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Communication within the immune system depends on the release of factors that

can travel and transmit information at points distant from the cell that produced

them. In general, immune cells use two key strategies that can occur either at

the plasma membrane or in intracellular compartments to produce such factors,

vesicle release and proteolytic cleavage. Release of soluble factors in exosomes, a

subset of vesicles that originate from intracellular compartments, depends generally

on biochemical and lipid environment features. This physical environment allows

proteins to be recruited to membrane microdomains that will be later endocytosed

and further released to the extracellular milieu. Cholesterol and sphingolipid rich

domains (also known as lipid rafts or detergent-resistant membranes, DRMs) often

contribute to exosomes and these membrane regions are rich in proteins modified

with Glycosyl-Phosphatidyl-Inositol (GPI) and lipids. For this reason, many palmitoylated

and GPI-anchored proteins are preferentially recruited to exosomes. In this review,

we analyse the biochemical features involved in the release of NKG2D-ligands as

an example of functionally related gene families encoding both transmembrane and

GPI-anchored proteins that can be released either by proteolysis or in exosomes,

and modulate the intensity of the immune response. The immune receptor NKG2D

is present in all human Natural Killer and T cells and plays an important role in

the first barrier of defense against tumor and infection. However, tumor cells can

evade the immune system by releasing NKG2D-ligands to induce down-regulation

of the receptor. Some NKG2D-ligands can be recruited to exosomes and potently

modulate receptor expression and immune function, while others are more susceptible to

metalloprotease cleavage and are shed as soluble molecules. Strikingly, metalloprotease

inhibition is sufficient to drive the accumulation in exosomes of ligands otherwise

released by metalloprotease cleavage. In consequence, NKG2D-ligands appear as

different entities in different cells, depending on cellular metabolism and biochemical
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structure, which mediate different intensities of immune modulation. We discuss whether

similar mechanisms, depending on an interplay between metalloprotease cleavage

and exosome release, could be a more general feature regulating the composition of

exosomes released from human cells.

Keywords: GPI-anchored proteins, metalloproteases, DRMs, MICA/B, ULBP, shedding, exosomes, immune

evasion

Interactions within the immune system frequently depend on
the release of soluble factors. In general, two main mechanisms
underlie the release of these immune mediators: shedding,
generally mediated by enzymatic cleavage, often by members of
the metalloprotease (MP) families, and recruitment into vesicles.
Extracellular vesicles, often referred to as exosomes, are generated
by release of intraluminal vesicles formed in the endocytic
pathway while other types of nanoparticles can originate from
different cellular compartments (plasma membrane-derived,
endocytic nanovesicles, etc). Here, we will discuss the regulation
and interplay of these two important mechanisms for release
of a range of immune factors, including IL6R, ICAM1, TNFR1,
with a particular focus on the ligands for the activating immune
receptor NKG2D. Although many questions still remain open,
it is interesting to observe that cells in different metabolic
or stress-related situations seem to preferentially use only
one of these possible mechanisms to release specific proteins.
This suggests that studying the interactions that regulate these
release mechanisms could advance our understanding of the
outcome of the multiple pathological situations in which the
secretion of a particular soluble factor plays an important
immunomodulatory role.

One critical feature of the biology of extracellular vesicles
is that they have a very particular lipid, protein, and nucleic
acid composition (Colombo et al., 2014) and the membrane
properties of exosomes differ markedly from those of plasma
membrane-derived vesicles. This led to the idea that recruitment
of cargo to exosomes could depend on both biochemical features
intrinsic to these proteins as well as an appropriate lipid
environment. Given that a large number of cellular routes
are likely involved in the synthesis of the different species of
lipids and post-translational modifications that drive selective
recruitment of proteins into exosomes, metabolic changes,
or pathological situations, like pathogen infection and tumor
transformation, that affect these cellular pathways could lead to
differential recruitment of cargo to vesicles and, in consequence,
to potentially different functional outcomes.

Metalloprotease-mediated cleavage of membrane proteins
has been described in many inflammatory and immunological
processes. Metalloproteases are expressed in all cell types and
their activity can be regulated at various levels, including
their recruitment to membrane microdomains and their
release in exosomes. In this context, the lipid environment
of certain membrane regions might be also involved in the
regulation of metalloprotease cleavage. In this review, to
explore the interrelationship between exosome recruitment and
metalloprotease cleavage, we will discuss, as a model, the
regulation of the release of NKG2D-ligands, proteins whose

expression is induced by stress and signals for immune activation,
but that can also act as decoys reducing the intensity of the
immune response when they are secreted from tumor cells.
We will first discuss some post-translational modifications that
preferentially direct proteins, including NKG2D-Ligands, to
exosomes; we will revisit some aspects affecting the biology
of NKG2D-L, in particular, their release to extracellular milieu
and how the process of NKG2D-L vesicle enrichment is further
regulated by metalloproteases. We will end by introducing other
examples of proteins that also can be released either as part of
vesicles or as enzymatically cleaved species.

