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Abstract: Post-operative endophthalmitis caused by Enterococcus spp. progresses rapidly and often
results in substantial and irreversible vision loss. Therefore, novel alternative treatments that are
effective against enterococcal endophthalmitis are required. Bacteriophage therapy has the potential
to be an optional therapy for infectious diseases. Therefore, we investigated the therapeutic potential
of three newly isolated enterococcal phages, phiEF7H, phiEF14H1, and phiEF19G, in E. faecalis-
induced endophthalmitis. These phages could lyse the broad-range E. faecalis, including strains
derived from endophthalmitis and vancomycin-resistant E. faecalis in vitro, as determined by the
streak test. Morphological and genomic analyses revealed that these phages were classified into the
Herelleviridae genus Kochikohdavirus. The whole genomes of these phages contained 143,399, 143,280,
and 143,400 bp, respectively. Endophthalmitis was induced in mice by injection of three strains
of E. faecalis derived from post-operative endophthalmitis or vancomycin-resistant strains into the
vitreous body. The number of viable bacteria and infiltration of neutrophils in the eye were both
decreased by intravitreous injection of phiEF7H, phiEF14H1, and phiEF19G 6 h after injection of all
E. faecalis strains. Thus, these results suggest that these newly isolated phages may serve as promising
candidates for phage therapy against endophthalmitis.

Keywords: Enterococcus faecalis; bacteriophage; endophthalmitis; Herelleviridae; mouse model; phage therapy

1. Introduction

Bacteriophages (phages) are viruses that infect bacteria. Phages can be isolated from
environments, including sewage, food, soil, and the gastrointestinal tract. Phages infect
bacteria and lyse the cell wall by producing lytic enzymes in the bacteria. Phage therapy
is a method using phages or their products as bioagents for the treatment of bacterial
infectious diseases. Phages have the potential to be antibacterial agents to solve the
problems caused by antimicrobial-resistant bacteria [1]. The therapeutic effects of systemic
and topical phage therapy have been previously demonstrated in a mouse model of sepsis
or endophthalmitis [2–4].
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Postoperative endophthalmitis is a severe complication of ocular surgery or intravit-
real injection, which can lead to substantially reduced visual acuity or even blindness. The
number of postoperative endophthalmitis cases has recently increased in association with
an increase in the number of ocular surgeries and intravitreal injection [5,6]. Postopera-
tive endophthalmitis is often caused by Gram-positive bacteria such as enterococci and
staphylococci [7]. In particular, enterococcal endophthalmitis has a poorer visual outcome
than that caused by Staphylococcus aureus and coagulase-negative Staphylococcus spp. [8].
Prompt diagnosis and appropriate treatment of endophthalmitis are necessary to prevent
retinal damage and scarring. In recent years, there have been an increasing number of
reports of endophthalmitis caused by drug-resistant bacteria [9–11]. Therefore, novel,
alternative, or additional treatments for antimicrobial-resistant bacteria are required.

As an application of phages to eye diseases, we previously reported the effectiveness
of phage eyedrops against Pseudomonas aeruginosa keratitis in mice [12]. Additionally, the
effectiveness of intravitreal injection of phages for vancomycin-sensitive and resistant
enterococcal endophthalmitis in mice has been demonstrated [4]. Since enterococcal en-
dophthalmitis exacerbates rapidly and the prognosis is poor, the development of novel
therapeutic agents with prompt efficacy and broad host range, including antimicrobial-
resistant strains, is required. This study aimed to investigate the therapeutic potential of
three newly isolated enterococcal phages on enterococcal endophthalmitis.

