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EDITORIAL COMMENT
Artificial Intelligence to Aid Early
Detection of Heart Failure With
Preserved Ejection Fraction*

Andreas B. Gevaert, MD, PHD,a,b Caroline M. Van De Heyning, MD, PHD,a,b Jasper Tromp, MD, PHDc,d
T he proportion of patients with heart failure
(HF) presenting with preserved ejection frac-
tion (HFpEF) is still increasing globally, and

outcomes remain poor despite recent advances in
treatment.1 This may partially be explained by a lack
of consensus on how to diagnose HFpEF.2,3 Diagnosis
is straightforward in patients presenting late, decom-
pensated stage with congestion and elevated left ven-
tricular filling pressures (LVFPs). However, many
patients present earlier with exercise intolerance
and exertional dyspnea, with high LVFP only during
exercise.4 Resting examinations, including echocar-
diography, are often normal at this stage. The ‘gold
standard’ method to diagnose early HFpEF is exercise
right heart catheterization, however this is an inva-
sive procedure that is not widely available and re-
quires specific expertise.5 Scoring systems for
HFpEF diagnosis based on resting examinations
have been validated, including the H2FPEF and
Heart Failure Association PEFF (HFA-PEFF) scores.
However, many patients are labeled as having an ‘in-
termediate’ risk, mandating further testing.6

Artificial intelligence (AI) applications are
increasingly used to extract patterns from medical
images that humans cannot reliably observe.7 These
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applications promise to enhance the precision of the
noninvasive estimation of LVFP. Broadly defined, AI
refers to computational software capable of making
autonomous decisions by analyzing and interpreting
collected data, such as those obtained from pattern
identification. Machine learning is a subset of AI
that allows an algorithm to adapt and learn without
being explicitly programmed. Deep learning (DL) is
a class of machine learning algorithms that utilize
multiple layers for the extraction of progressively
higher-level features from a raw input (eg, con-
volutional neural networks).7 With the growth in
size and complexity of echocardiographic data, AI
has promising applications in clinical research and
routine practice for diagnosing and assessing HFpEF
and other cardiac conditions. Recent examples of AI
applications in echocardiography include fully
automated annotation of echocardiograms,8 detec-
tion of subclinical reductions in cardiac function,9

and quantification of valvular stenosis and regurgi-
tation.10 These advancements have consistently
demonstrated a level of precision that surpasses
human interpretation.11

In this issue of JACC: Advances, Akerman et al12

used AI algorithms to identify HFpEF from a single
4-chamber echocardiographic video. The authors
found the algorithm could discriminate well between
HFpEF and non-HFpEF patients in holdout and in-
dependent validation cohorts. Subsequently, the
diagnostic performance of the AI algorithm was
compared to scoring systems, demonstrating that the
AI algorithm correctly reclassified many patients that
were designated as ‘indeterminate’ using the scores.
Additionally, patients identified as ‘HFpEF’ by the
algorithm had higher mortality.

Previously, Chiou et al13 also trained a DL model for
diagnosing HFpEF on a smaller data set of 4-chamber
echocardiography videos, achieving high accuracy,
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FIGURE 1 Potential Application of Artificial Intelligence in the Diagnosis of HFpEF

Depending on the training population (prevalence of HFpEF, rule-in, and rule-out

method), artificial intelligence models could serve as ‘decision maker’ in intermediate

probability and/or a ‘gatekeeper’ for advanced exercise testing. *Based on history and

clinical examination. CPET ¼ cardiopulmonary exercise test; ECG ¼ electrocardiogram;

H2FPEF ¼ HFpEF score according to Reddy et al; HFA-PEFF ¼ Heart Failure Association

PEFF score according to Pieske et al; HFpEF ¼ heart failure with preserved ejection

fraction; TTE ¼ transthoracic echocardiography.
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sensitivity, and specificity. Other AI applications for
detecting HFpEF have been limited to analysis of
human-labeled Doppler measurements or still images
of left ventricular functional measurements, limiting
their rapid online use in clinical practice.14,15 Aker-
man et al12 need to be commended for using a large
and granular data set spanning several centers and
countries, carefully developing and testing their al-
gorithm even in relevant subgroups, and, impor-
tantly, executing validation ‘by the book’ in separate
holdout and independent data sets, which is rare in AI
studies. Furthermore, the authors used heatmaps to
identify the most important echocardiographic
features the algorithm used to identify a patient as
HFpEF or non-HFpEF. This effectively ‘opened the
black box’ of DL algorithms and can give physicians
insights into the algorithm’s decision-making
process.

However, several questions and areas for future
study remain. Methods to confirm a definite HFpEF
diagnosis remain suboptimal in all the studies
mentioned above. Akerman et al12 relied on Inter-
national Classification of Disease codes to verify and
exclude a diagnosis of HFpEF. Unfortunately, codes
for systolic HF were included, and a wide time-
frame of 1 year was used, enabling labeling of HF
patients with recovered or declining left ventricular
ejection fraction as ‘HFpEF.’ Also, the absence of
International Classification of Disease codes related
to HF and elevated LVFP at rest do not exclude a
diagnosis of (early) HFpEF, limiting the validity of
the control sample. Ideally, the algorithm will need
to be recalibrated using resting echocardiograms of
patients with HFpEF confirmed by exercise right
heart catheterization, but samples of these patients
are limited and entail significant referral bias.
Second, the better performance of the model
compared to the scoring systems needs to be
interpreted with caution. Natriuretic peptide levels
are an essential part of the HFA-PEFF score.2

However, these were only available in 12% of the
validation population, implying that a diagnosis of
HFpEF could not be established anyway in the
majority of patients using this score. Both scoring
systems mandate further (exercise) testing in pa-
tients labeled as ‘intermediate’ risk, which was not
accounted for in the current study. Finally, all pa-
tients labeled as HFpEF in the present study already
had signs of elevated LVFP on echocardiography.
While matching the accuracy of traditional echo-
cardiographic indicators of elevated LVFP by using
only a 4-chamber view is certainly impressive, the
accuracy of these indicators in HFpEF is heavily
debated.16 It remains unclear whether the AI model
is also useful in more challenging clinical scenarios
without evident signs of elevated LVFP at rest
(Figure 1).

As the authors imply in their paper, the ideal use
for this algorithm (or similar AI applications) would
be as a ‘second read’ when other clinical or echocar-
diographic metrics remain uncertain regarding a
diagnosis of HFpEF. AI could serve as a ‘decision
maker’ in intermediate or indeterminate cases and/or
a ‘gatekeeper’ for advanced exercise testing to
enhance early HFpEF diagnosis and enable timely
treatment (Figure 1).
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