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Although the relationship between corticospinal tract (CST) fiber degeneration and motor

outcome after stroke has been established, the relationship of sensorimotor cortical

areas with CST fibers has not been clarified. Also limited research has been conducted

on how abnormalities in brain structural networks are related to motor recovery. To

address these gaps in knowledge, we conducted a diffusion tensor imaging (DTI) study

with 12 chronic stroke patients (CSPs) and 12 age-matched healthy controls (HCs). We

compared fractional anisotropy (FA) and mean diffusivity (MD) in 60 CST segments using

the probabilistic sensorimotor area tract template (SMATT). Least Absolute Shrinkage

and Selection Operator (LASSO) regressions were used to select independent predictors

of Fugl-Meyer upper extremity (FM-UE) scores among FA and MD values of SMATT

regions. The Graph Theoretical Network Analysis Toolbox was used to assess the

structural network of each subject’s brain. Global and nodal metrics were calculated,

compared between the groups, and correlated with FM-UE scores. Mann–Whitney

U-tests revealed reduced FA values in CSPs, compared to HCs, in many ipsilesional

SMATT regions and in two contralesional regions. Mean FA value of the left (L.) primary

motor cortex (M1)/supplementary motor area (SMA) region was predictive of FM-UE

score (P = 0.004). Mean MD values for the L. M1/ventral premotor cortex (PMv) region

(P = 0.001) and L. PMv/SMA region (P = 0.001) were found to be significant predictors

of FM-UE scores. Network efficiency was the only global metric found to be reduced in

CSPs (P = 0.006 vs. HCs). Nodal efficiency of the L. hippocampus, L. parahippocampal

gyrus, L. fusiform gyrus (P = 0.001), and nodal local efficiency of the L. supramarginal

gyrus (P< 0.001) were reduced in CSPs relative to HCs. No graphmetric was associated

with FM-UE scores. In conclusion, the integrity of CSTs connected to M1, SMA, and
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PMv were shown to be independent predictors of motor performance in CSPs, while

stroke-induced topological changes in the brain’s structural connectome may not be. A

sensorimotor cortex-specific tract template can refine CST degeneration data and the

relationship of CST degeneration with motor performance.

Keywords: chronic stroke, Fugl-Meyer upper extremity scale, diffusion tensor imaging, sensorimotor cortex, graph

analysis

INTRODUCTION

The quality of life of chronic stroke patients (CSPs), including
their ability to live independently, to have active social lives,
and to return to their professional occupation and pre-stroke
daily activities, is highly dependent on severity of motor
impairment and mobility (1). Recovery after stroke is a complex
multiparametric process involving socio-demographic, clinical,
and genetic factors (2). The location of the initial stroke-induced
injury is a major clinical factor affecting motor function deficits
and recovery potential (3). Indeed, the integrity of motor-related
cortical areas and their descending tracts correlate with persistent
motor impairment in the chronic stroke phase (4–7).

Diffusion tensor imaging (DTI) is a magnetic resonance
imaging (MRI) technique that is widely used to assess changes
in tissue microarchitecture and to probe structural integrity of
the brain noninvasively (5, 8). Accordingly, DTI visualization of
white matter (WM) tracts is useful for examining stroke-induced
WM connectivity alterations (9). It has been established in both
human and animal DTI studies that corticospinal tract (CST)
damage and corticobulbar motor tract damage can produce
profound motor deficits and determine the recovery course after
stroke (6, 7, 10–14).

Most stroke studies applying DTI tractography have focused
on the CST because of its central importance in motor function
(10, 13, 15, 16). Commonly, CST reconstruction is conducted
by pairing a subcortical seed region of interest (ROI) (e.g.,
anterior portion of upper pons, medulla) and a cortical ROI,
usually the primary motor cortex (M1). Alternatively, a CST
template can be used to define ROIs to be analyzed (15). These
approaches are limited by the fact that they probe only a portion
of descending tracts. Only about half of CST fibers originate in
M1 (17) and motor function recruits many cortical areas, such
as the premotor cortex and supplementary motor area (SMA),
each with its own descending tracts to subcortical areas or to
the spinal cord directly (18, 19). Although standard WM tract
atlases (e.g., Johns-Hopkins WM template and the Harvard-
Oxford cortical and subcortical structural atlas) show multiple
tracts and their relationships with WM areas important to motor
function, such as the posterior limb of the internal capsule (PLIC)
(20), they do not provide detailed information about the cortical
targets of WM tracts where motor information processing takes
place. The only template that relates sensorimotor WM tracts to
their cortical topography is the probabilistic sensorimotor area
tract template (SMATT) (21). The probabilistic SMATT links
stroke lesions with sensorimotor cortical processing directly and
precisely, but has been used only rarely in stroke studies (22).

