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Abstract

Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional
diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present
a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different
locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along
the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance
downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity
and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was
not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the
trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine
river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally
central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary
consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically
most important groups, bottom-up control is replaced by the predominant top-down control regime as distance
downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics
relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our
approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the
relative importance of trophic groups and the mechanistic modeling of eco-dynamics could greatly contribute to
understanding various aspects of functional diversity.
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Introduction

Systems approaches to exploring the role of functional diversity

in communities may help in quantifying the roles species play and

their relative importance. Exploring the role of functional diversity

may be especially important in tropical ecosystems where many

species are rare, which makes the entire community more difficult

to study and the importance of individual species more challen-

ging. Despite being under-represented in the literature, the

functioning of freshwater tropical ecosystems is amongst the most

heavily impacted by human disturbance [1].

One way to evaluate individual species in a systems context is to

study the food web of the community [2]. Such structural analyses

are relatively fast and easy but the utility of structural food webs in

capturing important information about functions and processes is

often questioned. Dynamical models in contrast provide essential

information especially if one needs to understand changes in

interaction strength and abundances, with the structure of the food

web being almost constant. In this case, understanding the

dynamical behavior of the major components of the ecosystem and

quantifying their sensitivity to different conditions can provide a

truly functional view of their diversity and redundancy.

In this paper, we present a stochastic dynamical simulation and

sensitivity analysis of a food web of the Kelian River, Borneo. The

Kelian River has been severely impacted by sediment pollution

due to gold mining activities which have caused increasing

disturbance with increasing distance downstream [3]. Since the

1950s, alluvial miners searched for gold along the Kelian and its

tributaries, and Indonesia’ second largest open pit gold mine

operated beside the river from 1991 until 2005. Based on a

massive field data collection (16,424 macroinvertebrates from at

least 179 species collected during 1990, 1993, 1994 and 1995)

[3,4] plus studies on the fish communities at the same sites, we

build a dynamical food web model at six sites along the river

representing different levels of human disturbance. We first

analyse the structural properties and the simulated dynamics of

the pristine river ecosystem, then we compare the most important

results to the ones derived for the other five sites. In particular, we

use the simulated behavior of shredders as a key indicator group

(following [5] but see [6]). Shredders break down leaf litter in

streams and make it available to other aquatic fauna, and thus they

are a vital link between aquatic and terrestrial ecosystems [5], and

they can be sentinels of environmental perturbations [5].
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Methods

The study area
The Kelian River arises in pristine rainforest near the centre of

Borneo. Six sites were sampled along the river with site 1 located

in pristine rainforest and site 2 next to the open cut mine (aquatic

invertebrate sampling was permitted under the terms and

conditions applying to the Indonesian contract of work for PT

Kelian Equatorial Mining). The impact of alluvial mining was

evident from just below site 1, above the mine, escalating in

severity with increasing distance downstream. Organic pollution

due to the disposal of human waste into the river also had a

negative effect on the river fauna at the downstream sites [4].The

substrate characteristics of riffle and pool habitats and the size of

the river were similar at all sites, suggesting that discharge did not

vary greatly among sites. The width varied from ,15 to 25 m, and

the maximum depth in the riffles was ,30–40 cm at all sites. The

climate is tropical with an average annual rainfall of 4000 mm.

Average daily flow of the Kelian River is ,10 m3 s21, but the

mean daily flow can vary greatly: measurements taken near site 3

ranged from 26.5 m3 s21 in April down to 3.0 m3 s21 in October

1994.

Based on earlier measurements, a number of abiotic indicators

are also available for these sites [3]. Here we used temperature and

turbidity data, as these are among the easiest ones to interpret

biologically. Decreases in macro-invertebrate richness and abun-

dance were significantly correlated with elevated turbidity [3].

