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Abstract

Two T helper (Th) cell subsets, namely Th1 and Th2 cells, play an important role in inflammatory diseases. The two subsets
are thought to counter-regulate each other, and alterations in their balance result in different diseases. This paradigm has
been challenged by recent clinical and experimental data. Because of the large number of genes involved in regulating Th1
and Th2 cells, assessment of this paradigm by modeling or experiments is difficult. Novel algorithms based on formal
methods now permit the analysis of large gene regulatory networks. By combining these algorithms with in silico knockouts
and gene expression microarray data from human T cells, we examined if the results were compatible with a counter-
regulatory role of Th1 and Th2 cells. We constructed a directed network model of genes regulating Th1 and Th2 cells
through text mining and manual curation. We identified four attractors in the network, three of which included genes that
corresponded to Th0, Th1 and Th2 cells. The fourth attractor contained a mixture of Th1 and Th2 genes. We found that
neither in silico knockouts of the Th1 and Th2 attractor genes nor gene expression microarray data from patients with
immunological disorders and healthy subjects supported a counter-regulatory role of Th1 and Th2 cells. By combining
network modeling with transcriptomic data analysis and in silico knockouts, we have devised a practical way to help unravel
complex regulatory network topology and to increase our understanding of how network actions may differ in health and
disease.
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Introduction

The immune system is composed of diverse cell populations, for

example antigen-presenting cells, T and B lymphocytes as well as

effector cells like eosinophils, mast cells and neutrophils. One type

of T lymphocytes, called T helper (Th), has an important role in

regulating this cellular network. Th cells can be further divided

into Th1 and Th2 cells. Th1 and Th2 cells are thought to be

mutually inhibitory and also to be involved in different diseases;

Th1 cells are associated with autoimmune diseases, while Th2 cells

are involved in allergies [1].

Although considered a simplification, the Th1/Th2 dichotomy is

supported by a large body of experimental evidence [2]. However,

studies of human diseases are more ambiguous in terms of the

counter-regulatory roles of Th1 and Th2 cells. We and others have

found that allergy, which is mainly thought to be a Th2 disease, can

also be associated with Th1 responses [3,4]. One explanation could

be that the Th1/Th2 paradigm is, to a large extent, based on studies

of gene interactions in mice which may differ from those in humans,

[5]. Another important aspect is that Th1 and Th2 cells interact in

complex cellular networks that include several other T-cell subsets

and cell types [5]. Ultimately, the balance between Th1 and Th2

cells is complicated to study experimentally, because it is the net

result of altered interactions between multiple genes.

Gene expression microarray studies evidence that hundreds of

genes are involved in the Th1/Th2 cell differentiation [6]. We and

others have found that complex gene expression changes in diseases

can be addressed by arranging the genes in networks [7–9]. These

networks give an overview of the genes that are involved, as well as

their interactions, but not the dynamics of network changes that

result in phenotypic alterations like, for example, Th1 and Th2 cell

differentiation. Recent studies of the dynamics of Th1 and Th2 cell

differentiation using in silico modeling have to some extent supported

a counter-regulatory role of Th1 and Th2 cells [10,11].

The gene networks used have been based on a relatively small,

though relevant, number of genes and interactions. In the present

work we applied an algorithm previously developed to analyze

large gene regulatory networks to perform in silico studies based on

a more comprehensive gene network model, which included a

larger number of genes [12,13].

PLoS Computational Biology | www.ploscompbiol.org 1 December 2010 | Volume 6 | Issue 12 | e1001032



The network was constructed by combining text mining from

Medline (www.pubmed.com) based on seed genes and protein

interaction data, with manual annotation. The aim of our study was

to examine if the so-constructed network model was compatible

with a counter-regulatory role of Th1 and Th2 cells from healthy

humans as well as patients with different inflammatory diseases.

To achieve this we studied the effects of in silico knockouts on the

model dynamics [14], together with analyses of gene expression

microarray studies of T-cells from healthy controls and patients

with different inflammatory diseases.