Although the initial stroke lesion is a major determinant
of final motor outcomes, secondary degeneration and plastic
structural brain changes, either spontaneous or induced by
therapy, remodel the brain (23). Whole-brain adaptation
following stroke involves remote regions in addition to
perilesional areas (24). Structural MRI studies focused on
specific brain regions do not provide information about global
reorganization of the brain’s connectome. Graph analysis,
which includes measures of regional and global brain network
characteristics, can provide information about whole-brain
connectivity (25). According to graph theory, the brain can be
represented graphically as a complex network of anatomical areas
(nodes) and links (edges) that represent connectivity between
the nodes. Structural graphs of the brain can be developed from
DTI tractography data, usually by defining nodes as atlas regions
and defining edges as the number of tracts connecting them.
Graph analysis studies have revealed brain network aberrations
in disorders such as Alzheimer’s disease, schizophrenia, and
Parkinson’s disease (26). However, studies applying network
approaches to assess brain connectome remodeling after stroke
are still scarce (24, 27–29).

The aim of the present study was to use DTI with SMATT-
based segmentation of the sensorimotor tracts in CSP and healthy
control (HC) groups to assess how clinical motor outcomes
are related to stroke-induced damage of WM tracts linked to
sensorimotor cortical areas. We used graph analysis to find
brain structural network abnormalities in CSPs and to assess
whether these abnormalities are predictors of motor performance
during recovery.

MATERIALS AND METHODS

Subjects
Twelve CSPs (mean age, 52.7 ± 13.8 years; 4 men, 8 women)
and 12 age-matched, right-handed HC volunteers (57.4 ± 11.3
years; 4 men, 8 women) participated in this study. Patients
were recruited through the registries of stroke survivors at
Massachusetts General Hospital. The inclusion criteria for CSPs
were: (a) first-ever ischemic stroke incurred in the left middle
cerebral artery territory at least 6 months prior to recruitment;
(b) acute unilateral loss of hand strength score of <4 on
the Medical Research Council scale for ≥48 h; and (c) right-
handedness according to the Edinburgh Handedness Inventory.
The exclusion criteria were: (a) the presence of any hearing,
vision, language, or cognitive deficit; (b) MRI contraindications;
and (c) any disorder that impairs motor function of the
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stroke-affected hand. Institutional review board approval of the
study was granted by the Partners Human Research Committee
(protocol no. 2005P000570). All participants provided informed
consent. Patients’ motor performance was assessed before
imaging with the Fugl-Meyer Upper Extremity (FM-UE) scale
for sensorimotor impairment. The Modified Ashworth scale was
used to assess spasticity.

Imaging
Brain scans were performed with a 3-T Skyra Siemens full-
body scanner equipped with a 32-channel phased-array surface
coil. The MRI protocol consisted of three sequences. The
first was a sagittal magnetization-prepared rapid gradient-echo
sequence for high-resolution, T1-weighted anatomical imaging
with the following parameters: repetition time (TR)/echo time
(TE)/inversion time (TI) = 2,300 ms/2.53 ms/900ms; field of
view (FOV), 256mm; resolution, 1 × 1 × 1 mm3; PAT factor
2; and acquisition time, 5.5min. The second was an axial fat-
saturated single-shot spin-echo planar imaging sequence for
diffusion imaging with b-values of 0 and 1,000 s/mm2 and
the following parameters: voxel size 2 × 2 × 2 mm3; 69
slices; PAT factor 2; TR/TE 12,200 ms/104ms; 30 diffusion
directions; acquisition time, 6.9min. Finally, we conducted three-
dimensional (3D) fluid-attenuated inversion recovery pulse
sequence for clinical evaluation with the following parameters:
voxel size, 0.5 × 0.5 × 0.9 mm3; 192 slices; PAT factor 2;
TR/TE/TI = 5,000 ms/386 ms/1,800ms; and acquisition time,
5.6 min.