PROTEIN RECRUITMENT TO EXOSOMES:
POST-TRANSLATIONAL
MODIFICATIONS AND GLYCOSYL-
PHOSPHATIDYL-INOSITOL (GPI)
ANCHORS

The protein composition of exosomes has been studied in
depth in the last few years and there are now several
databases with information obtained from proteomics analysis of
exosomes isolated from different cell lines and human materials
(Kalra et al., 2012; Mathivanan et al., 2012). Apart from the
general enrichment for tetraspanins and endosomal proteins,
exosomes also favorably include proteins that have undergone
modifications with lipids such as fatty acylation (Shen et al.,
2011). Additionally, many glycosyl-phosphatidyl-inositol (GPI)
anchored proteins are also found in exosomes, including the
complement regulator proteins CD55 and CD59 (Clayton et al.,
2003) or the cellular prion protein (PrPC) (Fevrier et al., 2004).
The lipid environment by itself probably accounts for the
recruitment of GPI-anchored proteins (GPI-AP) to exosomes,
since the GPI anchor is preferentially embedded in detergent
resistant membrane regions (DRMs, membrane microdomains
also known as lipid rafts) through the fatty acids that compose the
phospholipidic phosphatidyl inositol (PI) moiety. For example
CD73, Gce1, are GPI proteins that are found in DRMs, and this
is related to their sorting on exosomes (Muller et al., 2009). Also,
the GPI-anchor of the prion protein is associated with saturated
raft lipids (Taylor and Hooper, 2006).

The GPI anchor is a glycolipid structure pre-formed at the
Endoplasmic Reticulum (ER) before being transferred to the
nascent GPI-AP (For review, Paladino et al., 2015). It has a
conserved core of PI, linked to a glycan backbone consisting of
a single glucosamine residue and three mannoses. These sugars
are linked to an ethanolamine phosphate that is attached to
the protein via an amide bond (Figure 1). This core can have
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FIGURE 1 | GPI anchor structure. Glycosyl-phosphatidyl-inositol (GPI)

anchors are glycolipid moieties that allow membrane attachment for a large

number of proteins.

different lateral modifications that consist of the attachment
of other glycans and/or ethanolamine molecules. In humans,
there exist many GPI-AP with very distinct functions, and there
are many lines of evidence to indicate that GPI anchors are
more than just a membrane attachment for proteins, however,
their trafficking and biology is only starting to be understood.
Generation of GPI-AP requires the involvement of several multi-
enzymatic complexes that participate in the synthesis and the
transfer of the GPI moiety to the amino acid backbone of the
protein (Kinoshita et al., 2013; Kinoshita, 2014). It is worth
emphasizing here that the newly synthesized GPI-AP initially
interact with the ER membrane through a short transmembrane
(TM) and short cytoplasmic region before being transferred to
a pre-made GPI anchor and that the efficiency of this process
might also affect the fate of the protein. Notably, once the
protein is bound to the GPI, it does not have any cytoplasmic
moiety, which stresses the importance of the lipid environment
for their trafficking and the need for bridging with other TM
proteins to allow GPI-AP to interact with the intracellular milieu.
This is of particular importance since GPI-AP have a high
oligomerization rate.

LIPIDS, DETERGENT-RESISTANT
MEMBRANE MICRODOMAINS, AND
EXOSOMES

Perhaps because the study of lipids is complex and difficult, there
are fewer reports describing the lipid composition of exosomes
than those on exosomal proteomics analyses. Nevertheless,
several studies have described the particular enrichment of
sphingomyelin (SM), phosphatidyl-serine (PS), cholesterol (Ch),

