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Abstract

Climate change is shifting both the habitat suitability and the timing of critical biological

events, such as flowering and fruiting, for plant species across the globe. Here, we ask how

both the distribution and phenology of three food-producing shrubs native to northwestern

North America might shift as the climate changes. To address this question, we compared

gridded climate data with species location data to identify climate variables that best pre-

dicted the current bioclimatic niches of beaked hazelnut (Corylus cornuta), Oregon grape

(Mahonia aquifolium), and salal (Gaultheria shallon). We also developed thermal-sum mod-

els for the timing of flowering and fruit ripening for these species. We then used multi-model

ensemble future climate projections to estimate how species range and phenology may

change under future conditions. Modelling efforts showed extreme minimum temperature,

climate moisture deficit, and mean summer precipitation were predictive of climatic suitabil-

ity across all three species. Future bioclimatic niche models project substantial reductions in

habitat suitability across the lower elevation and southern portions of the species’ current

ranges by the end of the 21st century. Thermal-sum phenology models for these species

indicate that flowering and the ripening of fruits and nuts will advance an average of 25 days

by the mid-21st century, and 36 days by the late-21st century under a high emissions sce-

nario (RCP 8.5). Future changes in the climatic niche and phenology of these important

food-producing species may alter trophic relationships, with cascading impacts on regional

ecosystems.

Introduction

Understory shrub species are an integral component of terrestrial forest communities, because

they contribute to biodiversity, increase carbon sequestration [1], provide food for animals [2],

and create structure for nesting and shelter [3,4]. Many species of shrubs are also utilized by

people around the world for food, medicines, and other important cultural and economic rea-

sons [5–8]. However, despite the importance of food-producing understory shrub species,
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limited research has focused on how climate change may affect the distribution and phenology

of these species in the future [9]. Food-producing shrubs species are vital for cultural uses by

many Indigenous Peoples, and food for pollinators, frugivores, and other animals, and can

serve a critical role in ecological relationships [10,11]. Consequently, understanding how cli-

mate change may alter where these shrubs grow and when they produce flowers and fruit is

foundational to understanding both the possible cascading impacts on ecosystems, as well as

to preparing Indigenous communities for potential disruptions to their cultural practices.

The distribution and phenology of temperate plant species has already changed markedly

over the recent past in response to climate change [12–14]. Moreover, multiple studies of pri-

marily tree species have predicted continued future shifts in distribution and phenology in the

future as the climate continues to change [15–19]. However, to date, few predictive species dis-

tribution or phenology models have been made for understory shrub species. One issue that

has limited examination of climate impacts on food-producing shrub species is a lack of data

on where these species currently grow, and observations of when they are in flower and fruit.

Emerging online databases and participatory scientist initiatives, however, now allow for the

collation of many observations to be used to predict current general ranges, model future

range shifts, and develop phenology models to predict current and future phenology.

Here, we used a wealth of publicly-available location, phenology, and climate data to ana-

lyze climate change effects on the potential distribution and phenology of three shrub species

native to the Pacific Northwest of North America: beaked hazelnut (Corylus cornuta), Oregon

grape (Mahonia aquifolium), and salal (Gaultheria shallon). We selected these three species

because they are common across the region, have different flowering and fruiting phenologies,

and were identified as important food-producing species in a survey of tribes in Washington,

Oregon, northern California, Idaho and western Montana. We recently completed a related

research effort on climate effects on black huckleberry (Vaccinium membranaceum; 9).

The phenologies of these species differ markedly: beaked hazelnut produces catkins in very

early spring, but ripe hazelnuts are not produced until late summer or fall; Oregon grape flow-

ering and fruiting occurs relatively early, with April flowers and June-July ripe fruits; and salal

flowering and fruiting occurs from mid-summer through fall. Identifying how climate change

may differentially impact shrub species with differing life histories will show the potential

range of responses within plant communities more broadly, and provide insights on how the

cultural uses and ecosystem services they provide may be altered in the future.

Materials and methods

Species data sources

We collected and analyzed location and phenology data from multiple climate, forest inven-

tory, herbaria, and participatory science sources to develop climate-envelope models and phe-

nological models for beaked hazelnut, Oregon grape, and salal following the methods of [9].