Data Analysis
The variable stroke size refers to the stroke lesion size calculated
semiautomatically with the itk-snap tool. The variable time after
stroke refers to the time from the stroke incident and to the
imaging scan. Associations of stroke size and time after stroke
with FM-UE score and SMATT-region diffusion metrics were
assessed with determining Spearman correlation coefficient rho
values, applying Bonferroni correction for multiple comparisons.

Mean values are reported with standard deviations (SDs)
or standard errors (SEMs) as indicated. Imaging data were
analyzed in PANDA (Pipeline for Analyzing braiN Diffusion
imAges), which is based on the FMRIB Software Library and
Diffusion Toolkit (http://trackvis.org/dtk/). For each subject,
we used the FMRIB Diffusion Toolbox to correct diffusion-
weighted images for eddy current-induced distortion andmotion
artifacts. A brain mask was created from the first b0 image with
the Brain Extraction Tool. The FMRIB Diffusion Toolbox was
used to fit the tensor model and compute fractional anisotropy
(FA) and mean diffusivity (MD) maps. The diffusion maps
were normalized to the ICBM152 template as described by
Gong et al. (30). For each subject, an FA image in native
space was co-registered to its corresponding high-resolution
T1-weighted structural image by way of affine transformation.
Then the structural image was non-linearly registered to the
template T1-weighted image. A warping transformation from
the native to the standard space was obtained by combining the
transformations in these two steps. Two standard-space atlases
were then warped inversely back to individual native space via

FIGURE 1 | SMATT tracts in a random colour-scale superimposed on 15

grayscale coronal T1-weighted anatomical slices. Colour indices are: 1 M1; 2

PMd; 3 PMv; 4 SMA; 5 preSMA; 6 S1; 7 M1,PMd; 8 M1,PMv; 9 M1,SMA; 10

M1,S1; 11 PMd,PMv; 12 PMd,SMA; 13 PMv,SMA; 14 PMd,preSMA; 15

SMA,preSMA; 16 M1,PMd,SMA; 17 M1,PMv,SMA; 18 M1,PMv,S1; 19

M1,SMA,S1; 20 PMd,PMv,SMA; 21 M1,PMd,SMA,S1; 22 M1,PMv,SMA,S1;

23 M1,PMd,PMv,SMA; 24 PMd,SMA,preSMA; 25 M1,PMd,PMv,SMA,S1; 26

M1,PMd,SMA,preSMA; 27 PMd,PMv,SMA,preSMA; 28

M1,PMd,SMA,preSMA,S1; 29 M1,PMd,PMv,SMA,preSMA; 30

M1,PMd,PMv,SMA,preSMA,S1.

inverse transformation. One atlas, the probabilistic sensorimotor
area tract template (SMATT), was used for ROI analysis. A
second atlas, namely the Automated Anatomical Labeling atlas
(AAL), was used for graph analysis of the brain connectome.

For ROI analysis, SMATT segments of corticofugal tracts were
defined based on six motor-related cortical regions: M1, dorsal
premotor cortex (PMd), ventral premotor cortex (PMv), SMA,
preSMA, and primary somatosensory cortex (S1). Probabilistic
SMATT further divided the 12 sensorimotor tracts (6 per
hemisphere) into 60 tracts (30 per hemisphere) based on
SMATT tract overlap (Figure 1). For example, the left (L.)-
PMd,PMv,SMA region contains voxels of the L. hemisphere
that have equal probability, 1/3, of belonging to the PMd, PMv,
or SMA.