and saturated fatty acids in exosomes purified from different cell
types, while ceramide and Lyso-bis-phosphatidic acid (LBPA)
content seemed to vary in the different studies (Laulagnier
et al., 2004, 2005; Llorente et al., 2013; Osteikoetxea et al.,
2015a). This particular composition probably accounts for
the noteworthy effect of detergents on exosomal membranes
that also distinguishes them from plasma membrane-derived
vesicles: exosomes are quite sturdy and can resist treatment with
detergents that would solubilize regular membranes (Wubbolts
et al., 2003; Osteikoetxea et al., 2015b). Similarly, the rigidity of
exosome membranes has been described to be higher than that
of the plasma membrane of their originating cell (Laulagnier
et al., 2004). Indeed, the composition and rigidity of exosomal
membranes is reminiscent of the regions of plasma membrane
known as lipid rafts or detergent resistant membranes (DRMs;
Ikonen, 2001). So, it was rapidly proposed that exosomes
would contain rafts (de Gassart et al., 2003) and, in fact, the
membrane regions containing DRMs can be endocytosed to form
intraluminal vesicles that are then released as exosomes (Tan
et al., 2013). DRMs are regions of the plasma membrane rich
in Ch and sphingolipids that function as signaling platforms
and can play important roles in cell trafficking (Staubach and
Hanisch, 2011). DRMs have been described to be important in
protein sorting, endocytosis, and viral and bacterial signaling.
Although they share many proteins and features, there are
still some differences between exosomes and DRMs (Dubois
et al., 2015). For example, caveolin and flotillins are lipid
raft scaffolding proteins that not always appear in exosomes.
Moreover, the composition of lipid rafts and exosomes from
a given cell can vary due to tumor transformation or other
metabolic changes.

Lipid rafts are rich in GPI-AP, certain transmembrane and
acylated proteins, another shared feature with exosomes (Simons
and Ikonen, 1997). The enrichment of GPI-AP in DRMs occurs
in their trafficking route from Golgi toward the apical membrane
in polarized cell and this is consistent with the fact that
disruption of DRM formation affects the apical trafficking of
GPI-AP (Zurzolo and Simons, 2016). The link between DRMs
and GPI-AP is of particular importance in the development of
transmissible spongiform encephalopathies, since the conversion
of the cellular prion protein PrPC to the disease causing protein
PrPSc, occurs when the protein is targeted to the membrane
microdomains (Taylor and Hooper, 2006). Interestingly, PrPC

regulation also involves cleavage by metalloproteases of the
ADAM family (Taylor et al., 2009) and can be released in
exosomes (Fevrier et al., 2004), although how these mechanisms
could be related is not clear in this context.

NKG2D-LIGANDS: AN EXAMPLE OF
DIFFERENTIAL SECRETION WITH
FUNCTIONAL CONSEQUENCES IN THE
IMMUNE RESPONSE

NKG2D is one of the best characterized activating receptors
in human NK cells (Bauer et al., 1999), that also acts as
a co-stimulating receptor in CD8+ αβ+ T cells and γδ+ T
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cells (Das et al., 2001; Groh et al., 2001). In human, it is
constitutively expressed in all these populations of effector cells.
Upon interaction with its ligands at the cell surface of target
cells, NKG2D originates a transduction signal cascade, through
the adaptor molecule DAP10 (Upshaw et al., 2006), leading
to activation of the perforin-mediated cytolytic response and
elimination of the target cell (Hayakawa et al., 2002). However,
when the NKG2D receptor is occupied by soluble NKG2D-L
the effector cell becomes unresponsive, presumably because the
receptor is blocked and/or internalized (Groh et al., 2002).

The study of the ligands for the immune activating receptor
NKG2D led to the identification of a large number of different
proteins that belong to two genetic families. As we will describe
below, certain NKG2D-Ligands are TM proteins and other GPI-
AP. Also, some of them are cleaved by metalloproteases, while
other are released in exosomes; some NKG2D-Ligands associate
with DRM, while others are outside these microdomains, and
all of them are able to bind the same receptor with important
functional consequences in health and disease. Thus, many
cellular pathways can be involved in the biology of the interaction
of this receptor with its ligands. The regulation of cellular
processes like exosome release and metalloprotease cleavage
becomes, in fact, a very important issue for the NKG2D-mediated
activation as well as for the evasion of tumors and pathogens from
this response. In consequence, the characterization of the fate of
these proteins in different situations, in health and stress, is of
great significance for modulation of the immune response.