2. Materials and Methods
2.1. Bacterial Strain Reagents and Culture Media

Thirty non-vancomycin-resistant E. faecalis (VRE) strains, EF1–EF30, were isolated at
the Clinical Laboratory Center in Kochi Medical School Hospital, Kochi, Japan, between 15
October and 20 December 1999, as described previously [13]. These 30 non-VRE strains
were isolated from patients in different departments, had different antimicrobial sensi-
tivities, and were isolated within a short period of time. Considering these factors, it is
unlikely that they are the same strain. E. faecalis strains GU01–GU05 were isolated from
four patients with postoperative endophthalmitis related to cataract surgery from four
different hospitals, as described previously [4]. Four VRE strains, VRE1–VRE4, which
were isolated independently, were kindly donated by Hokushin General Hospital, Nagano
City, Nagano Prefecture, Japan [14]. E. faecalis EF24 was used as a host indicator strain for
phiEF24C. E. faecalis strains GU01, GU02, and GU03 were used for animal experiments. All
chemicals and reagents were obtained from Nacalai Tesque (Kyoto, Japan), Wako Chemi-
cals (Osaka, Japan), or Sigma-Aldrich (St. Louis, MO, USA), unless otherwise stated. Heart
infusion broth (HIB), brain heart infusion (BHI), and tyrosine soy broth (TSB) (Becton,
Dickinson and Company, Franklin Lakes, NJ, USA) were used for bacterial and phage
culture. Enterococcus Faecalis (EF) agar base (Nissui Pharmaceutical, Tokyo, Japan) was
used to count colony forming units (CFUs) of EF24. Double-layered agar based on BHI
medium, with 1.5% and 0.5% agar as the lower and the upper layers respectively, was used
for evaluation of phage plaque formation.

2.2. Phage Isolation

A water sample was filtered through 0.45 µm pore surfactant-free cellulose acetate
membranes (Minisart; Sartorius Corporate Administration GmbH, Goettingen, Germany),
and 5 mL of the filtrate was mixed with 5 mL of 2 × HIB medium. The mixture was
inoculated with 0.1 mL of overnight-cultured non-VRE strain and incubated at 37 ◦C
overnight. The culture was filtered through a 0.45 µm pore size membrane. Single plaque
isolation was performed at least three times on the appropriate strains.

2.3. Large-Scale Culture and Purification of Phages phiEF7H, phiEF14H1, and phiEF19G

Phages phiEF7H, phiEF14H1, and phiEF19G were amplified with E. faecalis strains
EF7, EF14, and EF24, respectively. BHI medium was used for phage purification in animal
experiments. After complete bacterial lysis, centrifugation (10,000× g, 10 min, 4 ◦C) was
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performed to remove bacterial debris. After centrifugation, phage-containing supernatants
were collected, and polyethylene glycol 6000 and NaCl were added to final concentrations
of 10% and 0.5 M, respectively. The suspension was stored at 4 ◦C overnight, and a phage
pellet was obtained by centrifugation (10,000× g, 20 min, 4 ◦C), suspended in TM buffer
(10 mM Tris-HCl (pH 7.2) and 5 mM MgCl2) containing DNase I (100 µg/mL) and RNase
A (100 µg/mL), and incubated at 37 ◦C for 30 min.

For animal experiments, the crude phage suspension was layered on top of a dis-
continuous gradient of 40%, 35%, and 30% iodixanol (Opti-Prep; Alere Technologies,
Oslo, Norway) in physiological saline and was ultracentrifuged (50,000× g, 2 h, 4 ◦C or
100,000× g, 1 h, 4 ◦C) [4]. The phage band was collected and stored at 4 ◦C until use. Phage
concentration in the plaque-forming unit (PFU) was measured using a plaque assay.

TSB medium was used for electron microscopic observation and DNA preparation.
The crude phage suspension was layered on a discontinuous gradient ρ = 1.7, ρ = 1.5,
ρ = 1.3 CsCl in AAS (100 mM ammonium acetate, 10 mM NaCl, 1 mM MgCl2, 1 mM CaCl2,
(pH 7.2)) as described elsewhere [13]. After ultracentrifugation (50,000× g, 2 h, 4 ◦C), the
phage band was collected and dialyzed against 1 L AAS for 1 h at 4 ◦C.

2.4. Measurement of Phage Host Range

The host range of the three isolated phages was determined using the streak test.
Briefly, phages were streaked using a 10 µL-loop on TSB-based double-layered agar plates
inoculated with E. faecalis. After incubation (24 h, 37 ◦C), we recorded whether the bacteria
had been lysed, lysed from without, or not lysed. Lysis from without was determined based
on the appearance of a short transparent line with no plaque formation [15]. E. faecalis strain
EF24 was used for the preparation of phage phiEF24. The titer of the phages phiEF7H,
phiEF14H1, and phiEF19G and the phiEF24C stock was 15.7 × 109, 14.1 × 109, 11.8 × 109,
and 10.2 × 109 CFU/mL, respectively.