Mean values were calculated for probabilistic SMATT
template regions in the native space for each diffusion metric
maps. Shapiro-Wilk tests were used to determine normality and
Mann–Whitney U-tests were used to assess group differences
in diffusion metrics (HC vs. CSP). P-value threshold for
the multiple comparisons was calculated with Bonferroni
correction. Least Absolute Shrinkage and Selection Operator
(LASSO) regressions were used to select independent FM-
UE score predictors from among the diffusion metric mean
values of numerous probabilistic SMATT regions. LASSO is a
regularization technique that provides more accurate prediction
than standard linear regression methods when there are more
variables than data points. It improves a linear model’s accuracy
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FIGURE 2 | Patients’ stroke lesions (yellow arrows) on T1-weighted anatomical slices.

by minimizing the residual sum of squares similar to the
minimization of standard linear regression. Additionally, it
penalizes model complexity by minimizing the sum of absolute
values of the regression coefficients. LASSO functions as a feature
selection method by shrinking coefficients toward zero, with
some becoming exactly zero. The balance between accuracy and
complexity is determined by the λ coefficient. A 10-fold cross-
validation approach was used to estimate λ and the optimal
LASSO model. Bootstrapping with 1,000 times resampling was
used to estimate standard errors of the predictor’s coefficients.

In preparation for graph analysis, native FA maps were fed
into the PANDA toolbox, which, using the Diffusion Toolkit
(http://trackvis.org/dtk/), reconstructed all possible fibers within
the brain. For each subject, a graph was then constructed with the
AAL ROIs as nodes. Graph edges are represented with a number-
weighted matrix M, where the element M(i, j) represents the
number of fibers linking nodes i and j. In accordance with recent
recommendations (31), M was not thresholded. Nodal metrics
(clustering coefficient, shortest path length, efficiency, local
efficiency, degree centrality, and betweenness centrality) and
global network metrics (small-world, efficiency, rich-club, and
modularity) were calculated with the Graph Theoretical Network
Analysis Toolbox, version 20. These metrics were calculated and
interpreted as described in detail elsewhere (32). Networkmetrics
were compared between CSP and HC groups with T-tests, with
age and gender as covariates. Associations between graph metrics
and FM-UE scores were evaluated with Pearson correlations.
Bonferroni corrections for multiple comparisons were applied to
nodal metrics. Due to the importance of M1, a separate analysis
focused only on the nodal properties of the precentral gyrus was
conducted with a P < 0.05 criterion. Statistical analyses were
performed in SPSS, version 23.0 (IBM Corporation, Armonk,
NY). Two-tailed significance thresholds of P < 0.05 were applied.

TABLE 1 | FA differences in SMATT regions between HC and CSP groups.

SMATT region Median FA [minimum, maximum] P

HC group CSP group Mann–

Whitney

U-test

L.-M1,PMv,S1 0.66 [0.66, 0.76] 0.56 [0.00, 0.76] 5.5 × 10−4

L.-M1,SMA,S1 0.59 [0.42, 0.62] 0.46 [0.00, 0.57] 1.1 × 10−6

L.-M1,PMd,SMA,S1 0.61 [0.17, 0.64] 0.32 [0.00, 0.60] 1.4 × 10−6

L.-M1,PMd,PMv,SMA 0.69 [0.54, 0.74] 0.60 [0.00, 0.68] 1.4 × 10−6

L.-M1,PMd,PMv,SMA,S1 0.65 [0.17, 0.65] 0.39 [0.00, 0.59] 8.0 × 10−7

L.-M1,PMd,SMA,preSMA 0.52 [0.19, 0.52] 0.25 [0.00, 0.48] 5.8 × 10−7

L.-M1,PMd,SMA,preSMA,

S1

0.69 [0.19, 0.69] 0.12 [0.00, 0.65] 5.8 × 10−7

L.-M1,PMd,PMv,SMA,

preSMA

0.60 [0.22, 0.64] 0.47 [0.00, 0.61] 1.4 × 10−5

R.-PMd,PMv 0.42 [0.34, 0.42] 0.35 [0.06, 0.40] 1.5 × 10−6

R.-M1,PMv,S1 0.83 [0.02 0.83] 0.67 [0.00, 0.82] 1.2 × 10−6

CSP, chronic stroke patient; FA, fractional anisotropy; HC, healthy control; L, left; M1,

primary motor cortex; PMd, dorsal premotor cortex; PMv, ventral premotor cortex; R.

right; S1, primary somatosensory cortex.