Results

Definition of a network model of Th1 and Th2
differentiation

We defined a gene regulatory network (GRN) model of the

genes involved in Th1 and Th2 cell differentiation based on

manual annotation and automated data mining of Medline

abstracts. To ease inspection, this gene regulatory network was

organized into four layers according to the sub-cellular localization

of the genes (see Figure 1). Another reason for this exercise was to

enable the network for usage in agent-based models, as in [15].

The extracellular layer included cytokines (IL-7, TNFSF4, IFN-

c, IL-12 and IL-18), the antigens, as well as two membrane-

receptors expressed on antigen-presenting cells, namely CD80 and

CD86. The membrane layer consisted of the T-cell receptor and

cytokine receptors. The intracellular layer included signaling

molecules as well as transcription factors. Finally, an extra-cellular

layer consisted of autocrine cytokines (IL-4 and IFN-c) and

paracrine cytokines (IL-5 and IL-13).

Characterization of the attractors of the network
Gene regulatory networks (GRNs) can be represented as graphs

where nodes represent genes that are either active or inactive. The

state of the network is given by the combination of the activation

state of all genes. Starting from a certain state, the upcoming

configuration is computed by applying synchronously an updating

rule. In general, since the number of possible states is finite (i.e., qN

if N is the number of nodes, and q is the number of possible values

of a node), and the dynamics is deterministic, then from a given

initial state, the network can only evolve towards a limit cycle (i.e.,

attractor) of length one or more (up to qN{1).

In what follows, we go after Kauffman [15] by identifying the

attractors of the network dynamics as differentiation phases of the

cell, and the transformations between attractors as pathways of cell

differentiation.

Using the algorithm in [12] (briefly discussed in the Materials and

Methods section), we found that the GRN dynamics was character-

ized by four attractors, three of which corresponded to known Th

subsets, namely Th0, Th1 and Th2. The remaining attractor, which

we named ThX, contained both Th1 and Th2 genes (see Table 1).

The Th1 and Th2 attractors contained either Th1 or Th2

genes, an observation that was compatible with a counter-

regulatory role of Th1 and Th2 cells. For example, the Th1

attractor contained the transcription factor TBET, which has been

experimentally shown to induce the Th1 cytokine IFN-c and

inhibit the Th2 transcription factor GATA3, which, in turn,

induces the Th2 cytokine IL-4. Conversely, GATA3 inhibits

TBET and IFN-c. Thus, the two transcription factors TBET and

GATA3 play a key role in the counter-regulatory interaction

between Th1 and Th2 [5]. However, the mixture of Th1 and Th2

genes in the ThX attractor did not agree with a counter-regulatory

role between Th1 and Th2 cells. In particular, the state s1

contained both IFN-c and IL-4, while the state s3 contained both

TBET and GATA3 (Table 1). This suggested that the dynamics of

the network had an important role in regulating the balance

between Th1 and Th2 cells. This may correspond, in vivo, to the

situation in which antigenic stimulation may be temporary or

persisting, and result in different inflammatory responses [16].

In silico knockouts to model the dynamics of the network
We performed single gene in silico knockout experiments for all

genes in the network, in order to monitor the behaviour of the

attractors. In so doing, we distinguished two different settings,

corresponding to a different activation modality of the input nodes

(i.e., those contained in the yellow box of Figure 1): temporary-

stimulation and persisting-stimulation. In temporary stimulation we

examined the effects of an impulse-like stimulation of the input

genes, which means that those genes were considered active for a

short and transient period of time, and were set off thereafter. In

persisting stimulation instead, inputs were set on or off throughout

the observation period. Persisting stimulation is equivalent to

introducing self-loops on the input nodes of the GRN.

We computed the number of attractors for each single-gene

knockout and for both activation modalities. We found that the

median number of attractors per knocked out gene was 4 (range 3–

9) for temporary stimulation whereas it was 604 (range 322–1664)

for persisting stimulation, (Table 2).

Therefore, as a first observation we noted that, similarly to in vivo

stimulation, the network dynamics differed greatly between

temporary and persisting stimulation. Next, we proceeded to

examine the counter regulatory dynamics of the Th1 and Th2 cells.