NKG2D-ligands are MHC-related proteins induced by
cellular stress that can be classified in two genetic families: the
MIC family (Major Histocompatibility Complex Class-I related
Chain) and theULBP family (UL16-binding proteins, also known
as RAET1-A-E; Bahram et al., 1994; Bauer et al., 1999; Cosman
et al., 2001). Like conventional MHC class I molecules, MICA/B
proteins contain α1, α2, and α3 domains, however, they do
not associate with β2-microglobulin and they do not present
antigenic peptides (Groh et al., 1996; Figure 2). MICA and
MICB are very polymorphic genes and more than 70 MICA
and 30 MICB alleles have been described (Steven GE Marsh,
Anthony Nolan Research Institute, http://hla.alleles.org/terms.
html). Polymorphic residues are found throughout MICA and
MICB molecules, however, an interesting polymorphism occurs
at the transmembrane region that leads to different biochemical
features and affects the trafficking of the molecule (Table 1).
The TM region of MICA alleles can differ because of nucleotide
insertions (in many of them GCT triplets) leading to the increase
in the number of Ala residues in the TM (Mizuki et al., 1997;
Ota et al., 1997). In another group of MICA alleles, there is an
insertion of a single nucleotide just before the TM region, leading
to a frame shift that makes the molecule shorter and acquires the
signal for a GPI linkage. A further classification of the MICA
alleles, depending on the length of their cytoplasmic and TM
regions, is also used and, in this case, all the alleles that contain 4
Ala are called A4, 5 Ala A5, and so on, while the short TMMICA
alleles due to a frame shift are called MICA5.1. The existence of
either TM or GPI-anchored MICA alleles is important for the
biology of these NKG2D-L since, as will be discussed below, they
are released by different mechanisms.

FIGURE 2 | NKG2D-Ligand families. NKG2D-ligands belong to two families

of MHC class I-related proteins, MICA/B and ULBPs (also known as RAET1).

Members with either transmembrane (TM) and cytoplasmic (CYT) domains or

Glycosyl-Phosphatidyl-Inositol (GPI)-anchored exist in both families. They are

released to the supernatant either as part of exosomes or after matrix

metalloprotease (MMP) cleavage.

Regarding the ULBP family, six different proteins have been
described, all of them related to MHC class I, but only containing
the α1 and α2 domains and no α3 domain (Cosman et al., 2001;
Chalupny et al., 2003; Eagle et al., 2009b; Figure 2). Most MICA
alleles, MICB, ULBP4, and ULBP5 are transmembrane proteins
(Bacon et al., 2004) whereas ULBP1, ULBP2, ULBP3, ULBP6,
and MICA∗A5.1 alleles (the latter present in around 50% of all
the populations studied) are expressed at the cell surface as GPI
anchored molecules (Ashiru et al., 2013). ULBP2 and 5 have been
shown to be potentially expressed as either GPI or TM proteins
(Ohashi et al., 2010; Fernandez-Messina et al., 2011) (For Review,
Fernandez-Messina et al., 2012).

The existence of such a large number of ligands with
distinct biochemical features for a single receptor may reflect
a differential role for different ligands in immune surveillance
or an evolutionary response to selective pressures exerted by
pathogens.

The expression of a particular NKG2D-L mRNA does not
always imply its presence at the cell surface. Instead, the protein
can suffer post-transcriptional and post-translational regulation
(Heinemann et al., 2012) and modifications that direct it for
retention (recycling into endosomal compartments; Aguera-
Gonzalez et al., 2009; Eagle et al., 2009a), or extracellular
release (Groh et al., 2002; Waldhauer and Steinle, 2006) which
occurs in many tumors. These modifications can change the cell
fate, and allow a putative target cell to avoid recognition and
cytotoxic attack.

The vast majority of healthy cells lack NKG2D-L expression,
however, NKG2D-L are found on the surface of cells undergoing
different kinds of stress such as tumoral transformation, viral
and bacterial infection or autoimmune diseases (For review,
Gonzalez et al., 2008). Cytokines also affect the expression of
these ligands, for example, while TGFβ or IFN-γ downregulates
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TABLE 1 | MICA alleles classification based on the length of the transmembrane region.

Analysis of the MICA gene revealed a trinucleotide repeat (GCT) polymorphism on exon 5 coding for Alanine. MICA alleles have been classified in groups named A4, A5, A6, A7, A8, A9,

and A10, according to the number of Alanine repetitions within the transmembrane region (exon 5, boxed). An additional group called A5.1 consists of an additional nucleotide insertion

(GGCT), which in the case of MICA*008 has been shown lead to GPI anchoring of the protein. Bold: allele sequence represented. MICA*015 does not belong to any group.

MICA and ULBP2 (Schwinn et al., 2009; Yadav et al., 2009),
IFN-α upregulates its expression (Zhang et al., 2008). Moreover,
several viruses encode genes that result in proteins that hijack
one or several NKG2D-L, highlighting the importance of this
activating receptor in the immune system (Reyburn et al., 2015).