RESULTS

Sample Characteristics
The CSP and HC groups were statistically similar with respect to
age and gender representation. The spatial distribution of stroke
lesions for all CSPs is depicted in Figure 2. Six patients had
subcortical strokes in the putamen, and two had strokes in the
insular cortex. The rest of the observed lesions were indicative
of neocortical strokes in the frontal, temporal, superior, occipital,
and parietal lobes.
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FIGURE 3 | Boxplots of FA values in SMATT regions with significant differences between HC and CSP group. Note that the HCs have higher and less scattered FA

values compared with the CSPs.

All 12 CSPs had clinically significant right-sided motor
impairment. They had a mean FM-UE score (±SD) of 27.2 ±

7.4; 2 CSPs were classified as having severe impairment and 10
were classified as having moderate impairment (33). The two
patients with severe impairment exhibited spasticity with total
ARAT scores of 6 and 3. They were found to have significant
variability in both time after stroke (65 ± 52 months) and stroke
size (2,422± 2,308 mm3).

ROI Analysis
Mann–Whitney U-test indicated that the CSP group had
smaller FA values than HCs in the following SMATT
regions: L.-M1,PMv,S1; L.-M1,SMA,S1; L.-M1,PMd,SMA,S1;
L.-M1,PMd,SMA,preSMA; L.-M1,PMd,PMv,SMA; L.-
M1,PMd,PMv,SMA,S1; L.-M1,PMd,SMA,preSMA; L.-
M1,PMd,SMA,preSMA,S1; L.-M1,PMd,PMv,SMA,preSMA
(Table 1). Decreased FA values for the CSP group were also
found in two R. hemisphere regions, namely R.-PMd,PMv
and R.-M1,PMv,S1 (Table 1). These results are depicted in
Figure 3; note that FA values appear to be more widely
dispersed for the CSP group than for the HC group. No MD
differences were found between the CSP and HC groups for any
SMATT regions. No associations of time after stroke or stroke
size with FM-UE scores or SMATT-region diffusion metrics
were found.

LASSO Regression
LASSO regression analysis identified a few FM-UE score
predictors among the mean SMATT-region diffusion metrics
(Table 2). Regarding FA, bootstraping revealed that among five
potential LASSO predictors identified, only the L.-M1,SMA
region was significant (adjusted R2 = 0.773) (Table 2). On the

TABLE 2 | SMATT regions whose fractional anisotropy or mean diffusivity were

LASSO regression predictors of Fugl-Meyer upper extremity scale.

Diffusion metric SMATT regions

(with non-zero

LASSO coefficients)

LASSO regression results

Coefficient Standard

error

P-value

Fractional

anisotropy

R.-M1,PMv,S1 −0.227 0.149 0.153

R.-M1,PMv,SMA,S1 −0.059 0.125 0.803

L.-PMv 0.252 0.147 0.121

L.-M1,SMA 0.442 0.144 0.004

L.-SMA,preSMA −0.217 0.128 0.123

Mean diffusivity

(10−3 mm2/s)

L.-M1,PMv −0.411 0.129 0.001

L.-PMv,SMA −0.395 0.152 0.021

R, right; M1, primary motor cortex; PMv, ventral premotor cortex; S1, primary

somatosensory cortex; SMA, supplementary motor area; L., left; PMd, dorsal

premotor cortex.

other hand, the mean L.M1,PMv region MD and Left-PMv,SMA
region MD values emerged as significant LASSO predictors of
FM-UE score (adjusted R2 = 0.844) (Table 2).

Graph Analysis
Graph analysis revealed that multiple efficiency-related graph
metrics differed significantly between the CSP and HC groups
(Table 3). Only one global metric, namely network efficiency,
differed significantly between the two groups, with CSPs showing
a decreased network efficiency relative to HCs. Among the
nodal metrics, nodal efficiency of the L. hippocampus, L.
parahippocampal gyrus, and L. fusiform gyrus as well as nodal
local efficiency of the L. supramarginal gyrus were also found
to be decreased in CSPs relative to HCs (Figure 4, Table 3).
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TABLE 3 | Graph metrics that differ significantly between CSPs and HCs.