This was done by testing the effects of in silico knockouts of intra-

cellular genes in the Th0, Th1, Th2 and ThX attractors. We started

by knocking out TBET and GATA3. If TBET and GATA3 were

counter-regulatory, knocking out TBET would be expected to result

in attractors mainly containing IL-4, but not IFN-c, while the

opposite would be expected after knocking out GATA3.

Firstly, we applied the temporary stimulation activation

modality (Figure 2). Knocking out TBET resulted in attractors

that contained both IL-4 and IFN-c, either IFN-c or IL-4, as well

as attractors without IL-4 and IFN-c. Knocking out IL-4 resulted

in attractors that contained either IFN-c or IL-4, as well as

attractors without IL-4 and IFN-c.

Author Summary

Different T helper (Th) cell subsets have an important role
in regulating the immune response in inflammatory
diseases. Th1 and Th2 cells are thought to counter-
regulate each other, and alterations in their balance result
in different diseases.This paradigm has been challenged by
recent clinical and experimental data. Because of the large
number of genes involved in regulating Th1 and Th2 cells,
assessment of this paradigm by experiments or modelling
is difficult. In this study, we combined novel algorithms for
network analysis, in silico knockouts, and gene expression
microarrays to examine if Th1 and Th2 cells had counter-
regulatory roles. We constructed a directed network model
of genes that regulated Th1 and Th2 cells through text
mining and manual curation. We identified four cycles in
the gene expression dynamics, three of which expressed
genes that corresponded to Th0 (Th1/Th2 precursor), Th1
and Th2 cells. The fourth cycle contained the expression of
a mixture of Th1 and Th2 genes. We found that neither in
silico knockouts of the Th1 and Th2 attractor genes nor
gene expression microarray data from patients and healthy
subjects supported a counter-regulatory role of Th1 and
Th2 cells.

Model and Dynamics of Th1/Th2 Cell Regulation
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On the other hand, knocking out the same genes but applying

the persisting stimulation activation modality mainly resulted in

attractors containing both IL-4 and IFN-c (Figure 3).

For both temporary and persisting stimulation, the knockout of

other transcription factors that regulated Th1 and Th2 cells,

namely IRF4, MAF, NFAT, STAT1 and STAT6, also resulted in

attractors that contained IL-4 and IFN-c, either alone or in

combination. Thus, the balance between Th1 and Th2 cells was

regulated by several transcription factors, and not only by TBET

and GATA3.

To summarize, these findings were not compatible with a

strictly counter-regulatory role of neither TBET nor GATA3 or

any of the other transcription factors.

Analysis of relations between in silico and in vitro findings
in human T-cells in health and disease

We proceeded to examine how the in silico findings related to in

vitro studies of T-cells from healthy controls and patients with

different T-cell related diseases. We downloaded several sets of

gene expression microarray data from the public domain to test

Figure 1. Systemic view of the gene regulatory network model including relevant genes or transcription factors for Th1 Th2 cell
differentiation. Black edges depict positive regulation; red edges negative regulations.
doi:10.1371/journal.pcbi.1001032.g001
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whether Th1 and Th2 genes were inversely correlated in T-cell

related diseases.

If Th1 and Th2 cells are antagonists we would expect inverse

relations between genes in the Th1 and Th2 attractors. If so, the

expression levels of those genes would be negatively correlated.

Instead of this, we found a highly significant positive correlation

between the ratios of differentially expressed Th1-associated genes

and Th2-associated genes (Pearson correlation coefficient

r~0:799, p{valuev0:005).

Thereafter, we analyzed the correlations between all gene pairs

in the model that, based on the literature, were considered to

inhibit each other. This analysis showed that all gene pairs were

positively correlated but one (see Table 3).

This included the signature Th1 and Th2 genes TBET and

GATA3, which showed the most significant positive correlation

(r~0:81, pv10{14) as well as IFN-c and IL-4 (r~0:34, pv0:01).

Discussion

Because of the large number of proteins involved in Th cell

differentiation, alterations in the balance between those proteins

are not easily studied experimentally. Computational modeling

provides an attractive alternative to study the dynamics of Th1

and Th2 cell regulation and has previously been employed for this

purpose by us and others [10,11,17].