2.5. Electron Microscopy

Purified phages were placed on a mesh (Excel support film, Nisshin EM, Tokyo, Japan),
and then negatively stained with 2% uranyl acetate (pH 4.0). The samples were observed
with a transmission electron microscope (JEOL JEM-1400Plus, JEOL, Tokyo, Japan) at 80 kV.

2.6. Genome Sequencing and Analysis

The DNA from the phages was prepared from the purified phage particles using
previously described procedures [13]. Phage phiEF14H1 DNA was sequenced using the
Illumina HiSeq2500 (Illumina, San Diego, CA, USA), and the reads were assembled using
SPAdes assembler software v. 3. 10. One after trimming by Trimmomatic v. 0.36 [16].
DNA of phages phiEF7H and phiEF19G was sequenced using a GS Junior 454 sequencer
(Roche Diagnostics, Risch-Rotkreuz, Switzerland). Sequence reads were assembled using
454 Newbler software (version 3.0; 454 Life Sciences, Branford, CT, USA) [17]. Genomes
were annotated using a prokaryotic genome annotation pipeline, DFAST [18]. Genome
sequences of phages phiEF14H1, phiEF7H, and phiEF19G were deposited in GenBank
(accession numbers LC596378, LC596377, and LC596379, respectively).

To analyze the phylogenetic relationship of phages, the genome sequence data were
analyzed using VICTOR with the default setting of formulas d0 [19]. Genome sequences
were collected from GenBank (Table 1).
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Table 1. Genome sequences of phages belonging to family Herelleviridae genus Kochikohdavirus.

Phage Name Length (bp) Accession No. Isolation REF.

phiEF7H 143,399 LC596377 Japan This study
phiEF14H1 143,280 LC596378 Japan This study
phiEF19G 143,400 LC596379 Japan This study
phiEF17H 143,638 AP018714.1 Japan [20]

ECP3 145,518 KJ801817.1 Korea [21]
PBEF129 144,230 MN854830.1 Korea Unpublished

vB_EfaH_EF1TV 143,507 MK268686.1 Italy [22]
phiM1EF22 143,046 AP018715.1 Japan [20]

vB_EfaM_Ef2.3 147,289 MK721192.1 USA Unpublished
vB_EfaM_Ef2.1 140,938 MK693030.1 USA Unpublished

phiEF24C 142,072 AP009390.1 Japan [13]
156 141,133 LR031359.1 Spain [23]

EFLK1 130,952 NC_029026.1 Israel [24]

2.7. Mouse Model of Endophthalmitis
2.7.1. Ethical Treatment of Animals

This study was approved by the Committee for Care and Use of Laboratory Animals
at Kochi University (permit number M-00064) and was performed in accordance with
the Association for Research in Vision and Ophthalmology (ARVO) Statement on the
Use of Animals in Ophthalmic and Vision Research and with institutional guidelines for
animal research.

2.7.2. Mouse Model of Endophthalmitis

Seven-week-old specific pathogen-free female C57BL/6J mice were obtained from
Charles River Laboratories (Kanagawa, Japan) and housed under specific pathogen-free
conditions at the animal facility of Kochi Medical School. E. faecalis strains GU01, GU02,
GU03, and VRE2 were grown in 10 mL BHI broth at 37 ◦C to the logarithmic phase
(~100 Klett units, as measured with a Biowave CO8000 cell density meter (Biochrom,
Cambridge, UK), and were then isolated by centrifugation at 10,000× g for 5 min at 4 ◦C.
The cell pellet was suspended in 10 mL physiological saline, and the suspension was
centrifuged again under the same conditions. Cells were then suspended in ~1 mL saline,
and after appropriate dilution, turbidity (in Klett units) was measured to determine the
bacterial cell number. One Klett unit was assumed to be equivalent to 7.9 × 106 E. faecalis
cells/mL on the basis of standardization, with bacterial cell numbers counted directly
with a Petroff-Hausser counting chamber (Hausser Scientific, Horsham, PA, USA). A
mouse model of endophthalmitis was constructed as previously described [4]. In brief,
endophthalmitis of the right eye was induced by injection of 0.5 µL of physiological saline
containing 1 × 104 E. faecalis strains GU01, GU02, GU03, or VRE2 into the vitreous with a 36-
gauge needle. The left eye of each mouse was left untreated. At 6 h after bacterial injection,
1 × 108 PFU of phages phiEF7H, phiEF19G, or phiEF14H1 in 0.5 µL of physiological saline,
or 0.5 µL of saline alone, were administered into the vitreous of the right eye.