Food web construction
The fauna and flora of the river has been extensively sampled at

six study sites. Samples collected in different years2September

1990 (wet season), August 1993 (dry season), June 1994 (dry

season) and March 1995 (wet season)2provided quite consistent

results, with no significant variation in faunal abundance or

richness indicating no differences in taxonomic composition

among years (3) or seasons. Thus, we aggregated data across

years and seasons to assemble the food webs.

Unlike temporal aggregation, spatial aggregation did not make

sense because the different segments of the river differ in terms of

their fauna, the natural environmental conditions, and human

effects. Taxonomic aggregation is always a key issue in food web

research. Aggregating species-level information into larger func-

tional groups (trophic groups) is not easy to standardize but

typically increases the functionality and reality of the study. Our

networks are composed of 12,N,15 graph nodes each

representing a trophic group. We emphasize that these low-

resolution food webs are not worse, only different from the large-

resolution food webs [7]. Studying ‘‘small’’ (i.e. low-resolution)

food webs provides different results [8] and functional diversity

must also be understood at this level of resolution as well because

in some cases we do not face the extinction of individual species

but of whole functional groups [9].

The food web representing the trophic groups of the river

ecosystem, is shown in Figure 1. At the bottom of the food web,

two non-living (LEAF: leaf litter, POM: settled and suspended,

coarse and fine particulate organic matter) and three living

(TERR: terrestrial insects, DIAT: diatoms, ALGA: green and

blue-green algae) components provide food. Six herbivorous

groups consume the producers (COLF: invertebrate collector-

filterers, COLG: invertebrate collector-gatherers, SHRE: inverte-

brate shredders, HEDE: herbivore-detritivore fish, HERB:

herbivorous fish, GRAZ: invertebrate grazers), and these are

consumed by omnivores (OMNI: omnivorous fish) and higher

predators (PRED: invertebrate predators, CARN: carnivorous

fish). In downstream river segments, two additional trophic groups

appear: HUMW (human waste) and FILA (filamentous bacteria):

Figure 1. The food web of Kelian River at sampling site 1 (the pristine river segment). The inset on the left provides the full names of
trophic groups. Nodes with pink background represent fish groups. There are two symmetrical links (PRED/OMNI and CARN/PRED), otherwise the
network would be acyclic. Network drawn by COSBILAB Graph [17].
doi:10.1371/journal.pone.0040280.g001
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these are producer groups in the system. For a detailed taxonomic

description, see [3,4].

Spatial variability
There are marked differences in the composition of the river

community in the six sites. Human waste (HUMW) appears only

in the most human-influenced segment next to a village where the

village toilet is a cubicle in the river (site 6). Conversely leaf litter

(LEAF) is present everywhere except for this site where what little

occurs is smothered by sediment deposits. Filamentous bacteria

(FILA) are not present in the two most pristine sites, only from sites

3–6. The filamentous bacteria metabolise manganese in the water

and deposit it on and in their mucilaginous secretions, forming a

slimy coating on the rocks which traps sediment and organic

detritus. Collector-filterers (COLF), grazers (GRAZ) and shredders

(SHRE) are the groups most sensitive to human influence, and

they are missing at sites 4 and 6 although it should be noted that

some of these species changed their diets, becoming collector-

gatherers at these polluted sites. The remaining components

(ALGA, CARN, COLG, DIAT, HEDE, HERB, OMNI, POM,

PRED and TERR) were collected all along the river. The number

of trophic groups in the food web were 14, 14, 15, 12, 15 and 12

from site 1 to site 6.

Structural analysis
The food web of the pristine river is characterized by four

topological network metrics as follows:

Node degree
The most local index about the topology of a network is the

degree of a node (D). This is the number of other nodes connected

directly to it. In a food web, the degree of a node i (Di) is the sum of

its prey (in-degree, Din,i) and predators (out-degree, Dout,i):

Di~Din,izDout,i

Degree provides information about local connectedness, and

highly connected nodes are also called ‘‘hubs’’. In network

analysis, degree can be used as a reference index, providing a

minimal characterisation of node position.