We collected presence and phenology observations for the species from long-term data from

federal agencies, the Global Information Biodiversity Facility (GBIF; [20–22]), the Consortium

of Pacific Northwest Herbaria [23], the USA National Phenology Network [24], the Wilbur L.

Bluhm Plant Phenology Study [25], and iNaturalist [26], among other sources (Table 1).

Climate envelope models

To create current and future projected habitat distribution models for each species, we fol-

lowed the methods of [9] and used a presence-only maximum entropy approach (MaxEnt, ver-

sion 3.3.3; [32]). MaxEnt uses geo-located species presence data and environmental data to

quantify the species’ environmental niche, which is defined as the probability of species
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occurrence. We utilized MaxEnt for species distribution modelling of our shrub species

because it has been shown to produce accurate results using presence-only data [33,34]. Max-

Ent assumes a random sample of species occurrences across the geographic domain of the

study area, which we define by the domain of the gridded bioclimatic variables. However,

because of the spatial clustering of species location data, environmental bias can be introduced,

possibly reducing the model’s predictive ability (e.g. [35,36]. To reduce this possible bias, we

spatially filtered location data by 5-km radii.

To model the bioclimatic niche of each species, we acquired 30-year climatological averages

of 16 bioclimatic variables from AdaptWest over the western United States and Canada (spatial

extent: 32˚ to 62˚ N, 146˚ to 105˚ W;[30,37,38]. These data are interpolated on a 1-km grid,

where the contemporary climate is based on the Parameter-Elevation Regressions on Indepen-

dent Slopes Model (PRISM; [39], and future climate is based on downscaled global climate

model (GCM) data from the Coupled Model Intercomparison Project phase 5 (CMIP5; [40].

Our analyses were conducted over the contemporary climatological period (1981–2010), the

mid-21st century period (2041–2070), and the late-21st century period (2071–2100). Analyses

over future periods were performed using ensemble data from 15 climate models, and were

limited to experiments run under Representative Concentration Pathway 8.5. We chose RCP

8.5 as emissions trajectories to date have more closely followed RCP 8.5 than the lower RCP

options [41].

Following work by [42] and [43], MaxEnt was run with our suite of 16 bioclimatic predictor

variables (Table 2), performing a jackknife test of variable importance to identify the least con-

tributing predictor, which was then removed. The predictor with the least contribution was

defined as the variable with the lowest decrease in the average training gain when omitted.

This stepwise process was continued until only one predictor was used for the model. For each

model, the 95% confidence interval of the training gain was calculated to identify difference

between models [42]. The model with the most parsimonious number of predictors that

resulted in an AUC > 0.8 and whose 95% confidence interval overlapped with that of the full

model was selected to create the final distribution model for each species [42,44]. For model-

ling the future distribution of each species, the model trained on the contemporary (1981–

Table 1. Data sources for occurrence and phenology observations for hazelnut, Oregon grape, and salal, and past and future modelled climate data used in this

study. The species columns indicate the total number of records obtained from each data source for each species. Following the number of occurrence records, the number

of records used in the climate-envelope models after spatial-filtering at a 5-km radius is listed in parentheses. Full citations for all publicly available data sources are listed

in the References.

Data type Data source Hazelnut Oregon Grape Salal Date range

Occurrence BLM Continuous Vegetation Survey [27] 488 (89) N/A 1331 (142) 1997–2011

Occurrence GBIF [20–22] 1544 (280) 972 (309) 1413 (316) 1838–2008

Occurrence US Forest Service R-6 Ecology Program [28] 4411 (802) N/A 8363 (716) 1979–2013

Occurrence Forest Inventory and Analysis [29] 1379 (251) 218 (35) 3121 (380) 2003–2015

Occurrence Consortium of PNW Herbaria [23] 325 (59) 507 (323) 483 (208) 1890–2015

Occurrence US National Park Service 58 (10) N/A 463 (47) 1999–2016

Phenology Wilbur L. Bluhm Study [25] 15 60 37 1960–2016

Phenology US Forest Service R-6 Ecology Program [28] N/A N/A 351 1980–2013

Phenology iNaturalist [26] 10 N/A N/A 2003–2017

Phenology Consortium of PNW Herbaria [23] 35 93 35 1980–2015

Phenology Olympia Forestry Sciences Laboratory 17 N/A 13 2015–2017

Phenology USA National Phenology Network [24] 26 N/A 99 2010–2015

Climate AdaptWest Project [30] N/A N/A N/A 2020s, 2050s, 2080s

Climate Daymet [31] N/A N/A N/A 1980–2017

https://doi.org/10.1371/journal.pone.0232537.t001
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2010) climate variables was “projected” into future climate space by applying that model to the

gridded future climate data.

