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Abstract
The COMBINE method was designed to study congeneric series of compounds including structural information of ligand–
protein complexes. Although very successful, the method has not received the same level of attention than other alternatives 
to study Quantitative Structure Active Relationships (QSAR) mainly because lack of ways to measure the uncertainty of the 
predictions and the need for large datasets. Active learning, a semi-supervised learning approach that makes use of uncer-
tainty to enhance models’ performance while reducing the size of the training sets, has been used in this work to address 
both problems. We propose two estimators of uncertainty: the pool of regressors and the distance to the training set. The 
performance of the methods has been evaluated by testing the resulting active learning workflows in 3 diverse datasets: 
HIV-1 protease inhibitors, Taxol-derivatives and BRD4 inhibitors. The proposed strategies were successful in 80% of the 
cases for the taxol-derivatives and BRD4 inhibitors, while outperformed random selection in the case of the HIV-1 protease 
inhibitors time-split. Our results suggest that AL-COMBINE might be an effective way of producing consistently superior 
QSAR models with a limited number of samples.
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Abbreviations
AL  Active learning
PLS  Partial least squares
SVMR  Support vector machine regression
QSAR  Quantitative structure–activity 

relationships
COMBINE  COMparative binding energy analysis
cMMISMSA  Classic molecular mechanism implicit 

solvent model surface access
HIV  Human immunodeficiency virus
BRD4-BD1  Bromodomain-containing protein 4 N-ter-

minal bromodomain

Introduction

The COMparative BINding Energy (COMBINE) method 
was introduced for the first time in 1995 by Ortiz et al. [1] to 
enable the study of congeneric series of compounds includ-
ing the structural information of ligand–protein complexes. 
By extracting the decomposed protein–ligand interaction 
energies computed from structures of the complexes, the 
method allows to derive Quantitative Structure Active Rela-
tionships (QSAR) models using a regression algorithm (Par-
tial Least Squares or PLS for instance). Since its introduc-
tion, several works have been published, for example [2–5], 
supporting the ability of the method to help understanding 
how compounds interact with their targets, explaining the 
different contributions to their potency, and to provide use-
ful guidelines to design new molecules. Some of the lat-
est examples include the study of type II dehydroquinase 
inhibitors by Peon et al. [6], the design of ligands against the 
severe acute respiratory syndrome (SARS) chymotrypsin-
like protease [7] or the discovery of uncompetitive inhibitors 
of the glutamate racemase MurI from Helicobacter pylori 
[8]. However, although attempts have been made to keep 
the tool up with the times by incorporating new regression 
types [9] and implementing a comprehensive graphical user 
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interface [10], the method has not received the same level 
of attention compared to other alternatives to study QSAR 
that provide better predictive ability and improved measure-
ments of the uncertainty of the predictions [11–14]. These 
methods have, nonetheless, some challenges of their own. 
They may allow computational chemists to assess, up to a 
certain point, the reliability of their predictions, but do not 
offer any guidance about how to improve the performance 
of the models in the future if it is not satisfactory, which is 
often the case. On top of that, many times these algorithms 
work as some sort of black boxes [13] so that the interpreta-
tion of the results in a target-ligand context can be difficult. 
COMBINE analysis, on the other hand, provides a natural 
interpretation for potency contributions and allows exploit-
ing such information to design new molecules all within 
the comfortable environment, for modellers and medicinal 
chemists, of the binding site.

Active learning (AL) is a semi-supervised learning 
approach that can be used to address some of the problems of 
the COMBINE method. AL strategies, by using an estima-
tion of uncertainty for the predictions and an iterative learn-
ing scheme, enable building robust models with a fraction of 
the data that would be required with traditional approaches 
for the same accuracy. Several AL variants exist [15], each 
one with different strengths and weaknesses, but they all 
share the need to query the source of information, that is, to 
evaluate certain compounds for the sake of improving future 
model performance. This conceptual shift, meaning that the 
model not only casts predictions but it is also allowed to 
request more information as needed, is behind the consist-
ently better performance shown by these methods [16, 17].

In this work, we propose to merge both technologies by 
introducing an uncertainty estimation component in COM-
BINE analysis and the possibility of using alternative mod-
elling methods to partial least squares (PLS), such as sup-
port vector machine regression. For its evaluation, we have 
employed several diverse datasets, including a set of more 
than 90 BRD4 N-terminal domain inhibitors, a historical set 
containing inhibitors of the protease of the human immuno-
deficiency virus (HIV-PR) and a group of recently published 
Taxol derivatives [18–20].