Keystone indices
Nodal degree considers only the links directly connected to a

node. In this section we describe indices that consider information

in addition to such direct neighbours. The keystone index (K) [10]

derives predominantly from the pioneering application of the ‘‘net

status’’ index [11]. The keystone index of a species i (Ki) is defined

as:

Ki~Kbu,izKtd,i~Kdir,izKindir,i

~
Xn

c~1

1

dc

(1zKbc)z
Xm

e~1

1

fe

(1zKte),

Where n is the number of predators eating species i, dc is the

number of prey of its cth predator and Kbc is the bottom-up

keystone index of the cth predator. And symmetrically, m is the

number of prey eaten by species i, fe is the number of predators of

its eth prey and Kte is the top-down keystone index of the eth prey.

For node i, the first sum in Eq. (2) (i.e.g1/dc(1+Kbc)) quantifies the

bottom-up effect (Kbu,i) while the second sum (i.e.g1/fe(1+Kte))

quantifies the top-down effect (Ktd,i). After rearranging Eq (2),

terms including Kbc and Kte (i.e.gKbc/dc+gKte/fe) refer to indirect

effects for node i (Kindir,i), while terms not containing Kbc and Kte

(i.e.g1/dc+g1/fe) refer to direct ones (Kdir,i). Both Kbu,i+Ktd,i and

Kindir,i+Kdir,i equals Ki. The degree of a node in a network (D)

characterises only the number of its connected (neighbour) points,

while the keystone index gives information also on how these

neighbours are connected to their neighbours. It emphasises vertical

over horizontal interactions (e.g. trophic cascades as opposed to

apparent competition) but characterises positional importance by

separating indirect from direct, as well as bottom-up from top-

down effects in food webs. This index may be used for analysing a

network especially if top-down and/or bottom-up processes seem

to be of particular interest. This can be the case of pollution,

eutrophication or overfishing.

Betweenness centrality
A measure of positional importance quantifies how frequently a

node i is on the shortest path between every pair of nodes j and k.

This index is called ‘‘betweenness centrality’’ (BC) and used

routinely in social network analysis [12]. The standardised index

for a node i (BCi) is:

BCi~

2|
P
jvk

gjk(i)=gjk

(N{1)(N{2)
,

where i?j and k. gjk is the number of equally shortest paths

between nodes j and k, and gjk(i) is the number of these shortest

paths to which node i is incident (of course, gjk may equal one). The

denominator is twice the number of pairs of nodes without node i.

This index thus measures how central a node is, in the sense of

being incident to many of the shortest paths in the network. If BCi

is large for trophic group i, we can expect larger areas of the

network to become separated, because nodes of high betweenness

typically connect them, making network communication (informa-

tion flow) faster or shorter. A typical situation for a high BC value

is the position of sardine or anchovy in marine wasp-waist food

webs.

Topological importance
In a network with undirected links, indirect effects can spread in

any directions. Considering only indirect chain effects [13–15] and

a binary (unweighted) network, we define an,ij as the effect of j on i

when i can be reached from j in n steps. The simplest mode of

calculating an,ij is when n = 1 (i.e. the effect of j on i in 1 step):

a1,ij = 1/Di, where Di is the degree of node i (i.e. the number of its

direct neighbours including both prey or predatory species). The

idea here is that any neighbour of node i will influence it more if

node i has fewer neighbours.

We assume that indirect chain effects are multiplicative and

additive. For instance, we wish to determine the effect of j on i in 2

steps, and there are two such 2-step pathways from j to i: one is

through k and the other is through h. The effects of j on i through k

is defined as the product of two direct effects (i.e.a1,kj6a1,ik),

therefore it is termed multiplicative. Similarly, the effect of j on i

through h equals to a1,hj,16a1,ih. To determine the 2-step effect of j

on i (a2,ij), we simply sum up those two individual 2-step effects

(i.e.a2,ij = a1,kj6a1,ik+a1,hj6a1,ih) and therefore this is termed additive.