Following [33], we utilized most of MaxEnt’s default settings, which are detailed in Merow

et al. (2013). However, we restricted model features to linear and quadratic features in order to

produce models that are easier to interpret, and that may provide a better reflection of the rela-

tionships between climate and plant species distribution [45, 46]. Using a random subsample

of 25%, we completed 10 replicated runs for each model; the subsampling approach was

selected after experiments showed it to perform better (based on AUC) than k-fold cross-vali-

dation. For visualization and analyzing geographic changes in species climate niche, we used

the 10-replicate median model output. To quantify habitat suitability, we selected the cumula-

tive output option in MaxEnt for analysis as it avoids the assumptions made by the logistic out-

put and is more easily interpreted than the raw output [45]. The cumulative output provides

the relative suitability of species presence at a site and ranges from 0 (low relative suitability) to

100 (high relative suitability); however, we note that the computation of the cumulative output

from the raw output means that large variations in cumulative value do not necessarily equate

to large variations in the relative probability of presence [33].

Phenology models

To predict how dates of flowering and fruiting may change in the future, we used the collected

phenology observations and interpolated daily mean temperature data from Daymet [31] to

identify the mean accumulated daily temperature sums above a base temperature of 0 ˚C, or

‘thermal sums’ (also referred to as growing-degree days), from January 1st until the date of

flowering or fruiting for each species and phenological event. Thermal sum models assume

that plant development advances as thermal units, or growing-degree days, accumulate, and

they are widely applied in horticultural [47,48] and ecological studies [49]. We followed the

methods of [9] and accessed 1 km x 1 km daily interpolated climate data from 1980–2017 from

Daymet [31] using the phenoR package [50] in the statistical analysis program R [51]. We then

Table 2. The 16 bioclimatic variables used in analysis of habitat suitability. Variables used in the final climate enve-

lope models for hazelnut, Oregon grape, and salal are followed by superscripts h,g, and s, respectively.

Bioclimatic Variables

Annual heat moisture index (AHM) h,g

Degree-days below 0˚C (DD0)

Degree-days below 5˚C (DD5)

30-year extreme minimum temperature, ˚C (EMT) h,g,s

30-year extreme maximum temperature, ˚C (EXT) g

Frost-free period, days (FFP) h,s

Hargreave’s climatic moisture index (CMD) h,g,s

Hargreave’s reference evapotranspiration (EREF) s

Temperature differential, ˚C (TD)

Mean annual precipitation, mm (MAP) g,s

Mean annual temperature, ˚C (MAT) g

Mean summer (May–September) precipitation, mm (MSP) h,g,s

Mean temperature of the coldest month, ˚C (MCMT)

Mean temperature of the warmest month, ˚C (MWMT) g

Precipitation as snow, mm (PAS)

Summer heat moisture index (SHM)

https://doi.org/10.1371/journal.pone.0232537.t002
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calculated thermal sums as the sum of daily mean temperatures extracted from the 1 km x 1

km Daymet grid cells above 0 ˚C from January 1st through the day of each phenology observa-

tion from 1980–2017, and used the mean value of all observations for each species and each

phenological event to get thermal sum models using the TT function in the phenoR package.

Thermal-sum models were used because our phenology observations were heterogeneous over

time and space, and were not collected in a systematic matter at the same sites over time. We

chose not to test more complex process-based models with these observational data as they

may give misleading results [52]. However, even though the observations used here do not

necessarily indicate the first or peak observation of a phenological event, we argue that calcu-

lating the mean accumulated thermal sums across the many observations can give an informa-

tive look at the actual accumulated temperatures required prior to peak flowering or peak

fruiting [53]. We created a map showing the day of year (DOY) on which the thermal sum

thresholds for each species and phenological event were met in the year 2000 (as a proxy for

the “current” time period: 1981–2010) using historical gridded climate data across western

North America. We then clipped the maps of estimated phenological dates for the current

time period to each species’ current distribution to show projections for the current timing of

flowering and fruiting, and to compare to future projected phenological dates.