Computational Methods

Data sets

• HIV-1 protease data sets (HIV-PR). The set includes a 
historical series of 48 protein–ligand complexes of HIV-1 
protease inhibitors from Merck [21] that has been also 
employed in the past for testing COMBINE methodolo-
gies [5] (see Supporting Data Set 1).

• BRD4 N-terminal bromodomain (BD1) data set (BRD4-
BD1). A series of 96 pyridinones [22] with BD1 inhibi-
tory activity between 1.7 µM and 10 nM, was extracted 
from the Boehringer Ingelheim patent US 2015 0246919-
A1 [22] (see Supporting Data Set 2).

• Taxanes data set. This set contains 62 Taxol analogues 
known to bind to the taxanes binding site in the micro-
tubule with stabilizing effects [18–20] (see Supporting 
Data Set 3).

Protein–Ligand binding energy model

We have employed a version of the classic Molecular 
mechanics implicit solvent model surface access method 
[23], termed cMMISMSA, which includes corrections 
for hydrogen bonds [24] and Coulomb terms [25] and 
has been applied successfully in previous works [26, 27]. 
cMMISMSA (http://farma mol.uah.es/soft/cMMIS MSA) 
allows calculating the binding energy of several ligands-
protein complexes and decomposing the different contribu-
tions of each protein residue in the three parts of the scoring 
function: van der Waals, Coulomb and desolvation terms. 
Regarding the electrostatic calculations, we employed a 
dielectric constant value of four for HIV-PR, as described 
in Perez et al. [5], and a distance-dependent dielectric for the 
other datasets [28] (BRD4-BD1, Taxanes).

3D modelling of complexes

The sets of the HIV-PR inhibitors and Taxol derivatives were 
kindly provided by the authors of previous publications [5, 
20]. In the case of the BRD4-BD1 inhibitors, the compounds 
were extracted from the patent [22] and pre-processed with 
the LigPrep module in the Schrodinger suite 2017v4. The 
crystal structure of the human BRD4-BD1 (PDB code 
2OSS), was used for docking with Glide and the default 
parameters including the SP scoring function. Compounds 
then were parametrized using acpype.py [29], antecham-
ber [30] and GAFF [31] and the resulting complexes were 
energy minimized (ncyc = 5000, maxcyc = 50,000, dx0 = 0.1, 
drms = 0.00001) using the GBSA implicit solvation model 
(igb = 1). The resulting AMBER topology (AMBER14 
force field) and coordinates files were used as input for 
cMMISMSA ensuring force field compability between the 
minimization procedure and the COMBINE calculations.

Validation and performance metrics

Two metrics were chosen to validate and measure the evolu-
tion in performance of the models: the coefficient of deter-
mination  (r2) and the mean squared error (MSE) between the 
predicted and the experimental  pIC50 values in the test set:

http://farmamol.uah.es/soft/cMMISMSA
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where n is the number of samples, Ŷ
i
 is the predicted value 

for sample i, Y
i
 is the experimental  pIC50 value and 

−

Yi
 is the 

average of all experimental values.
However, in the case of the validation of the HIV-PR 

COMBINE model, and in agreement with the original 
publications [1, 5], we made use of the standard deviation 
of the error in the prediction (SDEP), which is defined as 
the square root of the mean squared error and  q2, which is 
equivalent to  r2 but in the context of cross-validation. Cross-
validation was performed according to the original published 
protocol [5]: for 20 times, five compounds were extracted 
randomly from the original pool as test set and the correla-
tion  (q2) and SDEP were calculated and averaged to report 
a final value. For the “external set” validation, the first 33 
compounds in the pool were used as training set, while the 
remaining 15 compounds were added to the test or external 
set [5].

COMBINE models

To reproduce the basic COMBINE scheme, the output 
from cMMISMSA was processed by a custom python note-
book. The basic philosophy of this pioneering chemometric 
method is preserved by dividing the process in two parts: 
first, the different energy terms for each complex are cal-
culated, and then a specific method, in this case support 
vector machine regression [16] (SVR), is applied to build 
the COMBINE model using the sklearn package [32]. In 
the case of the HIV-PR model and after an initial optimiza-
tion procedure based on a standard 80%/20% training/test 
split cross-validation protocol using the  r2 and MSE values 
obtained for different combinations of parameters in the 
SVR (penalty C, kernel type and its parameters), we decided 
to employ a polynomial kernel of degree equal to 3 and a C 
value of 100, while for BRD4-BD1 inhibitors and the taxa-
nes, a SVR with a linear kernel and penalty of one was used 
after following an analogous procedure.