When the effect of step n is considered, we define the effect

received by species i from all species in the same network as:

yn,i~
XN

j~1

an,ij ,
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which is equal to 1 (i.e. each species is affected by the same unit

effect.). Furthermore, we define the n-step effect originated from a

species i as:

sn,i~
XN

j~1

an,ji,

which may vary among different species (i.e. effects originated from

different species maybe different). Here, we define the topological

importance of species i when effects ‘‘up to’’ n steps are considered

as:

TIn
i ~

Pn

m~1

sm,i

n
~

Pn

m~1

PN

j~1

am,ji

n
,

which is simply the sum of effects originating from species i up to n

steps (one plus two plus three…up to n) averaged by the maximum

number of steps considered (i.e. n). This index was originally

introduced for studying host-parasitoid networks [16]. All of these

four indices provide some information about the centrality of

nodes in the network, as a proxy for functional importance. All

metrics were calculated by the COSBILab Graph software [17].

For more detailed descriptions of indices, see [18].

Apart from characterizing the position of individual nodes, the

TI index also provides a measurement for interaction strength.

Between each ij ordered pair of nodes, the topological constraint

on the strength of the interaction was calculated (their structural

connectedness). In the rank of these ij interaction strengths, one

can study the ranks of certain types of effects. We analyzed four

kinds of effects: 35 prey-predator and 35 predator-prey interac-

tions, 9 trophic cascades and 14 self-loop interactions (the latter

being the main diagonal of the interaction matrix). In the n = 14

interaction matrix, the n2 = 196 ij effects included also 103 non-

classified indirect interactions.

Dynamics
Some of the trophic groups in our system contain only a few

individuals (e.g. CARN). In this case, stochasticity causes a fair

amount of internal noise in systems dynamics. It is less likely that

certain processes will follow simple ecological laws (although the

behavior of more abundant groups can be more deterministic). For

this reason, we use an individual-based, stochastic framework for

modeling the dynamics of the ecosystem.

With the development of computer science, there are novel tools

and approaches to address the complex problems emerging in

computational ecology [19–21]. Some of these tools make it

possible to simulate the behavior of complex ecological systems

characterized by a number of parameters [22,23]. For the

dynamical analysis, we constructed six individual-based food

web models and simulated their behavior by a stochastic simulator

using the Gillespie algorithm [24]. The model was constructed in

the BlenX framework [25,26] and analyzed by its stochastic

simulator module that enables computationally cheap and realistic

food web simulations [23,27] (see Appendix S1).

For parameterizing the dynamical model, we needed values

internal (e.g. death rate) and external (e.g. predation rate) to the

trophic groups. Based on field samplings [4], the number of

individuals was approximated for each trophic group. In the case

of some groups it was relatively easy, based on the prey item data.

For ALGA and DIAT it was much harder, so we approximated

some realistic number of individuals. Interaction rates were

inferred from prey preference data [4]. For the dynamical model,

we needed birth rate and death rate parameters as well. Lacking

these data, we used hypothetical values for parameterizing all

networks. Actual parameter sets needed to be slightly refined in a

way that let the model behave in a quasi-balanced way (no mass

extinctions and exponential growths). For example, COLF

interaction rate was fine-tuned from 0.05 to 0.00014. However,

most of these minor adjustments concerned the hypothetical

parameters, not the measured ones. In such a complex model with

so many parameters, it is clear that most of the values are at best

approximations (see all parameters for site 1 in Appendix S2).

All reference simulation runs were sampled at time t. At time t,

the mean and the standard deviation of all components were

registered, based on s simulations. We note that the mean of many

stochastic simulations approaches the results obtained from

deterministic simulations, but for a small s number of simulations,

the variability of dynamical behavior is also informative.