Next, we used the thermal sum models for flowering and fruiting to predict how climate

change may alter phenology in the future using projected daily temperatures for the mid-cen-

tury (2055) and end-of-century (2085) periods, for the RCP 8.5 emissions scenario, from the

NASA Earth Exchange global daily downscaled projections, following the methods of [50] and

[9]. We calculated thermal sum models that used each of 15 CMIP5 daily downscaled projec-

tions to arrive at CMIP5 model-mean projected flowering and fruiting dates for each future

time period, as well as the standard error in projections across the 15 models. We then calcu-

lated changes in phenological events based on the difference between current and future pro-

jected phenological dates. Finally, we created maps showing the projected difference in

flowering and fruiting dates by mid-century and the end of the century and clipped the extent

of each future phenology map to the future-projected species distribution to illustrate how

both species distribution and phenology may change in the future.

We also looked at the trends in phenology observations for the three species from a long-

term dataset from the Wilbur Bluhm Plant Phenology Study in Salem, Oregon. Over the past

50 years, Wilbur Bluhm recorded the timing of many phenological events of plants around

Salem, Oregon [54]. Here, we looked at this study’s records for flowering and fruiting for our

species of interest that spanned at least 10 years to see how phenological changes in the recent

past compare to our projections for the future. Specifically, we looked at how the dates of first

flowering of salal (1998–2016), first flowering for Oregon grape (1963–2016), ripe fruits of

Oregon grape (2000–2016), and ripe fruits for salal (2000–2016) have changed over time. We

examined change over time for each species and phenological event separately with year as the

predictor variable and the date of the phenological event as the response variable using linear

models in R [51]. All maps of climate envelope and phenology model results were created

using ArcGIS1 ArcMap 10.7.1 software (Esri, 2019).

Results

Species distribution

The best-fit species distribution models for the current time period assigned high relative mea-

sures of habitat suitability to areas with current occurrences of each species, and also had rela-

tively high measures of model fit, with an AUC of 0.91 for beaked hazelnut, and 0.92 for

Oregon grape and salal (Fig 1). The best-fit model for beaked hazelnut selected 5 variables as
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important predictors of habitat suitability: annual heat-moisture index, extreme maximum

temperature over 30 years, frost-free period, Hargreaves climatic moisture deficit, and mean

summer precipitation, (Table 2, S1 Fig). The best fit model for Oregon grape selected 8 vari-

ables as important predictors of habitat suitability: annual heat moisture index, extreme mini-

mum temperature over 30 years, frost-free period, Hargreaves climatic moisture deficit, mean

annual precipitation, mean summer precipitation, mean coldest month temperature, and

mean warmest month temperature (Table 2, S2 Fig). The best fit model for salal selected 5 vari-

ables as important predictors of habitat suitability: extreme minimum temperature over 30

years, frost-free period, Hargreaves climatic moisture deficit, Hargreaves reference evapora-

tion, and mean summer precipitation (Table 2, S3 Fig).

The projections for future species distributions for all three species showed a reduction in

habitat suitability in coastal regions, at more southerly latitudes, and at lower altitudes, and an

expansion of suitable habitat in more northerly latitudes and at higher elevations by mid-cen-

tury and continuing through the end of the century (Fig 2). For beaked hazelnut, habitat suit-

ability is projected to decrease at lower elevations and latitudes by up to 50% by the end of the

century and increase at higher elevations and inland northern latitudes by up to 30% under

the RCP 8.5 scenario (Fig 2). For salal, habitat is projected to decrease by 10–60% and increase

by up to 50% in the Oregon and Washington Cascades and higher altitudes of Vancouver

Island by the end of the century, however, the region of increasing habitat suitability for salal is

smaller than for the other two species (Fig 2). For Oregon grape, habitat is projected to

decrease at lower elevations and latitudes by up to 40% and increase by up to 50% at higher

altitudes and latitudes by end of the century (Fig 2). For all three species, results for the mid-

Fig 1. Habitat suitability models across western North America for the recent time period (1981–2010) for beaked hazelnut, Oregon grape, and salal.