Active learning strategies

All strategies were implemented in a custom python note-
book, which is included in Supplementary Information. 
The general workflow is shown in Fig. 1a. It starts by 
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i
)
2

MSE =
1

n

n
∑

i=1

(Y
i
− Ŷ
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defining a test set, i.e. the final list of compounds that we 
would like to predict with maximum accuracy, and the 
learning pool, that is, a set with the different compounds 
available for selection to explore the series SAR, but with 
no information (label), and that could help to improve 
the performance of the current model if “synthesized and 
tested in a biological assay” (already done in our sets). 
Following, an initial training set is built with minimal 
information by randomly drawing samples from the learn-
ing pool (around 20%). Then, a strategy for selecting the 
next batch of compounds is chosen and the protocol con-
tinues till it runs out of samples in the learning pool. Three 
different strategies have been implemented in this work:

 i. Pool of regressors. This strategy (Fig. 1b) consists in 
splitting at each iteration the training data in n sub-
sets to build submodels that, then, are used to predict 
the outcome for every single sample in the remain-
ing learning set. In this manner, there are n available 
predictions (as many as regressors trained with the 
subsets) per unlabelled sample in the learning pool, 
which are averaged and their variance used to repre-
sent the uncertainty of the predictions. In our case, a 
leave-one-out procedure was followed and the stand-
ard deviation of the predictions was used to rank the 
complexes for uncertainty selection.

 ii. Distance to the training set. Another approach 
(Fig. 1c) to measure the uncertainty of one particu-
lar sample involves calculating how distant is to all 
other samples in the training set. If the new sample 
is far from the others, the prediction is assumed to be 
less reliable since the sample probably lies outside 
the domain of applicability of the initial model. We 
have employed the Local Outlier Factor (LOF) method 
[33], which calculates the differences in the local den-
sity of a given point with up to 5 neighbours of the 
training set.

 iii. Random selection. This approach was meant to be a 
baseline for the AL strategies. At each iteration, the 
list of possible samples in the learning pool is shuffled 
randomly and the first 5 appended to the training set.

All protocols were run 25 times to collect statistics, 
adding 5 compounds to the training set at each iteration 
till the learning set is exhausted. In the case of the HIV-
PR set, the training set in the Merck publication [21] was 
used as the learning pool, while the “prospective set”, also 
described in the paper, was selected as the test set (33 and 
15 compounds respectively). The learning pool, for each 
experiment, was subsequently divided randomly in an ini-
tial training set of 20% of the data (7 complexes) and the 
rest of the learning pool with 80% of the data (28 ligands) 
available to improve the model at each iteration. For the 



290 Journal of Computer-Aided Molecular Design (2019) 33:287–294

1 3

BRD4-BD1 ligands and the taxanes, as the test set is not 
clearly defined, the full sets were split five times randomly 
in learning pool (80%)/test (20%) sets to assess the perfor-
mance of the workflows (see Supplementary Information 
for full results). The learning set, once again, was split 
randomly in an initial training set (20%) and the rest of the 
learning set (80%) available for the following iterations.

Results and discussion

Validation of a reconstructed COMBINE model: 
performance of the HIV‑PR inhibitors

Published COMBINE models available in the literature have 
not been validated using workflows which could be con-
sidered in agreement with modern “good practices” in the 
QSAR field. This may be related to the fact that COMBINE 

analysis predates most of these approaches. Therefore, to 
validate our reconstructed protocol, we employed equiva-
lent metrics in order to be able to compare to the original 
publications [1, 5]:  q2 and SDEP (standard deviation of the 
error in the predictions) for cross-validation and SDEP for 

Fig. 1  Diagram of the differ-
ent Active Learning strate-
gies employed in this work. a 
General workflow; b Pool of 
regressors; c Distance to the 
training set

Table 1  Results of the full COMBINE HIV-PR model validation

a Averages using a 80%/20% training/test sets split and 20 times 
repeats. HIV-PR values were obtained as described in the text

HIV-PR from Perez 
et al. COMBINE 
AMBER model [5]

HIV-PR 
inhibi-
tors

Taxanesa BRD4-
BD1 
 inhibitorsa

r2 0.89 0.85 0.94 0.81
q2 0.70 0.77 0.60 0.56
SDEPcv 0.72 0.63 0.91 0.36
SDEPext 0.83 0.82 – –
r2

ext – 0.78 – –
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“external set” validation. Table 1 shows the results of our 
modelling efforts using this set and the new COMBINE 
workflow. Cross-validation metrics display a small improve-
ment over the values reported by Perez et al. [5], however, 
the SDEP value in the external set is almost identical, con-
firming that our model presents an equivalent performance 
to the published one.