The basic (reference) model was then subject to sensitivity

analysis. For estimating the effect of species i on the mean

population size of species j, we first define the reference value of

population density for species j (Aj) in the absence of any

disturbance

Aj~

PR

k~1

ak,j(t)

R
,

where R simulations are performed and, for each run k, the

population size of species j in the undisturbed system (ak,j) is

recorded at time t. The initial number of individuals for each

component was then halved, one by one, and the mean values of

all components were recorded after time t, as before, for the same

R number of simulations for each disturbed parameter. The value

of population density for species j, after disturbing species i is

Aj(i)~

PR

k~1

ak,j(i)(t)

R
,

and the relative response of species j to disturbing species i is

RRj(i)~
Aj{Aj(i)
�� ��

Aj

:

The relative response is normalized over all the living groups (n):

NRRj(i)~
RRj(i)
Pn

i~1

RRj(i)

:

The community importance if species i equals

IH (M)i~
Xn

j~1
NRRj(i)

and, symmetrically, if the standard deviation is considered instead

of the mean of the R simulations, we provide a community

importance metric quantifying the effects on variability of the

population dynamics of other groups:

IH (V )i~
Xn

j~1
NRRj(i):
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These normalized relative response metrics (in mean and

variation) measure the sensitivity of the system to disturbing

component i (IH, where H stands for the Hurlbert response

function [28]). These simulation-based values are dynamical

measurements of community importance.

Inspired by the classical concept of keystone species [29,30], we

expressed both dynamical importance metrics in a way consider-

ing the population size of the trophic group. KH(M) = IH(M)/ps

and KH(V) = IH(V)/ps, where ps is the number of individuals in the

trophic group. However the original approach suggested using

biomass, we believe that the number of individuals is equally good

if not better, given our individual-based model. All importance

indices used are summarized in Table 1.

Results

The pristine river ecosystem
In site 1, all trophic groups occur apart from FILA and

HUMW. In the food web of 14 nodes, OMNI and CARN are

clearly the most connected nodes, three indices (D, nBC, TI3)

supporting more OMNI and the K index emphasizing the role of

CARN (see Figures 2a–d and Table 2). Based on the rankings of

these indices, OMNI and CARN are really of outstanding

importance. Some other groups are of highly variable centrality,

according to these four indices. For example, the rank of SHRE

ranges from 4 (suggested by nBC) to 10 (suggested by K; because of

the ties, its rank is 9.5 according to D). Terrestrial insects (TERR)

are clearly the structurally least important group.

The food web contains 35 trophic links, so the 196 (14*14)

effects of the interaction structure can be classified as 14 self-loops,

35 predator-prey effects, 35 prey-predator effects and 9 trophic

cascades. In the case of ARB trophic cascades, 23 different A-x-B

pathways exist between 9 different A–B pairs of groups (cascades

where A directly feeds on B have been classified as predator-prey

effects). The remaining 103 effects do not belong to any of the

above four types of interactions. Figure 3a shows this classification

of effects.

Dynamical simulations and sensitivity analysis suggest that

grazers (GRAZ) are the group with the largest community effect

(IH(M)). Disturbing the structurally most important groups

(OMNI, CARN) generates much smaller community response

(see Figure 2e, Table 2 and Appendix S3). However, the

differences between the relative importance of the groups are

smaller here than based on the topological indices.

If dynamical importance (IH(M)) is divided by the number of

individuals (ps), the resulting keystone index (KH(M)) suggests

CARN to be the keystone group, also OMNI with somewhat less

importance and still with HERB in second place (see Table 2).

Here, GRAZ is much less important than according to any of the

previous indices. Figure 2f shows the outstanding keystone role of

CARN in the system.

An analysis at the level of individual interactions shows that

indirect effects are roughly as important as direct ones in

governing ecosystem dynamics. Figure 3b provides the rank of

the strongest 20 simulated effects: direct (predator-prey in red and

prey-predator in purple) and indirect (white) effects are well-mixed

in the rank. The shown 20 effects contain some outstandingly

strong indirect effects as well (see Figure 3c). This indirect

determination [31] can be one reason why structure is poor in

predicting dynamics (even if indirect structural indices have also

been used).