Background map used: World Terrain Base; data sources: Esri, USGS, NOAA; Republished under a CC BY license with permission from ESRI original

copyright [2009].

https://doi.org/10.1371/journal.pone.0232537.g001
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century time period were similar, but the models projected less reduction in habitat in warmer

locations and less expansion of habitat in colder locations by mid-century than the end of the

century (Fig 2).

Phenology

Thermal-sum models projected almost a two month range in the timing of phenological events

for all shrubs in the recent past across their current ranges, with earlier dates of flowering and

Fig 2. Projected change in habitat suitability across western North America under the RCP 8.5 emissions scenario for beaked hazelnut, Oregon

grape, and salal by the mid-21st century (top panels), and by the end of the 21st century (bottom panels). Background map used: World Terrain Base;

data sources: Esri, USGS, NOAA; Republished under a CC BY license with permission from ESRI original copyright [2009].

https://doi.org/10.1371/journal.pone.0232537.g002
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fruiting projected for southern, coastal, and lower altitude regions and later dates in higher

altitudes and more northern regions (Figs 3 and 4, S1 Table). For the recent time period

(1980–2010), thermal sum models projected flowering dates ranging from early February

through early May, and fruiting dates from late June through late August across the current

range of beaked-hazelnut; flowering dates from mid-May through late July and fruiting dates

from late June through August for salal, and flowering dates from February through June, and

fruiting dates from May through August for Oregon grape (Figs 3 and 4).

Thermal-sum models projected mean advances in flowering for all species by 18 days (± 4

days) by mid-century and 35 days (± 5 days) by the end of the century under the RCP 8.5 emis-

sions scenario (Fig 5, S4 Fig). Fruiting was projected to advance by 20 days (± 5 days) by mid-

century and 37 days (± 5 days) by the end of the century (Fig 6, S5 Fig). Advances in flowering

dates for species varied by ca. 43 days, and fruiting dates by ca. 32 days across projected

future ranges, with greater advances in phenology predicted for inland and higher altitude

locations.

Trends in phenological events from the Wilbur L. Bluhm Plant Phenology Study differed

for each species. The strongest trend was for flowering of Oregon grape, which has advanced

by an average of 52 days from 1963 to 2016 (slope = -1.07 ± 0.13, F1,38 = 66.27, P< 0.0001, Fig

7). Fruiting of Oregon grape has also significantly advanced over the past 16 years (slope =

-1.38 ± 0.61, F1,13 = 66.27, P = 0.04, Fig 7). However, there were no significant trends in the

timing of flowering and fruiting of salal over the shorter period they were recorded (F1,15 =

1.92, P = 0.186, and F1,8 = 1.92, P = 0.78, respectively, Fig 7).

Fig 3. Projected dates of flowering across western North America for the recent time period (1980–2010) for current ranges of beaked hazelnut, Oregon

grape, and salal. Background map used: World Terrain Base; data sources: Esri, USGS, NOAA; Republished under a CC BY license with permission from

ESRI original copyright [2009].

https://doi.org/10.1371/journal.pone.0232537.g003
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Discussion

Species distribution

Our climate envelope models predicted that hazelnut, Oregon grape, and salal will experience

reductions in the potential suitability of their current habitats, and to some extent increases in

habitat suitability in more northern and higher-altitude regions. The current suitable habitats

for each species are overlapping, yet distinct, with hazelnut predicted to occur in mostly coastal

regions extending down to California, salal predicted to occur in the smallest current region

along the coast of mainly Oregon and Washington, and Oregon grape predicted to have a

larger current area of suitable habitat across much of the mid-elevation regions of the Pacific

Northwest. Future climate projections show the least gain in suitable habitat for salal, in addi-

tion to declining habitat suitability through much of its current range. Although salal is a very

common and abundant understory species in coastal Northwestern forests, changing climate

conditions could lead to a decline in abundance, with numerous impacts on the ecosystems

where it is currently abundant. Besides serving as a food source for people and wildlife, salal is

also extensively harvested as a part of the floral trade [5,8], and management concerning the

future sustainability of salal harvesting should consider future loss in habitat with climate

change. On the other hand, Oregon grape has a much broader current suitable habitat than

salal as it currently grows in many different locations across elevational gradients. Our models

project that Oregon grape has the greatest potential to expand its range in the future, if factors

such as dispersal, population establishment, and competition with other species are not limit-

ing. Climate envelope models for huckleberry, another shrub species with a broad range, simi-

larly showed potential for expansion to more northern regions [9]. These results highlight the

Fig 4. Projected dates of fruiting across western North America for the recent time period (1980–2010) for current ranges of beaked hazelnut,

Oregon grape, and salal. Background map used: World Terrain Base; data sources: Esri, USGS, NOAA; Republished under a CC BY license with

permission from ESRI original copyright [2009].

https://doi.org/10.1371/journal.pone.0232537.g004
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differential impacts climate change may have on species with more specialized, versus more

generalized, habitat requirements [55,56].