Graph metric Mean graph metric value ± SD P

region HC group CSP group T-test

Network efficiency 9.7 ± 2.9 6.1 ± 1.7 0.006

Nodal efficiency

L. hippocampus 10.6 ± 4.1 4.4 ± 2.2 0.001

L. parahippocampal gyrus 11.1 ± 4.0 5.0 ± 2.2 0.001

L. fusiform gyrus 15.9 ± 6.3 6.8 ± 2.9 0.001

Nodal local efficiency

L. supramarginal gyrus 38.0 ± 14.1 12.6 ± 11.0 4.6 × 10−4

Betweenness centrality

L. precentral gyrus 70.3 ± 68.6 273.5 ± 252.5 0.019

CSP, chronic stroke patient; HC, healthy control; L., left; SD, standard deviation.

Betweenness centrality, particularly for the L. precentral gyrus,
was found to be increased in the CSP group compared to that of
the HC group. No correlations were found between any graph
metrics and FM-UE scores.

DISCUSSION

By combining DTI with graph analysis, we showed that stroke
induces topological changes in the structural connectome of
the brain. The post-stroke brain was found to be characterized
by lower efficiency, or degree of integration, relative to HCs.
Notably, CSPs’ motor performance scores did not correlate with
the aforementioned topological changes but did correlate with
DTI-revealed CST abnormalities within specific SMATT-defined
segments, and those abnormalities were shown to be independent
predictors of motor performance.

Lesion heterogeneity among CSPs has been a major
research challenge. In DTI tractography studies specifically,
variability in stroke lesion location and size affects major
WM tracts in a non-consistent way, thereby precluding
detection of a typical outcome for any particular WM tract.
Notwithstanding, as was observed in the present sample,
post-stroke motor impairment is typically characterized
by CST-involved lesions (5), which connect cortical
motor regions to neurons in the spinal cord and thus
constitute the main descending pathway for movement
related information.

In CSPs, CST injury can be the result of direct stroke damage
or Wallerian degeneration, defined as anterograde breakdown
of myelin with disintegration of its axonal microfilaments (34).
The slow evolution of Wallerian degeneration explains why
the effects of it become more prominent in the subacute
and chronic phases of stroke and why degeneration is often
seen in locations distal to the primary stroke lesion (35).
Consistent with Wallerian degeneration, our CSPs showed
FA differences relative to HCs in CST segments distal to
the primary stroke lesions. Noticeably, the significance of
the FA difference increased caudally, with the highest values
being detected in the lower CST within the brain stem

(Table 1). All motor-related tracts converge in the vicinity of
the caudal SMATT regions. Thus, regardless of the primary
lesion site, Wallerian degeneration affecting these convergence
regions is likely to affect motor function. Our finding of
CST degeneration being associated with decreased FA is
consistent with prior stroke studies that focused exclusively on
FA (5, 10, 13).

Our results indicate that the common neuroimaging approach
of studying CST pathology by analyzing only the voxels
that constitute the middle of the CST tract, known as
the skeleton, may be suboptimal, especially in the acute or
subacute phases of stroke (10). Although diffusion metrics
are very sensitive to pathological changes, they tend to be
non-specific and their interpretation is challenging. Here, we
focused on the diffusion metrics of FA and MD because
they reflect microstructural changes. FA is an index of
microstructural WM integrity related to axonal packing density,
axonal diameter, myelinization, neurite density, and orientation
distribution (36). Meanwhile, MD is an inverse measure of
cellularity that is related to water content in the extracellular
space (36).

Relatively few studies have included analyses of multiple
diffusion indices, especially in CSPs (5). In a recent study
focused on the PLIC and the cerebral peduncle ipsilateral
to primary stroke lesions, Mastropietro and colleagues
(37) found that stroke was associated with increased MD
values. Although high signal intensity at the lesion site in
MD maps is a well-known radiological finding in chronic
stroke, hyperintensities are not known to be associated with
distal WM tracts affected by Wallerian degeneration (16).
It has been hypothesized that such negative findings for
MD values, and the apparent lesser sensitivity of MD to
Wallerian degeneration relative to FA, may be consequent
to neuroprotective mechanisms mediated by the infiltration
of astrocytes, which are relatively resilient to glutamate
excitotoxicity during a brain stroke (16, 38, 39). Our regression
analysis showing MD associations with FM-UE scores do
not support this hypothesis. Conversely, it may be that MD
differences are only detectable when a few isolated regions are
assessed, and such differences may not survive the application
of conservative Bonferroni correction to analyses of 60
SMATT regions.