NKG2D-L are expressed in a wide range of cancers, with
preferential expression of MICA and MICB in many solid
tumors, whereas ULBPs are found in several hematological
malignancies, gliomas, and melanomas (Nausch and Cerwenka,
2008; Baragano Raneros et al., 2014b). The detection of particular
NKG2D-L in tumors and sera from cancer patients has been
associated with prognosis, diagnosis or treatment free-survival in
several studies (Spear et al., 2013; Baragano Raneros et al., 2014a).
In general, a correlation between more NKG2D-L in serum and
poor prognosis has been described (Fernandez-Messina et al.,
2012), although the opposite has also been reported (Samuels
et al., 2015). A higher expression of these ligands in tumor
cells probably mediates an improved immune response, with a
better chance for tumor elimination and an improved prognosis.
However, the release of NKG2D-L from themalignant cells might
represent a strategy to prevent NKG2D-dependent immune
response.

The release of NKG2D-L from the cell surface in their soluble
form (sNKG2D-L) could have at least three consequences:

a reduction in NKG2D-L density at the tumor cell surface,
blocking of the NKG2D-binding site and, finally, internalization
and downmodulation of the NKG2D receptor on effector cells
upon persistent engagement of the sNKG2D-L (Salih et al.,
2008; Ashiru et al., 2010). So, knowing the cell biology of
NKG2D-L is crucial to understand the regulation of NKG2D-
mediated responses and how tumors or viruses evade from
this response. However, given the heterogeneity of NKG2D-L,
NKG2D modulation can occur in many different ways. In fact,
two major mechanisms for the release of NKG2D-L have been
described up to now, metalloprotease cleavage and release via
exosomes (Figure 3).

RELEASE OF SOLUBLE NKG2D LIGANDS:
METALLOPROTEASES AND EXOSOMES

In human, there are three families of Zn-dependent
metalloproteases (MPs) each one encoding a large number
of genes: matrix metalloproteases (MMPs), the ADAM (a
disintegrin and metalloproteinase) family, and ADAM with
thrombospondin motifs (ADAM-TS). MPs degrade extracellular
matrix and they have an important role in tumor migration.
Both MMPs and ADAMs have been suggested to participate
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FIGURE 3 | NKG2D-ligands biology. NKG2D-ligands (NKG2DL) are

recognized by NKG2D on the target cell surface leading to the activation of the

degranulation machinery by the effector cell, and target cell death. NKG2DL

can be recruited to detergent resistant membranes, also known as lipid rafts,

and be either cleaved by metalloproteases, resulting a soluble ligand, or

included in exosomes, resulting multimeric membrane-bound ligands. The

interaction with soluble NKG2DL, either as cleaved proteins or as part of

exosomes, can block and downmodulate the receptor and lead to immune

evasion.

in metastasis in multiple cancers and their role as biomarkers
for tumor prognosis has been proposed (Noel et al., 2012).
Several members of the Zn-dependent MP family have been
implicated in the proteolytic shedding of NKG2D-L from tumor
cells. MMP9, MMP14, ADAM9, ADAM10, and ADAM17
[also known as Tumor Necrosis Factor (TNF)-a Converting
Enzyme (TACE)] have been reported to be involved in MICA
and MICB cleavage in different cellular contexts (Salih et al.,
2002; Waldhauer and Steinle, 2006; Liu et al., 2010; Sun et al.,
2011; Chitadze et al., 2013). ADAM17 and MMP9 have been
observed to cleave both MICA and MICB from tumoral cells
(Waldhauer et al., 2008; Boutet et al., 2009; Yamanegi et al.,
2012) and ADAM15 plays a key role in the regulation of MICB
shedding (Duan et al., 2013). GPI-anchored ULBPs can also be
cleaved by metalloproteases of the ADAM family (ADAM10 and
ADAM17), in transfectants and tumor cells. It is interesting to
note that the kinetics for metalloprotease cleavage of different
NKG2D-L proteins can be very different and, probably, depends
on both susceptibility to the metalloprotease and other cell
trafficking properties of each member of the family. In fact, the
decrease of both ULBP1 and MICB from the plasma membrane
has been shown to depend also on endocytosis of the protein
and, in the case of ULBP1, rapid proteasomal degradation
(Aguera-Gonzalez et al., 2009; Fernandez-Messina et al., 2016).
In consequence, ULBP1 shows a slower kinetics for accumulation
in the supernatant than ULBP2 (Fernandez-Messina et al., 2010).