Active learning in HIV‑PR

The reliability of the predictions from COMBINE models 
is usually difficult to assess. Several authors [28, 34, 35] 

have found inconsistencies in their performance depending 
on the parameters employed for energy calculations (e.g. 
dielectric constant), the binding modes of the compounds 
(e.g. lack of robust crystallographic evidence), the regres-
sion algorithm (e.g. PLS vs. SVM) and pre-treatment of 
the variables (e.g. scaling or feature selection). Motivated 
by this problem, we decided to introduce an approach to 
estimate the uncertainty of the predictions and, in this 
manner, implement a workflow that can guide practitioners 
to improve unsatisfactory or unreliable models. As a proof 
of concept, we selected the historical HIV-PR dataset, a set 
that contains 48 protease inhibitors with potencies ranging 

Fig. 2  Performance of the active learning strategies in the HIV-1 
protease inhibitors set. a Mean squared error at each iteration for 
the pool of regressors strategy vs. random selection and the full 
model. b Coefficient of determination at each iteration for the pool 
of regressors strategy vs. random selection and the full model. c 

Mean squeared error at each iteration for the distance to the training 
set strategy vs. random selection and the full model. d Coefficient 
of determination at each iteration for the distance to the training set 
strategy vs. random selection and the full model
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from 6 µM to 0.1 nM, and two simple uncertainty metrics: 
the distance to the training set and a pool of regressors 
(see methods section). Our simulation protocol, which 
consists of splitting the total learning pool in small batches 
of five compounds to be added iteratively to the training 
set, allows us to evaluate the evolution in the performance 
of the models using different strategies. As can be seen in 
Fig. 2, the active learning strategies based on both uncer-
tainty estimators tested in this work outperform random 
selection of compounds and can produce models with less 
prediction error than their random counterparts with the 
same number of compounds in the training set. Accord-
ing to these results, the pool of regressors strategy seems 
also to obtain the best models, with a very promising first 
iteration compared to the other two models. To get some 
insight into the actual evolution of the models, we saved 
the individual results for the first run of the protocol for 
pool of regressors and random selection. Figure 3 shows 
the correlation of the experimental  pIC50 values of the 
molecules in the test set vs. the predicted ones at each 
iteration. The initial model (iteration 0) presents an almost 
random output which agrees with averaged  r2 and MSE 
values around 0 and 1.5 respectively (Fig. 2). Interest-
ingly, after the first batch of compounds is added to the 
training set from the learning pool, the resulting model in 
the active learning strategy (pool of regressors) can pro-
duce much better correlated predictions (< r2 > ~ 0.6 and 
< MSE > ~ 1.1, Fig. 2) while random selection produced 

a model with virtually no improvement compared to the 
initial training set. From the second iteration onwards, the 
gains produced by AL seem to be reduced progressively 
until it approaches the performance of the full model. On 
the contrary, with a random selection of compounds, and 
in this particular simulation, the workflow needed to reach 
iteration 3, that is, 15 extra compounds to have a similar 
performance to the model in the first iteration of AL with 
just five compounds more.

Overall performance of active learning

Propelled by these encouraging results we decided to expand 
our simulations to two other sets with very different proper-
ties: taxanes and BRD4-BD1. The taxanes set contains a 
series of complex natural product derivatives (macrocycles) 
but that has led to very successful COMBINE models in the 
past [19, 20]. The BRD4-BD1 set is made of a congeneric 
series of pyridinone derivatives designed to interact with 
the complex combination of flexible residues and the “dry” 
water molecules network in the binding site of the bromo-
domain that recognizes an acetyl-lysine residue [36]. These 
two binding sites have very different properties in terms of 
electrostatics and shape and were chosen to obtain a gen-
eral overview of the performance of AL-COMBINE models 
beyond the HIV-PR set.