2.7.3. Measurement of Viable Bacteria in the Eye

Eyes isolated 24 h after infection were disrupted to release bacteria in 1.0 mL ice-cold
physiological saline using a tissue homogenizer (Mixer Mill MM300; Qiagen, Venlo, The
Netherlands) for 5 min at maximum speed. Portions of each homogenate were diluted
with saline and plated on EF agar base for culture at 37 ◦C for 48 h.

2.7.4. Assay of Myeloperoxidase (MPO) Activity

The number of neutrophils in the eye was estimated by measuring MPO activity as
described previously, with slight modification. Briefly, eyes isolated 24 h post-infection
were homogenized in 1.0 mL phosphate-buffered saline, the homogenate was centrifuged
(10,000× g, 15 min, 4 ◦C), the resulting pellet was suspended in 0.03 mL of 50 mM potassium
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phosphate buffer (pH 6.0) containing 50 mM hexadecyltrimethylammonium bromide, and
0.07 mL of 50 mM potassium phosphate (pH 6.0) was then added to the suspension. Each
sample was subjected to three freeze–thaw cycles and then centrifuged at 10,000× g for
10 min at 4 ◦C, after which 0.02 mL of the resulting supernatant was added to 0.05 mL of
substrate reagent (R&D Systems, Minneapolis, MN, USA), and the mixture was incubated
for 20 min at room temperature. The reaction was terminated by adding 25 µL of 2 N
H2SO4, and the absorbance at 450 nm was measured.

2.8. Statistics

Quantitative data are presented as the mean ± standard error of the mean (SEM) and
were analyzed with Student’s unpaired t-test. Statistical analysis was performed with
statistical software (Statcel 4 software, OMS Publishing Inc., Saitama, Japan). A p-value of
<0.05 was considered statistically significant.

3. Results
3.1. In Vitro Effects of Phages in Bacteriolysis

Phages were isolated from water samples collected from water channels in Kochi City,
Kochi Prefecture, Japan. Three phages with broad host ranges were selected: phiEF7H,
phiEF14H1, and phiEF19G, and their host range compared with that of the previously re-
ported phage phiEF24C using 39 E. faecalis clinical isolates, including five endophthalmitis-
derived strains and four VRE strains. As shown in Table 2, 88.6% of E. faecalis strains and
100% of VRE strains were lysed by phiEF19G and phiEF14H1. phiEF7H lysed 94.3% of E.
faecalis strains and 100% of VRE strains. All endophthalmitis-derived clinical isolates were
lysed by phiEF7H, phiEF14H1, and phiEF19G. However, only 80% of E. faecalis strains and
75% of VRE strains were lysed by phiEF24C.

3.2. Characterization of Phages phiEF7H, phiEF14H1, and phiEF19G

Phages phiEF7H, phiEF14H1, and phiEF19G were characterized from a morphological
and phylogenetical point of view. First, observing these phages with transmission electron
microscopy revealed an icosahedral head and a long contractile sheathed tail (Figure 1).
The morphologies of these phages were generally similar in size and shape to the re-
ported Enterococcus phage phiEF24C. In some electron micrographs of phage phiEF14H1
at 100,000× magnification, a tail fiber with a bulging tip (ca. 83 nm in length), which
protruded from the base plate of the tail, was often observed (white arrow in Figure 1C), as
seen in the reported Enterococcus phage phiEF24C [13,15].