Decreased FA, relative to HCs, was detected in the R.-
PMd,PMv and R.-M1,PMv,S1 regions in our CSP group.
Interestingly, both regions contain tracts originating from
the contralesional PMv, which has never been the focus
of chronic stroke studies. Structural reorganization of the
contralesional CST has been demonstrated previously and
shown to be associated with motor recovery (10, 13, 40).
However, there are conflicting reports regarding the role of
the contralesional CST in chronic stroke (14, 41). Findings
in the contralesional hemisphere could be consequent to
diaschisis, which is the reduction of function, metabolism,
and perfusion due to secondary degeneration of transcallosal
fibers (42).

The typical approach of employing simple correlation analyses
to assess relationships between diffusion metrics and motor
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FIGURE 4 | Summary of mean nodal efficiencies. Mean efficiency values are compared between CSP (“Stroke”, green bars) and HC (“Control”, blue bars) groups for

90 AAL regions. Asterisks indicate significant differences, the statistical values for which are reported in Table 3.

performance scores (5) restricts the focus to only a few
WM regions or tracts, without consideration of their relative
importance to motor skills. Here, an advanced regression model
was applied to select independent predictors ofmotor scale scores
from among 60 probabilistic SMATT regions. We thus found
that FA of the L.-M1,SMA region was the only independent
predictor of FM-UE score. The largest portion of the M1,SMA
region belongs to the PLIC (71%) and a smaller portion
(14%) belongs to the cerebral peduncle. The PLIC is the most
popular region of interest for DTI analysis because it contains
the majority of CST fibers. However, the PLIC is larger and
relatively non-specific compared to a SMATT region. The L.-
M1,SMA includes only 0.9% of the PLIC. SMATT regions
with larger PLIC components, such as the L.-M1,S1 (16%)
and L.-M1 (6%), did not survive the regression analysis. Thus,
the common assertion that the PLIC is important for clinical
outcomes after stroke owing mainly to its direct connection
to M1 needs revisiting. Among the secondary motor areas
connected to the PLIC, the SMA—which is already known to be
important for self-initiated movements, planning, motor action

sequencing, response inhibition, and bimanual movements—
might be highly important to motor performance among CSPs
as well.

Our LASSO regression analysis revealed that the L.-M1,PMv
and L.-PMv,SMA regions are independent predictors of FM-
UE score. Both regions belong mainly to the superior corona
radiata and are in close proximity to most of the stroke
lesions in our sample. The negative Beta coefficients obtained
for our LASSO model (Table 2) indicate that poorer motor
outcomes were associated with greater MD values, which
reflect substantial fiber destruction. These findings suggest
that MD is more sensitive to pronounced structural damage
proximal to the lesion than to more subtle distal degeneration.
In agreement with the F? results, our MD data suggest
that the integrity of CST connections to the SMA and
PMv may be important for the preservation of motor skills
after stroke.

Our graph analysis showed that brain network and local
efficiency were reduced in CSPs relative to HCs. Network
efficiency quantifies how well-information is exchanged

Frontiers in Neurology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 813763

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Astrakas et al. DTI in Chronic Stroke

between all nodes of a network and reflects a brain’s capacity
to integrate communication between distant regions. Local
efficiency quantifies the network’s resistance to failure when
a node is removed. Findings of reduced network efficiency
similar to the present result have been reported in prior
electroencephalography and functional MRI studies (43–
45), suggesting that stroke can result in reduced functional
segregation of the brain. In a study employing DTI and complex
network analysis, Crofts et al. (24) calculated an efficiency-like
measure called communicability and found that it was reduced
in areas surrounding lesions.

Similarly, we observed reduced nodal efficiency in areas
near (supramarginal gyrus) as well as far (hippocampus,
parahippocampal, and fusiform gyrus) from most of the lesions
and the motor circuitry. These results indicate that approaches
focusing on a particular tract, like the CST, might lead to
underestimation of the extent of alterations in brain network
topology. In a recent DTI study applying graph theory, Cheng
and colleagues detected reduced brain network efficiency in CSPs
as well as greater global clustering and modularity, consistent
with increased segregation (27). Contrary to the other few
DTI studies in the literature (23, 27), we did not detect
changes in network metrics of the contralesional hemisphere.
This discrepancy could be related to differences in sample
populations, differences in the atlases used for node definition, or,
more likely, differences in the tractography approach employed
(deterministic vs. probabilistic).