Such models have supported a counter-regulatory role of Th1 and

Th2 cells, but were based on a relatively limited number of genes and

did not include comparisons with biological data. In this report, we

aimed to examine if Th1 and Th2 cells were counter-regulatory by

combining modeling, in silico knockouts and gene expression

microarray analyses of human T cells in health and disease. We

constructed a network model of the proteins involved in Th cell

differentiation by manual curation of proteins associated with Th1 and

Table 1. The attractors of the boolean network modeling
Th1/Th2 differentiation.

Attractor Active genes

Th0 None

Th1 IFN-c, IFN-cR, SOCS1, STAT1, TBET

Th2 GATA3, IL-13, IL-4, IL-4R, IL-5, IRF4, JAK1, JAK3, MAF,

NFAT and STAT6

ThX s1 : IFN-c, IL13, IL-4, IL-5, JAK3, NFAT and SOCS1

s2 : IFN-cR, IL13, IL-4, IL-5 and STAT6

s3 : GATA3, IL-4R, IRF4, MAF, SOCS1, STAT1 and TBET

ThX is the non-Th1-nor-Th2 attractor, consisting of a cycle composed by the
three states s1 , s2 and s3 .
doi:10.1371/journal.pcbi.1001032.t001

Table 2. Number of attractors in knock-out networks.

Temporary Stimulation Sustained Stimulation

knock-out gene attractors (static/dynamical) max attractors (static/dynamical) max

COT 4 (3/1) 3 1186 (898/288) 3

GATA3 3 (3/0) 1 322 (322/0) 1

IKBKB 4 (3/1) 3 594 (450/144) 3

IRAK 4 (3/1) 3 612 (452/160) 3

IRF4 9 (3/6) 5 604 (450/154) 5

ITK 4 (3/1) 3 1188 (900/288) 3

JAK1 4 (3/1) 3 594 (450/144) 3

JAK3 3 (3/0) 1 560 (432/128) 2

LCK 4 (3/1) 3 1187 (899/288) 3

MAF 4 (3/1) 3 594 (450/144) 3

NFAT 9 (3/6) 5 604 (452/152) 5

NFKB 4 (3/1) 3 594 (450/144) 3

NIK 4 (3/1) 3 1186 (898/288) 3

PI3K 4 (3/1) 3 1186 (898/288) 3

PLCPG 4 (3/1) 3 596 (452/144) 3

SHP1 4 (3/1) 3 594 (450/144) 3

SLP76 4 (3/1) 3 594 (450/144) 3

SOCS1 8 (5/3) 3 978 (594/384) 3

STAT1 7 (3/4) 6 1154 (482/672) 7

STAT4 4 (3/1) 3 612 (452/160) 3

STAT6 6 (3/3) 3 1664 (1088/576) 3

TBET 7 (3/4) 6 358 (322/36) 6

VAV1 4 (3/1) 3 595 (451/144) 3

ZAP70 4 (3/1) 3 1186 (898/288) 3

Number of attractors for the sustained and temporary stimulation; we give also the number of attractors which are of length one (static equilibrium) or of length greater
than 1 (dynamical equilibrium); moreover, we indicate the maximal length of attractors.
doi:10.1371/journal.pcbi.1001032.t002
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Th2 cells, and that had been identified as relevant through automated

text mining of the medical literature. This resulted in a significantly

more comprehensive model compared to previous versions.

Analysis of the dynamics of that model showed that it contained

four attractors, two of which corresponded to the Th1 and Th2

subsets. These contained the Th1 and Th2 specific transcription

factors TBET and GATA3, respectively. This was compatible with

a counter-regulatory role of these attractors. However, the fourth

attractor, which we named ThX, contained a mixture of Th1 and

Th2 proteins, including TBET and GATA3. This did not agree

with a counter-regulatory role of these transcription factors.

Furthermore, we extended our analysis by in silico knockout

experiments of TBET and GATA3. We reasoned that if the two

were counter-regulatory, then knocking out TBET would result in

attractors mainly containing IL-4, while knocking out GATA3

would result in attractors mainly containing IFN-c. Whereas this

was true for GATA3, it was not the case for TBET.