An additional measure of dynamical importance considers the

effect on the dynamical variability of other groups, instead of the

absolute change in their population size (IH(V)). In some cases, the

variability of population dynamics maybe more important than

the actual size of the population. For example, because variability

is a proxy for adaptability, this is true not only in a genetic, but also

in a population dynamical sense (it is easier to find optimal

evolutionary ecological strategies with experiencing different

population sizes). Also, in the case of small populations being at

the brink of extinction, a more variable behavior may drive (drift)

the population to extinction, while a smaller but less wildly

behaving population can be safer. It has been suggested recently

[32] that considering variability explicitly could be of high

importance for conservation studies. Our IH(V) index quantifies

community importance based on the influence on dynamical

variability. It suggests that disturbing the producers (LEAF, DIAT,

ALGA, POM) will generate the most variable behavior for other

groups (see Figure 2e and Table 2). The distribution is quite

uniform, just like in the case of the IH(M) index. Transforming also

the IH(V) index to a KH(V) keystone index provides results very

similar to those based on KH(M) (but indicating the highest role for

HEDE) and prioritizing the same four groups as keystones (see

Table 2).

Food web variation along the river
Some trophic groups are missing in some locations along the

river. For example invertebrate filterers, grazers and shredders

were eliminated due to pollution at sites 4 and 6. We simulated

and analyzed the food webs of the six study sites only from a

dynamical point of view, providing topological results only for site

Table 1. The structural and dynamical importance indices used in this paper (see definitions and explanations in text).

Network indices

name symbol type brief description reference

degree D structural number of neighbours [12]

keystone index K structural vertical interactions, also indirect [10]

betweenness BC structural appearing in shortest paths [12]

topological importance TI structural neighbourhood in all directions, also indirect [16]

community importance IH(M) dynamical effects on mean population size of others [23]

community importance IH(V) dynamical effects on population size variability of others [23]

per capita community importance KH(M) dynamical effects on mean population size of others (per capita) here

per capita community importance KH(V) dynamical effects on population size variability of others (per capita) here

doi:10.1371/journal.pone.0040280.t001
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Figure 2. The food web of the pristine river (site 1), size of nodes is proportional to six measures of importance: D (a), nBC (b), K (c),
TI3 (d), IH(V) (e) and KH(V) (f). Network drawn by COSBILAB Graph [17].
doi:10.1371/journal.pone.0040280.g002

Table 2. Importance ranks of trophic groups in the food web of the pristine river (site 1).

D nBC K TI3 IH(M) IH(V) KH(M) KH(V)

omni 10 omni 22,811 carn 13 omni 2,07 graz 0,0818 leaf 0,0915 carn 0,0144 hede 0,0081

carn 9 carn 19,426 omni 4,53 carn 1,88 alga 0,0780 diat 0,0903 herb 0,0071 herb 0,0076

graz 6 hede 9,515 POM 4,37 POM 1,19 diat 0,0765 alga 0,0860 omni 0,0057 carn 0,0071

POM 6 shre 6,404 pred 2,07 pred 1,16 colf 0,0751 POM 0,0821 hede 0,0057 omni 0,0052

pred 6 POM 6,081 leaf 1,82 graz 1,14 pred 0,0745 hede 0,0813 terr 0,0014 terr 0,0014

hede 5 graz 3,419 alga 1,29 hede 1,11 colg 0,0741 herb 0,0755 pred 0,0012 pred 0,0011

alga 4 pred 2,94 diat 1,29 shre 0,85 terr 0,0736 terr 0,0748 shre 0,0008 shre 0,0008

colf 4 alga 2,042 hede 1,28 alga 0,79 shre 0,0736 colg 0,0723 colf 0,0004 colf 0,0003

colg 4 diat 2,042 graz 1,21 diat 0,79 carn 0,0722 pred 0,0666 colg 0,0002 colg 0,0002

diat 4 herb 1,816 shre 1,04 herb 0,79 herb 0,0707 shre 0,0663 alga 0,0002 diat 0,0002

herb 4 leaf 0,641 herb 0,78 colf 0,72 POM 0,0687 graz 0,0661 diat 0,0002 alga 0,0002

shre 4 colf 0,534 colf 0,71 colg 0,72 leaf 0,0673 colf 0,0593 graz 0,0001 leaf 0,0001

leaf 2 colg 0,534 colg 0,71 leaf 0,45 omni 0,0572 omni 0,0524 POM 0,0001 POM 0,0001

terr 2 terr 0 terr 0,23 terr 0,35 hede 0,0566 carn 0,0355 leaf 0,0001 graz 0,0001

