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a b s t r a c t 

Artificial Neural Networks (ANNs) model and Adaptive Neuro-Fuzzy Inference System (ANFIS) were used to 

estimate and predict the removal efficiency of tetracycline (TC) using the adsorption process from aqueous 

solutions. The obtained results demonstrated that the optimum condition for removal efficiency of TC were 1.5 g 

L −1 modified zeolite (MZ), pH of 8.0, initial TC concentration of 10.0 mg L −1 , and reaction time of 60 min. Among 

the different back-propagation algorithms, the Marquardt–Levenberg learning algorithm was selected for ANN 

Model. The log sigmoid transfer function (log sig) at the hidden layer with ten neurons in the first layer and a 

linear transfer function were used for prediction of the removal efficiency. Accordingly, a correlation coefficient, 

mean square error, and absolute error percentage of 0.9331, 0.0017, and 0.56% were obtained for the total dataset, 

respectively. The results revealed that the ANN has great performance in predicting the removal efficiency of TC. 

• ANNs used to estimate and predict tetracycline antibiotic removal using the adsorption process from aqueous 

solutions. 
• The model’s predictive performance evaluated by MSE, MAPE, and R 2 . 
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Resource availability 

Method details 

Adsorption experiments and instrumental analyses 

Batch experiments were conducted in a plexiglass reactor that contained a 100 mL sample of

specified TC concentration at room temperature (22 ± 2 °C). After pH adjustment at the desired level,

the required amount of modified zeolite (MZ) was added to the reactor and blended at 100 rpm.

At the end of the given reaction time, the suspension separated by was centrifuged at 30 0 0 rpm

for 5 min and the supernatant analyzed for residual TC. The fortified distilled water (distilled water

containing TC) was prepared by adding a certain amount of TC into the distilled water, whereas the

real wastewater was obtained by sampling the hospital wastewater. 

The concentration of TC after each run measured by KNAUER HPLC using a C 18 column (150 mm,

4.6 mm, 5 μm). The mobile phase consists of 75% oxalic acid (10 mM), 13% of methanol, and 12%

acetonitrile with a flow rate of 1 mL min 

−1 . The temperature of the oven and the wavelength of the

UV detector set to 30 °C and 360 nm, respectively [1] . 

The removal efficiency of TC through the adsorption process was calculated by Eq. (1) [2] : 

Removal ( % ) = 

C 0 − C t 

C 0 
× 100 (1) 

where C 0 and C t (mg L –1 ) denote the TC concentration before adsorption and at the time t ,

respectively. 

Characteristics of employed real wastewater 

The characteristics of the employed real wastewater included the total suspended solids (TSS) of 

121 ±14 mg L −1 , total dissolved solids (TDS) of 627 ±34 mg L −1 , temperature of 21 ±2 °C, chemical

oxygen demand (COD) of 734 ±42 mg L − 1 , biochemical oxygen demand (BOD5) of 314 ±27 mg L −1 ,

pH of 6.4 ± 0.7, and electrical conductivity (EC) of 1172 ±49 μmho cm 

−1 . 

Description of ANN method 

The data was prepared to enter into the ANN model. The Matlab (version 2014b) was used for

computer coding all the calculations required. The best model predicted including the best learning 

and experimental set, normalizing the data, the number of hidden layers and neurons per layer, the

functions of transfer, conversion, and operation, as well as the learning rate, the number of repetitions

and the algorithm of teaching. In this study, the data set selected randomly for train and validation
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Fig. 1. Schematic of the ANN model used in the current study. 
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as 74%, 26%, respectively. The data analysis was performed by Microsoft office 2010 software. There

re no systematic methods in determining the mentioned cases, so the best design of the network is

chieved through experience and Trial and error. The schematic of the ANN model used in the current

tudy presented in Fig. 1 . 

The training flowchart of ANN network has three layers: an input layer, an output layer and an

idden layer. The inputs to a neuron comprise its bias and the sum of its weighted input. The output

alue of a neuron depends on the neuron’s inputs as well as transfer function [3] . In mathematical

erms, a neuron can be described as follows: 

u k = 

m ∑ 

j=1 

w k j x j (2)

y k = ϕ( u k + b k ) (3)

here x 1 , . . . , x m 

are the inputs; w k 1 , . . . , w km 

are the weights of neuron; u k is the linear combiner

utput due to the input signals; ϕ is the activation function(for this paper used Log-sigmoid); b k is

he bias or threshold; and y k is the output signal of the neuron. 

escription of ANFIS method 

Adaptive Neuro-Fuzzy Inference System (ANFIS) combines the learning capacities of artificial neural

etworks (ANNs) and reasoning capacities of fuzzy systems [4] . The learning algorithm for ANFIS is

 hybrid algorithm, which is a combination of gradient descent and the least-squares method [5] .

he consequent parameters were optimized under the condition that the premise parameters remain

xed. The main benefit of the hybrid approach is that it converges much faster since it reduces the

earch space dimensions of the original pure back-propagation method used in neural networks. The