By analyzing the phylogenetic relationship to other related Enterococcus phages, the
whole genomes of the phages phiEF7H, phiEF14H1, and phiEF19G were sequenced. The
genomes of these phages contained 143,399, 143,280, and 143,400 bp, respectively. Nu-
cleotide Basic Local Alignment Search Tool (BLASTn) analysis showed that each phage had
89% query coverage to phage phiEF24C in phages belonging to the Herelleviridae genus
Kochikohdavirus. According to the phylogenetic analysis among the phages belonging to this
virus taxonomy, phages phiEF7H, phiEF14H1, and phiEF19G were phylogenetically related
to each other (Figure 2). Although these phages were isolated independently, they may be
variants of the same phage strain because they are genetically and morphologically very
similar to each other. However, although the deduced amino acid sequences of the tail fiber
proteins (Gp31) of these three phages [15] were identical to each other, they were slightly
different from that of phiEF24C (amino acid sequence identity of 98%). This difference may
be the cause of the slight difference in their host ranges. Thus, phages phiEF7H, phiEF14H1,
and phiEF19G were classified into the Herelleviridae genus Kochikohdavirus. Since no lyso-
genic, toxic, or drug resistance gene disadvantageous to phage therapy was detected in the
genomes of these phages, these phages were considered eligible as therapeutic phages to
treat eye infections.
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Table 2. E. faecalis strains and their sensitivity to phages.

Host Isolated Source
Phage

phiEF7H phiEF14H1 phiEF19G phiEF24C

EF1 Vaginal discharge + + + +
EF2 Vaginal discharge + + + +
EF3 Sputum + + + +
EF4 Pharyngis + + + LFW
EF5 Skin + + + +
EF6 Urine + + + +
EF7 Eye discharge + + + +
EF8 Other + + + +
EF9 Urine - - - +
EF10 Other + + + -
EF11 Urine + + + LFW
EF12 Urine + + + -
EF13 Pharyngis - - - -
EF14 Vaginal discharge + + + +
EF15 Pus + + + -
EF16 Vaginal discharge + + + +
EF17 Vaginal discharge + + + +
EF18 Vaginal discharge + + + +
EF19 Vaginal discharge + + + +
EF20 Pus LFW - - +
EF21 Pus + + + +
EF22 Mouthwash + + + +
EF23 Sputum + + + +
EF24 Vaginal discharge + + + +
EF25 Other + + + +
EF26 Vaginal discharge + + + +
EF27 Eye discharge LFW - - +
EF28 Vaginal discharge + + + +
EF29 Pus + + + +
EF30 Vaginal discharge + + + -
GU01 Endopthalmitis + + + +
GU02 Endopthalmitis + + + LFW
GU03 Endopthalmitis + + + LFW
GU04 Endopthalmitis + + + -
GU05 Endopthalmitis + + + -
VRE1 HGH + + + -
VRE2 HGH + + + +
VRE3 HGH + + + +
VRE4 HGH + + + +

+, plaque formation; -, no plaque formation; LFW, lysis from without. HGH, donated from Hokushin General Hospital, Nagano City, Japan.