Ranking is based on topological (D, nBC, K, TI3) and dynamical (IH(M), IH(V)) measures, as well as keystone indices considering also population size (KH(M), KH(V)). The IH(M)
and IH(V) indices for all groups in each of the six sites are given in Appendix S5.
doi:10.1371/journal.pone.0040280.t002
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1 (see above). Beyond the composition of trophic groups and the

consequent structural changes of the network, several dynamical

parameters also differ between different sites. Dynamical simula-

tions and sensitivity analysis quantify the functional effects of these

changes.

Based on IH(M), invertebrate grazers (GRAZ) keep their leading

position in sites 2 and 3 but downstream they are either missing

(sites 4 and 6) or ranked lower in importance (site 5). Invertebrate

predators (PRED) are of average importance in the pristine site

and of low importance in the middle of the river but the most

human-influenced ecosystem is most sensitive to them (in site 6).

Also, the role of filamentous bacteria (FILA) is very important

when they are present (only downstream, indicating pollution).

Invertebrate shredders (SHRE) gradually lose their importance

and finally disappear from the system (lacking at sites 4 and 6).

However, their abundance has been shown to decrease from

higher to lower elevations in tropical streams in Peninsular

Malaysia [33]. The community importance series of each group is

shown in Appendix S4 (see Appendix S5 for the numerical values).

Using the community importance measure focusing on

dynamical variability (IH(V)), the dominant role of producers

(LEAF, DIAT, ALGA, POM) is decreasing downstream, especially

in the most human-influenced sites (site 2 and 6). At site 6, LEAF

disappears (see Appendix S5). Grazers (GRAZ) are not important,

according to this measure, at any sites. The group that is becoming

more consistently important is the omnivores (OMNI). Their

importance is greatest at site 6, so the dynamical variability of the

human-dominated river ecosystem is mostly sensitive to changes of

the omnivorous community (Figure 4, see also Appendix S4). In

general, it can be seen in Figure 4 that community sensitivity in

terms of dynamical variability is increasing from the pristine and

quasi-natural locations towards increasing human influence. Based

on the dynamically most important groups, we can say that

bottom-up control is replaced by the predominant top-down

control regime.

Some of the above tendencies show significant correlation with

abiotic indicators of the river ecosystem [3]. Figure 5a shows the

spatial variation of turbidity and the dynamical importance of

Figure 3. The matrix of simulated dynamical interaction strengths in site 1(from groups in row i to groups in column j). Four simple
interaction types were analyzed: indirect self-loop is yellow, predator-prey interaction is red, prey-predator interaction is purple and trophic cascade is
green (a). None of these interactions is in white. In (b), the 20 strongest simulated interactions are shown (apart of the 14 self-loops that are obviously
the strongest ones). Direct (red and purple) and indirect (only white, as no green trophic cascade appears in the top 20) interactions are well-mixed.
The strongest one is a direct effect from GRAZ to POM, the second strongest effect is indirect (from HERB to OMNI). The shown 20 interactions are
followed by 162 weaker effects, their rank is shown in (c). Here, the x axis is the rank of interactions, while the y axis is their strength shown in (a).
doi:10.1371/journal.pone.0040280.g003
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OMNI (IH(M)), respectively, along the river. In turbid waters with

higher amounts of suspended solids OMNI plays a larger role in

ecosystem dynamics. Figure 5b shows the series of temperature

and the importance of terrestrial insects (TERR), respectively. The

sign of temperature changes is always mirrored by the changing

importance of terrestrial insects.