NFIS structure and research procedure are presented in Figs. 2 and 3 , respectively [6 , 7] . 

tatistical modeling 

To achieve acceptable results through the neural network, the selection of appropriate data as

nputs and outputs of the network is required. In the current work, 30 experimental data were

sed for modeling. Different modes were investigated to determine the best model used. Where, the

est model was selected using the highest correlation coefficient. In the current work, a total of 30

un experiments were used for the models. To determine the best input pattern for the network,

he effective variables on the removal efficiency were data processed, calculated and matrixed. The



4 M. Dolatabadi, M. Mehrabpour and M. Esfandyari et al. / MethodsX 7 (2020) 100885 

Fig. 2. The architecture of the ANFIS model for predicting the removal efficiency of TC. 

Fig. 3. Flowchart of ANFIS modeling for removal of TC in the current study. 

 

 

 

 

model included an input layer with four neurons (TC initial concentration, pH, adsorbent dosage, and

reaction time), a hidden layer with six different states, and an output layer with a neuron (removal

efficiency of TC). Before starting the learning process, to avoid some educational damages and to

ensure that the network not be saturated with large numerical amounts of weight, the normalization

of the input data in the range from zero to one calculated completely randomized by Eq. (4) . 

X norm 

= 

( X − X min ) 

( X max − X min ) 
(4) 
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Table 1 

The best R 2 value for ANN with a different 

structure. 

No 

Hidden 

layer 

R 2 

Train Validation Total 

1 [5] 0.981 0.621 0.906 

2 [10] 0.991 0.788 0.882 

3 [15] 0.991 0.858 0.926 

4 [5–5] 0.839 0.797 0.799 
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here X norm 

denotes the value of the normalized data and X, X max and X min denote the amount

f input, maximum and minimum data, respectively. Finally, for comparison, the normalized data

eturned to the original X data after modeling according to Eq. (5) . 

X = [ X norm 

( X max − X min ) ] + X min (5)

At the learning phase of the network, there are various criteria for stopping the neural networks.

hese criteria include the computational time, the error rate, and the number of steps to apply

he data to the network. Relationships such as the mean correlation coefficient (R 

2 ), mean square

rror (MSE), and mean absolute percentage error (MAPE) were used to calculate the error rate. The

orrelation coefficient was expressed by Eq. (6) as follows: 

R 2 = 

(∑ n 
i =1 ( y di − ȳ di ) ( y i − ȳ i ) 

)2 

∑ n 
i =1 ( y di − ȳ di ) 

2 
( y i − ȳ i ) 

2 
(6)

here y i , y di , and n denote the predicted data, the real data, and the total number of data, respectively.

To evaluate the prediction performance of the developed model, the statistical standards including

ean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE) and mean

bsolute percentage error (MAPE) were defined as below: 

Mean absolute error(MAE) = 

n ∑ 

i =1 

∣∣y ′ i − y i 
∣∣

n 
(7)

Root mean squared error (RMSE) = 

√ ∑ n 
i =1 ( y 

′ 
i − y i ) 

2 

n 
(8)

Mean absolute percentage error (MAPE) = 

1 

n 

n ∑ 

i =1 

∣∣∣∣y ′ i − y i 
y i 

∣∣∣∣ (9)

here y i is the actual value and y ′ 
i 

is the predicted value for the train and test. 

cquired data from developed ANN model 

The most important factors in the modeling of the neural networks which have a direct effect

n the model output are the main variables (the number of hidden layers and number of neurons).

herefore, the modeling process was initiated from a hidden layer, in which a neuron with six

ifferent states were selected. As seen from Table 1 , the correlation coefficient for training, validation,

nd total data was calculated for each state and the highest correlation coefficient were used (10–10).

After performing the training and validating phases of the neural networks, the algorithm was

esigned to be able to examine all possible scenarios for the number of layers, the number of neurons

er layer, different transfer functions, and also different training algorithms. 74% and 26% of input data

ere used for network training and validation data, respectively, and a lower coefficient was applied

o the error value derived from training data so that the results are less affected by this parameter.

alidation and training samples must be different and are selected randomly from the original data
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Fig. 4. Correlation between experimental and predicted values of TC removal efficiency using the ANN model for train and 

validation data. 

Table 2 

The ANFIS information used in the current 

study. 

Characterization Value 

Number epoch’s 10 0 0 

Number of nodes 257 

Number of linear parameters 125 

Number of nonlinear parameters 200 

Total number of parameters 30 

Number of fuzzy rules 25 

 

 

 

 

 

 

 

 

set, which used the “randperm” function in Matlab. The Levenberg–Marquardt algorithm with the 

least error in training and the goal value of 10–5 was selected as the best backpropagation algorithm.

The configuration parameters of this network were obtained by the trial and error method. The

performances of these networks were evaluated by error and regression parameters and correlation 

coefficient. The network with the least deviation from the target values for both training data and

network validation data was offered as a model. The modeling data against the experimental data

was depicted in Fig. 4 . 