3.3. Effects of Intravitreous Phages on Bacterial Load in E. faecalis Endophthalmitis

The effects of intravitreously administered phage phiEF7H, phiEF14H1, or phiEF19G
were examined in a mouse model of E. faecalis endophthalmitis. Severe endophthalmitis
was caused by the injection of 1 × 104 E. faecalis strains GU01, GU02, GU03, or VRE2 into the
vitreous body. The ocular fundus was not visible because of fibrin precipitation and hemor-
rhage in the anterior chamber of vehicle-treated infected eyes observed by macroscopic
examination. Intravitreous injection of phages (1 × 108 PFU) at 6 h after E. faecalis injection
resulted in improvement of intracameral and intraocular inflammation at 24 h, without
fibrin and hemorrhage in the anterior chamber and the ocular fundus (Figures 3–5).
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Figure 1. Transmission electron micrographs of negatively stained phage virions. (A) phiEF7H,
(B,C) phiEF14H1, (D) phiEF19G. Bar, 100 nm. The magnification of (A,B,D) is ×80,000 while that of
(C) is ×100,000. Black arrows in (A–D) indicate tail tube that appeared after the sheath contracted.
White arrow in (C) indicates a tail fiber protruding from the base plate of the tail. The size of each
part is represented by the mean and standard deviation (mean ± SD) of the 10 samples, which
were measured based on photographs with a magnification of ×30,000. The head diameter was
101.5 ± 3.9 nm, the tail length was 220.3 ± 4.6, and the tail width was 21.6 ± 1.5 nm in phiEF7H.
The head diameter was 101.0 ± 3.4 nm, the tail length was 220.5 ± 3.5, and the tail width was
20.8 ± 1.3 nm in phiEF14H1. The head diameter was 97.8 ± 3.0 nm, the tail length was 219.8 ± 4.8,
and the tail width was 20.5 ± 2.2 nm in phiEF19G.
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Figure 2. Phylogenetic tree among phages belonging to family Herelleviridae genus Kochikohdavirus.
The phylogenetic tree was drawn using VICTOR [19]. The isolated phages phiEF7H, phiEF14H1, and
phiEF19G are shown in bold.
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Figure 3. Effects of intravitreous injection of phage phiEF7H on live bacterial load and MPO activity for eyes with various
E. faecalis-induced endophthalmitis. Eyes were injected with vehicle or phiEF7H at 6 h after injection of E. faecalis strain
GU01, GU02, GU03, or VRE2. The clinical signs (A), viable bacterial load (B), and MPO activity (C) were determined 24 h
after infection. All data are the mean ± SEM for four to six eyes in each group. *, p < 0.05; **, p < 0.01 (Student’s t-test)
versus vehicle-treated eyes.
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Figure 4. Effects of intravitreous injection of phage phiEF14H1 on live bacterial load and MPO activity for eyes with various
E. faecalis-induced endophthalmitis. Eyes were injected with vehicle or phiEF14H1 at 6 h after injection of E. faecalis strain
GU01, GU02, GU03, or VRE2. The clinical signs (A), viable bacterial load (B), and MPO activity (C) were determined 24 h
after infection. All data are the mean ± SEM for four to six eyes in each group. *, p < 0.05; **, p < 0.01 (Student’s t-test)
versus vehicle-treated eyes.
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Figure 5. Effects of intravitreous injection of phage phiEF19G on live bacterial load and MPO activity for eyes with various
E. faecalis-induced endophthalmitis. Eyes were injected with vehicle or phiEF19G at 6 h after injection of E. faecalis strain
GU01, GU02, GU03, or VRE2. The clinical signs (A), viable bacterial load (B), and MPO activity (C) were determined 24 h
after infection. All data are the mean ± SEM for four to six eyes in each group. *, p < 0.05; **, p < 0.01 (Student’s t-test)
versus vehicle-treated eyes.
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Eyeballs were assessed for bacterial load and MPO activity 24 h after intravitreal injec-
tion of E. faecalis. The live bacterial load in eyes injected with phages phiEF7H (Figure 3),
phiEF19G (Figure 4), and phiEF14H1 (Figure 5) was significantly reduced compared with
that of eyes injected with vehicle. Furthermore, MPO activity was decreased (Figures 3–5)
compared with that of eyes inoculated with phages. The latter observation therefore sug-
gested that infiltration of neutrophils into the eye was suppressed by intravitreal injection
of phiEF7H, phiEF19G, and phiEF14H1.

4. Discussion

This study investigated the characteristics of three newly identified enterococcal
phages. Based on the annotation using DNA Data Bank of Japan Fast Annotation and
Submission Tool (DFAST), there were no genes associated with toxicity or pathogenicity or
involved in the lysogenic life cycle. Moreover, the host spectrum of the isolated phages,
phiEF7H, phiEF14H1, and phiEF19G, was much broader than that of previously reported
phage phiEF24C [13] when these phages and phiEF24C were tested against E. faecalis strains
isolated from clinical specimens (Table 2). In particular, we found that these three phages
could lyse all five strains derived from endophthalmitis and four strains of VRE. Thus,
the isolated phages, phiEF7H, phiEF19G, and phiEF14H1, were considered promising
for the therapeutic purpose of endophthalmitis from the phage therapy point of view.
Given that the host spectrum of these phages differed from that of phiEF24C, it is possible
that a cocktail of these phages could be effective therapeutic agents for a broader range
of enterococci.