Discussion

We performed stochastic food web simulations and sensitivity

analysis on six food web models assembled along a gradient of

human influence in Kelian River, Borneo.

Comparison of the structural versus dynamical results
Beyond structural analysis, we quantified the relative impor-

tance of trophic groups using dynamical simulations. We studied a

highly aggregated system containing trophic groups of organisms.

We believe that, even if biodiversity is typically studied at the level

of species, the functional diversity of ecosystems should also be

studied (or maybe more) at the level of functional groups.

Structural results suggest that the key groups in the pristine river

ecosystem are at higher trophic levels, while the disturbance of

producers generated stronger community response during the

simulations. Thus, we have found that network structure only very

poorly predicts network dynamics in this study site of the system.

Also, several measures provide complementary information and a

multidimensional evaluation of the system may help to better

indicate and quantify the key components and processes. An

important finding, potentially explaining the poor structure to

dynamics relationship, is that indirect effects are at least as

important as direct ones during the simulations. Most indices

provided a keystone-like distribution of importance values

calculated for the different groups [34]. Comparing the food webs

described at different sites is interesting especially because of this

contrast.

Discussion of how food-web structure changes
downstream

Our results suggest that the group of invertebrate shredders

(SHRE) is one of the clearest indicators of human influence. This

can be of particular interest, as shredders play an important role in

food web development [35], breaking down leaves into smaller

particles for consumption by other organisms such as collector

gatherers and filterers. With increasing distance downstream,

there tends to be less riparian vegetation providing an input of leaf

litter, and furthermore the leaves tend to be smothered by

sediment in the river. Algae and diatoms decrease downstream

Figure 4. The IH(V) value for four selected trophic groups at each site. The top-down effects of fish on the dynamical variability of other
groups in increasing in the more human-influenced site.
doi:10.1371/journal.pone.0040280.g004

Figure 5. Abiotic variables (turbidity in (a) and temperature in
(b)) followed by biotic ones (IH(M) for OMNI in (a) and TERR in
(b)). To help visual comparability, values have been transformed in
such a way that the minimum and the maximum value be equal to 0
and 1, respectively. The x axis is the series of study sites.
doi:10.1371/journal.pone.0040280.g005

Simulated River Food Web Dynamics

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40280



due to turbidity and sediment deposition impeding photosynthesis.

Thus the key role of grazers (GRAZ) and different groups of

producers is gradually replaced by other groups that better tolerate

human influence (e.g. pollution, turbidity). For example, omnivor-

ous (OMNI) and carnivorous fish (CARN) become increasingly

important even if their abundances do not change. Omnivorous

fish can tolerate changes in primary productivity caused by

pollution, while the carnivores are not dependent on primary

production. We did not find a strong cascading effect from

carnivorous fish (CARN) down to algae (ALGA), despite the

generally acknowledged role of trophic cascades in aquatic systems

[36] but this is not surprising since ecosystem functioning in the

Kelian River is dominated by the effects of pollution. It is

imperative to emphasize the dominant roles of invertebrates in

shaping ecosystem dynamics at several locations (see [37]). The

finding that terrestrial insects (TERR) were of little importance yet

their behavior shows some correlation with temperature may be

interesting for better understanding climatic effects on food web

structure [38]. Terrestrial insects typically fall in from overhanging

riparian vegetation, so less vegetation results in both fewer

terrestrial insects and also less shading leading to higher

temperatures.

Our approach is based on the river continuum concept

(evaluating different roles of particular trophic groups in different

segments of the river) and a systems perspective on ecology and

conservation biology (providing holistic, quantitative indicators for

the relative importance of groups). The presented indices of

dynamical community importance may help setting conservation

priorities, managing rare species and better understanding

ecosystem fragility. We propose that the approach presented in

this paper may contribute to the framework of systems-based,

quantitative conservation biology [39].
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