As seen from the comparison of simulated values with real values, the artificial neural network

models were presented in the current study as advanced tools with high potential could well predict

the removal efficiency of TC. 

Acquired data from developed ANFIS model 

Two models of Sugeno, with automatic extraction of data from AFIS [GENFIS2], were used. The

MATLAB software was adopted for comparison purposes. Moreover, the coverage threshold fixed to 

0.01. Table 2 shows the used ANFIS information in the current study with the Back-propagation

optimum method for the removal efficiency of TC. 
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Fig. 5. Comparison of the experimental and predicted results for removal efficiency of TC in ANN and ANFIS models. 

Table 3 

MAE, RMSE, MAPE and Correlation coefficient ( R 2 ) for removal efficiency of TC by ANN and ANFIS models. 

Model ANN model ANFIS model 

Type of Error MAE RMSE MAPE Correlation 

coefficient ( R 2 ) 

MAE RMSE MAPE Correlation 

coefficient ( R 2 ) 

Train 1.854 2.652 0.035 0.9695 0.552 1.787 0.01 0.9867 

Validation 5.524 6.649 0.077 0.9144 1.328 2.686 0.021 0.9674 

Total 2.832 4.117 0.046 0.9331 0.759 2.065 0.013 0.9811 
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In Figs. 4 and 5 , the desired values (removal efficiency of TC) versus ANFIS predictions for

he verification data points were demonstrated. These figures reveal that an acceptable agreement

etween the predicted and experimental data achieved. 

omparison of ANN and ANFIS models 

For the ANN model, the low values of the conventional error functions: MAE = 2.832, RMSE = 4.117,

nd MAPE = 0.046 are in an acceptable range. Besides, the correlation coefficients are greater than

.9331, which indicated a satisfactory adjustment between the experimental data and those predicted

y ANN model. While for the ANFIS model, low values of MAE = 0.759, RMSE = 2.065, and MAPE = 0.013,

re in agreement with the reported range in the literature [8–11] . Furthermore, the correlation

oefficient than found by ANN is closer to 1.00, which implies excellent agreement between the

xperimental data and those predicted by the ANN model. Table 3 listed the values of MAE, RMSE,

APE and correlation coefficient (R 

2 ) of ANN and ANFIS models for prediction of TC removal

fficiency. 

The predicted removal efficiency of TC by ANN and ANFIS models were compared with the

xperimental results in Fig. 5 . 
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Table 4 

Comparison of TC removal efficiency for both fortified distilled water and real wastewater samples. 

No. Initial TC 

concentration 

(mg L −1 ) 

pH Adsorbent 

Dosage (g L −1 ) 

Reaction time 

(min) 

Removal efficiency (%) Desirability 

fortified distilled 

water sample 

Real 

sample 

I 10 8.0 1.5 60 95.23 93.82 0.999 

II 10 7.5 2.0 60 93.39 90.71 0.998 

III 5 7 1 30 84.48 81.37 0.997 

IV 20 4 1.5 45 44.18 41.65 0.996 

V 15 10 1.5 45 37.80 36.42 0.998 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment of real wastewater and validity of the model 

The removal efficiency of the treatment process through the adsorption of TC onto the modified

zeolite was investigated for both fortified distilled water and real wastewater samples in five various

operating conditions with superior desirability of 99%. All experiments were performed in triplicate. 

As seen in Table 4 , a satisfactory agreement was observed between the TC removal efficiency in

fortified distilled water and real samples, however, a slight decrease in the efficiency was observed

in real samples due to their complex matrix. Desirability is one of the most frequently used response

optimization parameters employed for the analysis of experiments to evaluates the extent of access 

to the optimal conditions and ranging from 0 to 1 (least to most desirable, respectively) [12 , 13] . To

appraise the reliability of optimum conditions predicted by the empirical model, a set of experiments

was carried out testing the model. It is found that the deviation is smaller between the fortified

distilled water sample and real sample, and this result further confirms the validity of the model. 

Conclusion 

In the current work, the neural network models successfully were developed to simulate the 

removal efficiency of TC in aqueous solution. The best network structure based on the lowest error

found to be the Levenberg–Marquardt algorithm, which included four inputs, one output and ten 

neurons in the first layer. In the training phase, the neural network learns the relationship between

the variables with the help of input data. In the validation phase, the prediction of the data values

calculated as output. Consequently, the predicted results were compared with the actual values and 

the error rate was calculated. The error values should be at their lowest levels, for which purpose

the network first designed and the training and validation practice were repeated several times 

to minimize the error. To evaluate and compare the results provided by the methods and error

estimation, the mean square error (MSE) and mean absolute percentage error (MAPE) were calculated. 

Since the accuracy of the obtained results from the neural networks directly related to the accuracy

and range of numbers used in the validation and network training phases, therefore, the reliable

and high-precision data were used in the mentioned phases. Moreover, due to the high speed of

computing in neural networks, this model was employed as an efficient model for predicting data

in environmental sciences. 
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