However, the role of metalloproteases regulating the
composition of exosome-cargo is not limited to their action
at the plasma membrane. It has also been reported that
exosomes themselves can be a platform for shedding. Different

metalloproteases are found in exosomes, perhaps because at
least some are recruited to DRMs, like ADAM17 (Tellier et al.,
2006), where they can be responsible for the release of their
substrates. The most studied metalloprotease in this context
is ADAM10, which is necessary for CD23 incorporation into
exosomes (Mathews et al., 2010), but is also related to exosomal
CD44 and L1 cleavage and release (Stoeck et al., 2006). Moreover,
metalloproteases can themselves be targets for cleavage in
exosomes, too, for example, ADAM15 can be shed by the action
of serine proteases (Lee et al., 2015), and exosomal MMP14 is
involved in the processing of MMP2 in exosomal fractions of
cultured corneal fibroblasts (Han et al., 2014). In fact, a body of
research on MMPs released in tumor vesicles is being generated.
Tumors also secrete large, PM-derived EVs bearing matrix
metalloproteinases (Ginestra et al., 1997; Muralidharan-Chari
et al., 2009), which could help migration of tumor cells within a
solid tissue.

The second main mechanism for release of NKG2D-L is
recruitment to exosomes. Several proteins belonging to the two
families of NKG2D-L have been detected in exosomes, mainly
ULBP1, ULBP3, and MICA∗008. This MICA allele corresponds
to the group of MICA alleles, called A5.1, containing a point
mutation leading to GPI membrane attachment. This GPI-
anchor has been demonstrated to be responsible for MICA∗008
recruitment to exosomes (Ashiru et al., 2013). At first glance
it could seem that the GPI-anchored NKG2D-L would be
mainly released in exosomes while TM NKG2D-L would be
cleaved by MP but, given that ULBP2 is also GPI-anchored
and mainly MP-cleaved, what determines the mechanism of
release used? Interestingly, although several groups of TM
MICA alleles, MICB, and ULBP2 are predominantly released
by metalloproteases, they can also be released via exosomes
in certain cellular contexts. For example, in cells treated
with MP inhibitors, ULBP2 can be detected in exosomes
(Fernandez-Messina et al., 2010). Several NKG2D-L have also
been found in placental exosomes as well as in ovarian cell-
derived exosomes or prostate exosomes (Hedlund et al., 2009;
Labani-Motlagh et al., 2015). These observations suggest that
variations that affect metalloprotease expression, activity, or
the possibilities of enzyme and substrate to encounter each
other could all modulate the probability of NKG2D-L release
as either soluble or exosomal species. For example, efficient
proteolytic release of MICA and MICB ligands is promoted
by the recruitment of these ligands to DRMs (Boutet et al.,
2009), where metalloproteases like ADAM17 reside (Tellier et al.,
2006). The recruitment of MICA to these cholesterol-enriched
microdomains depends on palmitoylation that has been reported
to enhance shedding of this ligand (Aguera-Gonzalez et al.,
2011). Thus, alterations in the repertoire or frequency of post-
translational modifications are likely to impact shedding of
MICA.Moreover, exosomal NKG2D-L seem to affect strongly the
intensity of NKG2D-mediated recognition and to downmodulate
the receptor more potently than soluble ligands presumably
because proteins multimerise on the exosome (Ashiru et al.,
2010; Fernandez-Messina et al., 2010; Labani-Motlagh et al.,
2015). The recruitment of NKG2D-L to exosomes could be a
mechanism adding to the high number of events that facilitate
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cancer spreading and contribute to the modification of the tumor
microenvironment, in particular, the decrease of an effective
immune response exerted by tumor exosomes.