Intravitreous administration of phage was recently reported to be effective against
E. faecalis endophthalmitis in mice. Local phage therapy was shown to reduce the load of
viable bacteria, suppress neutrophil infiltration, and protect the function of the retina [4].
Enterococcal endophthalmitis progresses quickly and requires prompt treatment. We
have previously shown that phage induced lysis of E. faecalis in vitro faster than van-
comycin in vitro, and thus, intravitreous phage therapy is a potential candidate for treating
endophthalmitis [4]. Phages phiEF7H, phiEF14H1, and phiEF19G reduced the load of
viable bacteria and suppressed neutrophil infiltration in a mouse model of endophthalmi-
tis caused by VRE and E. faecalis isolated from endophthalmitis. The multiplication of
phages depends on the growth of host bacteria; therefore, it is important to confirm the
therapeutic effects in vitro and in vivo. This study demonstrated that phages phiEF7H,
phiEF14H1, and phiEF19G lyse VRE and E. faecalis isolated from endophthalmitis in vitro
and in vivo and thus can be considered novel therapeutic agent candidates. Phages with a
broader host spectrum, such as these three, may be effective as new therapeutic agents for
endophthalmitis caused by both antimicrobial-sensitive and resistant bacteria.

Ocular infectious diseases caused by antimicrobial-resistant bacteria are reportedly in-
creasing and are becoming a clinical issue that requires addressing. Antimicrobial-resistant
strains of various types of bacteria derived from ocular infection have been isolated, includ-
ing S. aureus, coagulase-negative staphylococci, P. aeruginosa, Corynebacterium spp., and
Escherichia coli [25–29]. In recent years, novel alternative or additional therapeutic agents to
antibiotics have been developed for ocular infections caused by antimicrobial-resistant bac-
teria, including antiseptic hexamidine diisethionate ophthalmic solution [30] and devices
to improve the antibiotic bioavailability of eye drops such as polyvinyl alcohol/anionic
collagen membranes [31] and ofloxacin-loaded polymeric nanoparticles [32]. We have pre-
viously reported the effectiveness of phage eye drops for the mouse model of P. aeruginosa
keratitis [12] and others have reported a case with vancomycin-resistant S. aureus keratitis
successfully treated by a bacteriophage eyedrop [33]. Phages can be applied to various
dosage forms, such as eye drops, ointments, or vitreous injection, and serve as potential
candidates for treating drug-resistant bacterial infections of the eye.

Correct delivery of phages to the focus of infection is important for successful phage
therapy. The ability to deliver phages directly and accurately by eye drops, intracameral
injection, or intravitreous injection is an advantage for the treatment and prophylaxis of
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ocular infectious diseases. For clinical application, it is necessary to confirm the safety
of the eye and the pharmacokinetic excretion pathway after intraocular administration
of phages. We have previously confirmed that intravitreously injected phages remained
in the eye for at least 3 days and had no toxic effects on retinal function at 2 weeks after
injection in mice [4]. Postoperative endophthalmitis progresses rapidly, but the incidence
is low; however, it is important to develop safe prophylaxis for this condition. Recently,
antimicrobial agents are often administered by eye drops or intracameral injections at the
end of surgery for the prophylaxis of postoperative endophthalmitis. However, cases of
severe hemorrhagic occlusive retinal vasculitis after intracameral injection of vancomycin
that causes visual loss have been reported [34,35]. Therefore, new therapeutic agents
are required to replace antimicrobial agents for the prophylaxis of postoperative endoph-
thalmitis. Given that postoperative endophthalmitis usually occurs within a few days after
intraocular surgeries, phages that can remain in the eye for at least several days may also be
suitable for prophylaxis. It is necessary to investigate the safety and accurate pharmacoki-
netic excretion pathway in the eyes with respect to the phages phiEF7H, phiEF14H1, and
phiEF19G in future studies. As described above, these three phages, which may be variants
of the same phage strain, showed similar therapeutic effects on eye infections, strongly
suggesting that phages that belong to the same derivative group in the Kochikohdavirus
genus may be eligible as therapeutic phages for eye infections.

5. Conclusions

Three newly isolated enterococcal phages were studied that could lyse broad-range
E. faecalis, including strains derived from endophthalmitis and VRE in vitro and in vivo. Thus,
these isolated phages may be promising candidates for phage therapy against endophthalmitis.
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