In fact, knockout of either TBET or the other Th1 and Th2

attractor proteins mainly resulted in attractors containing both

IFN-c and IL-4. Afterthat, we examined the expression of Th1 and

Th2 attractor genes in microarray studies of eleven T cell diseases,

namely autoimmune, infectious and oncological diseases.

In most of these, the expression of Th1 and Th2 attractor genes

increased concurrently, rather than in an opposing pattern.

Moreover, we found that genes in the network model that were

thought to inhibit each other based on experimental studies, were

in fact positively correlated. This was particularly true for TBET

and GATA3 which are thought to have a key role for the counter-

regulation of Th1 and Th2 cells. It is of note that the interactions

in the model were chosen based on experimentally validated

functions and interactions in Th cells. In many cases those

experiments were performed using polarizing cytokines and T cell

receptor stimulants. This is likely to result in more homogenous

Th cell responses than those seen in vivo. In the latter case Th cells

are activated by antigen-presenting cells which process the

antigens to peptides, subtle variants of which may have different

effects on Th cells. In addition, different doses and timing of

antigen exposure play an important role in the Th cell activation

and differentiation process. The effects of timing was reflected by

the results in our study; temporary and persistent stimulation had

profound effects on the network dynamics of these processes.

Moreover, the activation involves a complex and variable

mixture of proteins. Taken together, it is possible that this

complexity may result in a mixture of Th1 and Th2 cells

responses, rather than one of the two. The ThX attractor may

correspond to such a mixed or transitional response. This is

consistent with the increasing recognition that Th cell phenotypes

are plastic rather than discrete [2]. This recognition resulted from

experimental and clinical studies that show overlap between genes

considered to be Th1 and Th2 genes [18,19].

Our analyses of gene expression microarray data from human T

cells in health and disease lend further support to Th plasticity. From

an in vivo perspective, this plasticity allows fine-tuned responses to a con-

stant exposure of different antigens at different time points and doses.

It is also of note that in vivo Th1 and Th2 differentiation may be

affected by many other T cell subsets, of which an increasing

number have been recognized. Moreover, epithelial cells, mast

cells and eosinophils release cytokines that affect the differentiation

process. Ideally, simultaneous analysis of networks representing

those cells and subsets would yield an understanding not only of

Th1 and Th2 cells, but comprehensive models of the cellular

networks that underlie immunological diseases. Improved meth-

Figure 3. Number of attractors as the result of in silico knockout
experiments, in the persisting stimulation activation modality.
Stacked bars represent the percentage of attractors expressing
combinations of IL-4 and/or IFN-c.
doi:10.1371/journal.pcbi.1001032.g003

Table 3. Results of Pearson’s correlation test of inhibitory
gene pairs.

Gene Pair p-value correlation r

GATA3 - TBET v10{14 0:81

SHP1 - JAK1 v10{9 0:69

IL-4R - IL18R v10{5 0:56

SOCS1 - IL-4R v10{11 0:76

SOCS1 - JAK3 ~0:9341 {0:01

STAT6 - STAT4 v10{5 0:56

IFN-c - IL-4 ~0:00702 0:34

doi:10.1371/journal.pcbi.1001032.t003

Figure 2. Number of attractors as the result of in silico knockout
experiments, in the temporary stimulation activation modality.
Stacked bars represent the percentage of attractors expressing
combinations of IL-4 and/or IFN-c.
doi:10.1371/journal.pcbi.1001032.g002
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odologies, such as single cell RNA sequencing may make such

models feasible in the near future.

A limitation is that our model is that the underlying biological

data is mainly qualitative. Thus, the model is based on

synchronous updating and does not take into account quantitative

or time-dependent changes. Others have shown that asynchronous

updating may have different effects on attractors [20–22]. An

interesting future research direction is to perform time series

experiments of Th1 and Th2 cells using gene expression

microarrays. Using such data it may be possible to improve our

model both with regards to quantitative and time-dependent

changes and also make predictions which can be validated with

other biological methods, such as measuring Th1 and Th2

cytokines on the protein level.

In summary, our findings, both based on in silico modeling and

analysis of T cells from human diseases agree with Th1 and Th2

cells having complex and possibly synergistic, rather than counter-

regulatory roles.