Since the NKG2D-L release has important biological
consequences, such as blockade and downmodulation of the
receptor, decreasing the cytotoxic capacity of the effector cell,
several therapeutic strategies have been proposed to disrupt
NKG2D-L release with the aim of reinforcing antitumor
immunity. One of them is blockade of NKG2D-L shedding
by pharmacological inhibitors of MMPs and ADAM proteins
(MMPI II, MMPI III, GW280264X, or GI254023X; Waldhauer
and Steinle, 2006; Waldhauer et al., 2008). Although MP
inhibition can be used to control tumor spreading, this treatment
would not affect exosomal release of NKG2D-L, indeed,
depending on the alleles of MICA expressed, it could augment
the expression of NKG2D-L in exosomes and thus only partially
regulate the effects of cell-free ligands on immune responses
mediated by the NKG2D receptor. Similarly, chemotherapeutic
agents have been shown to increase cell surface NKG2D-L, and
downregulate mRNA expression of metalloproteases (MMP2,
MMP9, ADAM10, or ADAM9). For example, epirubicin, a
drug used to treat hepatocellular carcinoma, has been shown to
modulate the expression of ADAM10 in HepG2 cells, leading
to a decrease in soluble MICA (Kohga et al., 2009, 2010);
gemcitabine increased the expression of NKG2D-L in several
carcinoma cells and was used successfully in patients prior to
infusion with cytokine-activated killer cells (Morisaki et al., 2011,
2014; Xu et al., 2011). Finally, proteasome inhibitors, epigenetic
modifying drugs, such as histone deacetylase inhibitors (such as
Valproate) and demethylating reagents, may also modulate the
production of sNKG2DL (Armeanu et al., 2005; Skov et al., 2005;
Vales-Gomez et al., 2008; Butler et al., 2009; Chavez-Blanco et al.,
2011; Yamanegi et al., 2012).

CONSEQUENCES OF THE
HETEROGENEITY IN NKG2D-L RELEASE
ON THE IMMUNE RESPONSE

As mentioned above, NKG2D-L have been detected in cancer
patient sera and a considerable body of evidence suggests that
the amount of soluble NKG2D-L can be related with prognosis.
NKG2D-L release can be induced by viral infection and affect
immune recognition, for example HIV (Matusali et al., 2013)
and HCMV (Esteso et al., 2014). Many in vitro experiments
have shown that the presence of NKG2D-L in tissue culture
supernatants leads to the down-modulation of the NKG2D
receptor (Groh et al., 2002). Interestingly, when NKG2D-L
have been found in patient sera, this also correlates with lower
expression levels of the NKG2D receptor in the immune effector
cells (Wu et al., 2004; Hilpert et al., 2012), suggesting a more
immunocompromised state of the immune system in these
patients. Two main events could be causing the decrease in
the detection of NKG2D: blocking, so that the receptor-specific
antibody can no longer bind, or internalization caused by cross-
linking. The first possibility is very unlikely to be happening
in samples isolated from patients if the molecule was released

by metalloprotease cleavage. The interaction between NKG2D
and its monomeric ligands has, in general, lower affinity in
human than the murine system, ranging around the 1–10
micromolar (Raulet et al., 2013). This means that, unless present
in an extremely high concentration, soluble ligands will not
be found blocking the receptor. Moreover, they will probably
separate during the staining process. Although in most serum
or plasma samples the amount of soluble NKG2DL is found
in the picomolar range, this does not exclude that a higher
concentration could be achieved locally in vivo. Thus, the effect
of the NKG2D system at the site of ligand expression and
release could be more important than in peripheral blood. A
very different scenario can be envisioned when talking about
exosomal NKG2D-L. The fact that exosomal molecules are on a
membrane and, therefore, multimeric, will enhance the avidity
for the receptor and might cause a longer lasting interaction than
that of monomeric proteins. This effect could be observed in
vitro when comparing the ability to downmodulate the receptor
frommetalloprotease cleaved vs. exosomal protein: despite lower
amounts of the exosomal NKG2D-L protein, as detected by
ELISA, the down-modulation caused by these supernatants was
greater than that triggered by soluble molecules (Fernandez-
Messina et al., 2010). These observations suggest that identifying
not only the presence but also the biochemical form of NKG2D-
L in patients can help understanding classifying patients more
efficiently. In this context, knowing the MICA genotype of these
patients will be important (Vales-Gomez, 2015).

In addition to differences in the identity of ligands and affinity
of interaction, signaling through the NKG2D receptor is also
different in human and mice (the former associating with DAP10
and the latter with both DAP10 andDAP12), and so, the potential
effect of soluble NKG2D-L to modulate the immune response
can be very different in the two species. In fact, in mice, a
high affinity soluble NKG2D-L can actually activate NKG2D-
mediated response, leading to the rejection of the tumor cells that
secreted it (Deng et al., 2015). However, it is not clear whether a
similar mechanism could happen in humans.

That NKG2D plays an important role in the immune system
is highlighted by the mechanisms developed by viruses to control
NKG2D-mediated response and HCMV is a clear example of
this (Reyburn et al., 2015). However, many questions remain
still open on how to modulate this receptor and ligand system
to help patients. Murine research shows different impacts on
autoimmune diseases of the lack of NKG2D (Guerra et al.,
2013) and references therein), thus, more research is needed to
understand the best way to potentiate the ability of this receptor
to target unhealthy cells or to incorporate blocking agents of the
NKG2D-L in the clinic.