For all three species, extreme minimum temperatures, climatic moisture deficit, and mean

summer precipitation were important variables for their final habitat suitability models. These

results further confirm the importance of both damaging cold temperatures and drought as

Fig 5. Projected advance in flowering dates in future projected habitat across western North America under the RCP 8.5 emissions scenario for beaked

hazelnut, Oregon grape, and salal by the mid-21st century (top panels), and by the end of the 21st century (bottom panels). Background map used: World

Terrain Base; data sources: Esri, USGS, NOAA; Republished under a CC BY license with permission from ESRI original copyright [2009].

https://doi.org/10.1371/journal.pone.0232537.g005
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critical in defining the range of plant species [57,58]. As temperatures will generally increase

year-round with climate change, this could influence frost risk, and increase the number of

regions prone to drought, which in turn will have a large impact on the distribution of many

plant species. These increases in winter temperatures and drought risk may lead to more

extreme range shifts than just poleward advances in the future [59].

Fig 6. Projected advance in fruiting dates in future projected habitat across western North America under the RCP 8.5 emissions scenario for beaked

hazelnut, Oregon grape, and salal by the mid-21st century (top panels), and by the end of the 21st century (bottom panels). Background map used:

World Terrain Base; data sources: Esri, USGS, NOAA; Republished under a CC BY license with permission from ESRI original copyright [2009].

https://doi.org/10.1371/journal.pone.0232537.g006
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Phenology

Results from the phenology models show strikingly large potential advances in both flowering

and fruiting of the shrub species by the end of the 21st century. These advances may alter the

synchrony of flower availability for pollinators, or the timing of food availability for herbivores

and human harvesters. Plant species that coexist in ecosystems have evolved to stagger the tim-

ing of flowering and fruiting ripening, and the length of times fruits are available, to maximize

Fig 7. Observed dates of flowering and fruiting of Oregon grape and salal from the Wilbur L. Bluhm Plant Phenology Study. Lines represent slopes and

shading indicates 95% confidence intervals for correlations significant at P< 0.05.

https://doi.org/10.1371/journal.pone.0232537.g007
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resource use and the chances of pollination and seed dispersal by animals [60]. In turn, birds

and other animals have adapted to move across the landscape to use different food sources at

different times throughout the year to maximize energy efficiency and gain [11]. Changes to

the current flowering and fruit-ripening times may alter these time-dependent species interac-

tions [61]. Our thermal-sum models show that with increasing accumulations of warm tem-

peratures over the course of the summer, the later-ripening fruits of salal may ripen earlier

(Fig 6), and shorten the window of fruit availability between the earliest fruiting (Oregon

grape) and latest fruiting species (salal), which could shorten the time-window of food avail-

ability for dispersers across the landscape.

As a function of reduced snowpack, lower albedo, and increased solar absorption, higher

elevations are more likely to experience increased warming with climate change than lower

elevations at comparable latitudes, with greater amplification of warming under RCP 8.5 [62].

Accordingly, our projections show more rapid accumulations of thermal sums for flowering

and fruiting at higher elevations as compared to lower elevations. In addition, the phenology

of plants in colder, higher altitude ecosystems may be more sensitive to temperature changes

than those at lower, warmer elevations [63]. These differential changes in phenology across

temperature gradients have consequences for an increase in homogeneity in the timing of

open flowers for pollinators and fruit resources across elevational gradients. Further, reduced

winter snowpack can lead to lower soil moisture later in spring and summer [64], which could

potentially influence berry productivity [65]. Collectively, these changes may impact the tim-

ing of harvesting by humans, or how animals move across the landscape to obtain food [11].

Climate is one of the primary drivers of plant growth, survival, and phenology. Warmer

temperatures have already altered the phenology of plant species around the world [66,12,67].