In agreement with our findings, both previous DTI stroke
studies (23, 27) did not report associations between brain
networks metrics and motor scales. Conversely, in a study in
which functional connectivity was analyzed and graph theory
was applied, increased centralities were observed for several
areas, including the ipsilesional M1, SMA, bilateral thalamus,
and anterior inferior cerebellum, and reported to be predictive
of post-stroke recovery (43). Only when our analysis was
restricted to the L. precentral gyrus, avoiding corrections for
multiple comparisons, was a similar tendency toward functional
segregation revealed as an increase in betweenness centrality.
Considering that betweenness centrality is a measure of the
amount of influence that a node has over information flow, this
result reflects an increase in the importance of the ipsilesional M1
in the brain connectome after a stroke.

It is likely that the lack of a significant association between
time after stroke and FM-UE score reflects the limited recovery
experienced by chronic-stroke subjects after the 6-month
window of rapid functional recovery immediately after a stroke
has occurred, during which pronounced plasticity changes are
seen (46). Additionally, the small size and heterogeneity of
the sample could explain, at least in part, the non-association
between stroke lesion size and FM-UE. Although stroke lesion
size has been widely used to assess stroke severity and predict
patient outcomes, it is only a moderately powered predictor of
motor impairment (47) and quality of life (48). Post-stroke lesion
location is a stronger predictor of functional recovery than lesion

volume (49–55). As expected, disruption of motor function-
involved structures, such as the corona radiata, internal capsule,
and insula, have been related to worse functional outcome (49–
55). Our atlas-based analysis and our results are consistent
with the precept that infarct location is fundamentally linked to
neurological deficit profile.

Our subjects were relatively young considering that most
strokes occur in people who are 65 years old or older. Age is
a factor that limits functional recovery in patients with stroke;
better outcomes in younger patients than in older patients (56,
57) likely reflect the greater functional plasticity potential of
their brains (58). Although there are no published studies on
the age-dependence of brain diffusion metrics in stroke patients
to the best of our knowledge, similar studies in healthy subjects
have revealed region- or tract-specific increases in anisotropy
with decreases in diffusivity (59, 60). Notably, aging-related
alterations have been detected in the brain structural connectome
and have been linked to cognitive decline (61–63). Given these
aforementioned findings, it is not safe to extrapolate our findings
to more aged stroke patients.

Our study has several limitations worth noting. Firstly, the
relatively small sample size might have limited our ability to
detect associations statistically, especially in analyses examining
the relationship between the brain connectome and motor
outcomes. Although our sample size of 12 is a popular
choice among highly cited neuroimaging studies (64), it is not
theoretically supported because power analysis in the field of
brain connectome research has yet to be explored rigorously.
Secondly, heterogeneity of lesion size and location divides our
subjects into multiple undersized groups, introduce variability in
our measurements and compromise the detection power of our
statistical analysis. Thirdly, graph analysis results depend heavily
on multiple parameters including atlas choice, sparsity threshold,
and graph type (binary vs. weighted). Although we used common
practices, they may not be optimal for our study population.
Fourthly, our results, obtained in a cohort that was younger than
most stroke patients, might not be generalized to the general
stroke population. Our results should be considered preliminary
and our approach exploratory with the aim of demonstrating the
potential for using the SMATT atlas and graph-based analysis in
studies of the brain connectome in stroke patients. Larger and
age-targeted studies, studies focusing on specific brain regions
(e.g., putaminal stroke), and studies using alternative atlases
or tract detection methods (i.e., probabilistic tractography) are
needed to validate our conclusions.

In conclusion, a WM template specific for the sensorimotor
cortex was shown to be useful for refining CST degeneration and
its relationship with the motor performance of CSPs. Although
stroke induces topological changes in the structural connectome
of the brain, including changes that reduce efficiency, these
changes may be not associated with motor performance.
However, DTI analysis revealed that the integrity of tracts
connected toM1, as well as those connected to the SMA and PMv,
were independent predictors of motor performance.
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