IS THERE A LINK BETWEEN DRMs,
METALLOPROTEASES, GPI-ANCHORS
AND EXOSOMES FOR PROTEINS OTHER
THAN NKG2D-L?

Examples of other proteins with dual secretion mechanisms,
exosomes and metalloprotease cleavage, can be found in the
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immune system and outside, however to which point they
can parallel the biology of NKG2D-L is certainly not clear.
A similar pattern of regulation could be happening for IL6
receptor (IL6R), which can be found in high amounts in human
serum as two different versions of secreted IL6R: a soluble
IL-6R, generated by proteolytic release of the ectodomain by
metalloproteases of the ADAM family (Lust et al., 1992), and
the recently described IL6R released in exosomes (Schumacher
et al., 2015). Interestingly, the exosomal IL6R migrates faster
than the cellular counterpart, suggesting that a post-translational
modification might be responsible for the incorporation of the
receptor into exosomes and the faster migration in SDS-PAGE.
As expected, the exosomal IL6R isoform is released with slower
kinetics than the metalloprotease isoform (Cichy et al., 1997).
The observation that IL-6R is present in exosomes poses the
question of whether the different forms of IL6R exert different
functional activities and this could be of importance in the
role of this receptor’s agonistic functions for proliferative IL-6
responses.

Another cytokine receptor, TNFR1 is also released in
exosome-like vesicles (Hawari et al., 2004) and shed by
metalloprotease cleavage (Schall et al., 1990). Strikingly, TNF-
α, can also be found in exosomes, where it has been suggested
to play a role in the pathogenesis of rheumatoid arthritis
(Zhang et al., 2006). Another interesting example, is the case
of ICAM1, which although susceptible to proteolytic cleavage
by ADAM17 (Tsakadze et al., 2006) is released from senescent
cells in exosomes. This is particularly striking since senescent
cells have an increased expression of ADAM17, as shown by an
increased shedding of soluble TNFR1.

The non-immune system prion protein (PrP) is described
to be released in exosomes, but, it can also be released in a
faster manner by different mechanisms: Alpha cleavage, resulting
in a soluble N1 fragment and a C1, GPI anchored fragment,
which can also be found in exosomes; beta cleavage, that
occurs closer to the N-terminal region and is the mechanism
identified as shedding. Finally, the C-terminal end cleavage,
which generates a soluble protein, or a soluble C1 if the protein is
already cleaved by alpha cleavage (For review, Altmeppen et al.,
2013). Interestingly, Wik and coworkers showed that the use of
general metalloprotease or ADAM inhibitors reduced C-terminal
end cleavage, but that this led to an increase of C1 fragment
delivered in exosomes (Wik et al., 2012). This correlation between
inhibition of the protein shedding and increased presence in
exosomes, is reminiscent of NKG2DL.

Are these just examples of different metabolic situations
controlling the outcome of a biological process? Coming back
to NKG2D-L, several groups have described, in different cellular
models, the release of certain members of both families (MICA/B
and ULBPs) by either exosomes or metalloproteases (and
different enzymes have been described to affect the same ligands
in different contexts). What initially could seem just a mess,
is probably reflecting the differential metabolic situation of the
different systems used, in which a trafficking route could be
affected or the availability to metalloproteases of the different
NKG2D-L could be impaired. This idea might be especially
relevant in the placenta. Metalloproteases are needed for the

controlled invasion of trophoblasts, however, in pregnancies
carried to term the expression of the endogenous MP inhibitors
(TIMPs) are higher than in miscarriages (Nissi et al., 2013).
Moreover, TNFa release has been related to preeclampsia due
to the decrease in TIMPs and increase in TACE (Ma et al.,
2011). Given that metalloprotease inhibition led to an increase
of exosomal ULBP2, in placenta, recruitment of NKG2D-L to
exosomes could be favored by the increase of TIMPs and a
decrease in MMP susceptibility. The number and variety of
proteins that can be released from the cell surface in exosomes
or by enzymatic cleavage, makes it important to understand how
these two different mechanisms interact to shape the secretory
profile of different proteins in a variety of contexts.

Research on the responsible mechanism of secretion, and
its specific functional consequence could be very important
to identify new pathways of disease pathogenesis and new
therapeutical perspectives. Further, it is tempting to speculate
that by unmasking biological pathways connecting the different
protein release mechanisms, it would be possible to control the
recruitment of proteins to a non-desired environment.
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