We first approached the taxanes set. An identical protocol 
to HIV-PR was followed with the exception of the number 

Fig. 3  Evolution of the models for each iteration in the HIV-PR simu-
lation. a Pool of regressors. b Random selection. Green lines repre-
sent y = x; red lines mark ± 0.5 units from the green line (y = x + 0.5 

and y = x-0.5); The resulting regression between the predicted values 
for the samples (orange dots) and the experimental values is plotted 
in blue
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of iterations (8 in this case), the use of distance-dependent 
dielectric constant in the cMMISMSA model and the linear 
kernel and penalty value of 1 in the SVR (see methods). For 
splits 1 and 2 (Supp. Figs. 1, 3) both AL protocols outper-
form clearly random selection, while for splits 4 and 5, the 
advantage, although present, it is not that large. In the case 
of split 3, the performance is roughly equivalent to random 
selection. It is also worth noting that both AL workflows 
(pool of regressors and distance to the training set) tend 
to show the same trends in performance, being successful 
in the same splits, with a slight advantage for the pool of 
regressors.

Our aggregated results for this set (Supp. Fig. 1,3,5,7 
and 9) show that the performance of the workflows depends 
more on the actual test set employed for the comparison 
(data split) than on the particular AL strategy employed. 
This can also be observed looking at the simulation results 
individually (Supp. Fig. 2, 4, 6, 8 and 10), where some more 
challenging test sets need significantly more data than others 
to produce equivalent results (e.g. split 2 vs. 3). However, it 
is also clear that AL tends to produce less variability in the 
results (smaller error bars) at each iteration when compared 
to random selection. This finding, together with the fact that 
AL outperforms 80% of the time random selection while 
it does not underperform, seems to support the use of AL 
strategies in the taxanes set.

Finally, we decided to employ the largest set, at least to 
our knowledge, ever used to build a COMBINE model, with 
96 BRD4-BD1 inhibitors. Identical considerations to the 
taxanes set were taken into account: due to the size of the 
set, the number of iterations was set to 12, a linear kernel 
with a penalty of 1.0 was used for the SVR and the distance-
dependent dielectric (default method in COMBINE) was 
employed.

Similarly to taxanes, we have found that the results tend 
to vary depending on the test set (split). AL performs best in 
split 4 and 5 (Supp. Figures 17 and 19), while in splits 1 and 
3 (Supp. Figures 11 and 15) only one of the AL strategies 
seem to work (distance to the training set and pool of regres-
sors respectively). In split 3 (Supp. Figure 15), AL performs 
equally to random selection. These numbers are, again, in 
agreement with the proportion of successful cases observed 
for the previous set. However, differences in the performance 
of AL are here less pronounced, probably due to the larger 
number of compounds in the set and the relatively lower 
complexity of the molecules. Another interesting observa-
tion is that the impact of AL seems to be more obvious in 
the first few iteration of the simulations (also observed in 
HIV-PR and taxanes) but, it also less evident (or negligible) 
if the initial training set, by chance, contains enough infor-
mation to produce relatively reliable predictions of the test 
set (e.g. split 2 has  r2 values consistently above 0.1 for all 
simulations, see Supp. Figures 13 and 14).

One might wonder how the observed dependency on the 
“split” can be interpreted in the context of a typical drug 
discovery program. Ideally, the model should quickly learn 
the right features to give an optimal performance for the 
molecules designed in the late stages of the program, that 
is, potent compounds, but with any prior knowledge of how 
these molecules look like since the initial training set will 
contain low to medium potencies. In the case of HIV-PR, 
when a time-split of the data was used, the method reported 
significant improvements over random sampling, which 
would enable us to recommend the use of the AL-COM-
BINE protocol with small sets. However, when a time-split 
was not available (taxanes and bromodomain inhibitors), 
we obtained more erratic outcomes, oscillating from great 
improvements in most sets, to minor changes and, finally, no 
difference to random selection in a few cases. However, in 
no case we have observed worse performance than a random 
selection. In the abscent of any information about the con-
nection between the present SAR in the training set, with the 
“future” SAR, that is, the interesting compounds to predict, 
we can conclude that the method does no harm (primum 
non nocere) and gives a decent probability of enhacing the 
models (70–80% in our test) with a very small computa-
tional cost. The decission of selecting the molecules from 
an AL-COMBINE approach or directly from the predicted 
potencies, could be guided by the uncertainty from the dif-
ferent metrics that we propose in this work. If we have been 
“gifted” with a very informative training set at the begin-
ning of our program, we might decide not to spend precious 
compound synthesis resources and biological assay slots 
improving the performance of a model that is already fit 
for purpose.

Conclusions

In this work, we have assessed the possibility of building 
self-improved computational models by means of an auto-
mated ligand–protein modelling approach and an active 
learning strategy. Using three very diverse sets of ligands 
(protease inhibitors, bromodomain ligands and natural prod-
ucts derivatives) we have shown that the approach can be 
used to accelerate the process of obtaining reliable models 
with typically less data than random selection.
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