved in goal-directed behavior rather than reward wanting
or liking.

With respect to reward processing abnormalities in PTSD,
while the nature of “negative cognition” symptoms, the high

comorbidity with major depression (MDD) and substance
use (SUD), and initial studies of reward outcome all point
out to possible abnormalities of reward processing circuitry,
much work is required to clearly establish this fact. As stated
above, the evidence is limited and on the circuit level, it is
not clear what exact brain regions are implicated in PTSD-
related changes in “reward wanting.” Furthermore, it is not
fully confirmed, if the reward outcome response in PTSD is
diminished, what exact circuits are involved and how these
changes are related to “negative cognition” or comorbidities that
triggered these questions.

Additionally, activity of reward circuitry may be affected
by inflammation and childhood trauma, which both constitute
the risk factors for PTSD. More specifically, PTSD has been
consistently associated with elevated levels of pro-inflammatory
markers like C reactive protein (CRP) and pro-inflammatory
plasma cytokines, including interleukins (IL)-1 and IL-6 (96, 97),
and recent studies have demonstrated that activity of ventral
striatum in response to reward is negatively correlated with
circulating concentrations of IL-6 and CRP (98). Moreover,
increased CRP has been found to be associated with decreased
connectivity between ventral striatum and vmPFC (99, 100).
As for the childhood trauma, it has been linked to decreased
connectivity betweenNAc andOFC (101), and reduced activity of
ventral striatum in response to reward ((102)). Future studies will
be needed to examine the effects of inflammation and childhood
trauma on reward circuitry in PTSD.
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Circuit Dysregulation and Reward
Processing Deficits in PTSD: Possible
Explanations of PTSD Pathology
Finally, existing models of PTSD pathology, such as fear
learning, threat detection, emotion regulation and context
processing models, do not directly describe regions associated
with reward function, such as nucleus accumbens (NAc). It
has been hypothesized that context processing deficits as seen
in PTSD in diminished mPFC activity, may affect the reward
processing, specifically, reward wanting or anticipation via
altering activity of glutamate afferents from PFC to NAc. If
reward anticipation is indeed impaired in PTSD and it is
reflected in altered mPFC input to NAc, in turn affecting
its projection to VP, which in turn projects to PFC via
thalamic nuclei, changing activity of cortical loop. Figure 2A
illustrates hypothetical pathway linking context processing and
reward anticipation in PTSD. However, additional empirical
data is needed to confirm this link and to further our
understanding of anhedonia and negative cognitions symptoms
in PTSD.

It is also possible, alternatively, that the inability to
switch attention from trauma-related or aversive cues, or
diminished cognitive appraisal may lead to diminished
positive affect (related to emotional numbing and reflected
in activity of opioid system in NAc and ventral pallidum)
in PTSD patients. Thus, alterations in emotion regulation
circuitry (including decreased activation of dlPFC and
dmPFC, as well as decreased connectivity between DMN
and FPN) in PTSD can give rise to impairment in reward
processing by deficient DLPFC input to NAc, resulting
in altered signaling to VP, and weakened connectivity
with forebrain, and specifically parabrachial nucleus.
Figure 2B illustrates hypothetical pathway linking emotion
regulation and reward liking or outcome in PTSD. Future

empirical studies will be needed to distinguish between these
competing explanations.

Understanding of the neurobiology of reward processing
alterations in PTSD, as well as its possible associations with the
existing models of PTSD pathology are important not only to
our knowledge of symptom formation, but it has the potential
to enhance current treatment approaches and specifically
target anhedonia and emotional symptoms in PTSD patients.
Furthermore, as reward processing deficits has been proposed
to be the mechanism underlying PTSD-MDD and PTSD-SUD
comorbidities, and both of these comorbidities have beenmarked
by greater functional impairment and worse treatment results,
understanding of the neurobiological mechanisms involved in
reward processing deficits might be central to the targeted
approach to treatment of these comorbidities.
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