In Salem, Oregon, where temperatures have been increasing steadily since the 1950s [54], Ore-

gon grape has also shifted first flowering dates by more than 10 days per decade. These obser-

vations from the Wilbur Bluhm Phenology Study show that large shifts in phenological timing

for at least one species have occurred in the Pacific Northwest over the recent past, and provide

support for our future projections. However, these shifts are not evident for all species [54].

There were no significant trends in phenological timing for salal in the observations from

Salem, Oregon, although the period of observations for salal was 18 years, much shorter than

the 53 years of observations for Oregon grape. The varied periods of record for Wilbur Bluhm

Phenology Study shows the importance of taking long-term measurements on ecological phe-

nomena, as patterns and trends in these very heterogeneous data may only emerge after many

years of data collection [13,54].

Caveats

As with all modelling efforts, these projections are subject to a number of constraints and

sources of uncertainty, and it is important to understand the limitations of such models for

their effective use in land management planning [68]. For example, although the cumulative

output from the MaxEnt modelling approach is effective for identifying shifts in overall range

and for providing qualitative estimates of increases or decreases in site suitability, the output’s

quantitative, absolute measure of change in site suitability should be interpreted with care.

Further, our species distribution models do not consider how competition between species,

future land use change, soils, or disturbance may impact changing ranges in the future. In

addition, incorporating differences in adaptive responses for different genotypes of the species

across their current ranges could be useful for creating more realistic predictions for how they

may compete and survive in areas deemed lower quality habitat in the future. There are also

multiple limitations to the scope of our phenology models, as there are currently few repeated
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measurements of phenological events over multiple years for these species. Although warm

temperatures are often the dominant factor affecting the timing of phenology of temperate

plants, the amount of cold temperatures experienced over winter (chilling), daylength (photo-

period), water availability, and extreme weather events may also play a role in the timing of

spring and summer phenological events of many species [60,69]. Our predictions may be inac-

curate if warmer temperatures in the future also reduce the amount of winter chilling and lead

to delays in flowering for shrub species with high chilling requirements. Additionally, photo-

period may limit advances in phenology such that our model predictions of change will be

greater than actual phenological shifts, particularly for shrub species that are more sensitive to

photoperiod cues. As more precise phenology measurements are taken, phenology models

incorporating chilling and photoperiod requirements can be developed for these species as

well. However, despite the limitations of our modelling approaches, the models shown here

are an important step towards spatial predictions of how both the locations and timing of phe-

nology of species may change in the future, and our results provide important landscape-scale

information for management and planning of restoration and other projects.

Importance

To date, climate impact studies of culturally-important food-producing plant species have

been limited, and this has hampered our ability to predict future changes in these resources

and plan for effective management and restoration. The habitat suitability models developed

here, based on location data from multiple publicly-available sources, provide a much more

detailed estimation of the current ranges of these species than what was available prior to our

work (e.g. [70]. This work is also important because it provides spatial projections for both

habitat suitability and phenological changes across the entire ranges of these three phenologi-

cally diverse species. This enables comparisons between how both habitat suitability and the

timing of flowering and fruiting may by impacted by climate change in the future, and allows

for a more complete picture of climate impacts on important plant species across large spatial

scales. For example, our climate-envelope models show that habitat suitability is projected to

increase at higher elevations and latitudes, in the same places where our phenology models

show the greatest potential advances in flowering and fruiting. Large advances in flowering,

particularly at high altitudes and latitudes, could greatly increase the risk of frost damage and

loss of fruit crops. [71].

Applications

Results of our project will help resource managers and Indigenous Peoples understand how

climate change is likely to affect the potential locations and timing of fruit production of cul-

turally-important shrub species. Successful restoration projects should consider how climate

change may impact success of desirable species [72], and our models can be used to identify

regions where climate change might significantly affect the growth, survival, and timing of

fruiting of food-producing shrubs, and help identify regions where these species are likely to

thrive in the future. This research is also directly applicable to climate impact statements that

are currently being developed by many Tribes, First Nations, National Forests, National Parks,

and other entities. Our models provide an important new source of information on how cli-

mate might impact important understory species that have often been overlooked in previous

climate assessments, and we hope that our research will spur more efforts to monitor and

model habitat and phenology changes of other shrub species.
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