Materials and Methods

Identification of genes for the network model of Th1/Th2
cell differentiation

We employed a step-wise procedure to define the set of relevant gen-

es for the differentiation of Th cells into the Th1 and Th2 phenotypes.

Firstly, we identified two different sets of genes as a primary

source: i) 17 genes from a previous network model [10]; ii) a set of

17 genes determined in a gene expression microarray study of

polarized Th1 and Th2 cells by [6]. All these 34 genes were used

as seed genes. Then we retrieved the first order neighbors of these

seed genes and their connections in the BioGrid database (www.

biogrid.org). Successively, the connection among the proteins of

the first order neighbors were retrieved. Among all the genes

retrieved thus far, we selected only those associated to the Gene

Ontology term (www.geneontology.org) ‘‘T cell differentiation’’.

More specifically, the genes co-cited in the millions Medline

abstracts together with this term were retrieved. This resulted in a

set of 403 genes, that was further slimmed down and used to

construct a manually annotated directed graph of gene interac-

tions relevant for Th1 and Th2 cell differentiation. This was made

by using the T-cell receptor pathway in the KEGG database as a

template (www.genome.jp/kegg/pathway.html). Genes that were

part of that pathway and had well-characterized and experimen-

tally verified functions relevant for Th1 and Th2 cell differenti-

ation were selected for the final network model. A detailed

description of each interaction in the network, together with 126

supporting references is given in Text S1. It is also of note, that the

network model was independent of the gene expression micro-

array experiments, which are described below (none of the

published abstracts pertaining to those experiments contained co-

cited genes that were included in the model).

Boolean networks as a model of Genetic Regulatory
Networks

Given a GRN, the number of attractors of the network

dynamics is, in general, not effectively computable since the

number of states of the network grows exponentially with N. It is

not even possible to effectively calculate the initial states of the

network that will eventually fall in the basin of attraction of a

specified limit cycle. When the number of genes is large, the

explicit computation of the dynamics becomes impractical as the

number of states the network can assume increases exponentially

with the number of nodes. In the worst case the algorithm needs to

store the complete description of the state transition graph and

therefore the exhaustive study is feasible only when the number of

nodes is small [10,23]. Just to give an idea, for a network with

N~40 nodes, one needs about 6 Terabytes to store the state-

transition graph of the network. In our case, with N~51, it would

require about 7 Petabytes of storage.

In recent studies, formal methods such as bounded model-checking

technique or reduced order binary decision diagrams have been employed

in the study of attractors of Boolean and multivalued networks, see

Dubrova et al., Garg et al., and Chaves et al. [12,21,24–26]. These

formal methods have a potential to handle large networks. In

particular we used Dubrova’s algorithm based on a solver for the

satisfiability problem (SAT) which from the logical structure of the

network infers the possible attractors. In simple words, the network

can be seen a Boolean circuit and its attractors can be computed

by using methods and largely optimised algorithms coming from

modeling of Very Large Scale Integration (VLSI) circuits.

What is special about formal methods approach is that it

enables to find attractors of large networks. The idea behind the

search algorithm is that, by using symbolic computation, it is

possible to unfold the dependencies between nodes that are linked

together and to compose the update function as a relation among

the states (activation/inhibition) of the genes/nodes. Then the

algorithm uses the SAT solver to determine the values of the states

that evaluate to true the relation. This process is then repeated until

all attractors are identified.

We specified the network as the set of rules R1,R2, . . . ,RN , each

one representing the activatory or inhibitory relation between genes.

For example, if rule R stems for the activation of gene g, and is deter-

mined by the activators x1,x2, . . . ,xn and inhibitors y1,y2, . . . ,ym

(activators and inhibitors are generically called regulators), then it can

be written as R : ~x1, . . . ,xn,{y1, . . . ,{ym?g, where conven-

tionally the subset of inhibitors are tagged with a minus sign.

Analogously to [10,12], the time is discrete and the activation

states of the genes are changed simultaneously (i.e., synchronous

update). At each time step t, the value of the gene g is denoted by

the same gene name g tð Þ. The successive value of gene g tz1ð Þ is

g tz1ð Þ~ _
n

i~1
xi tð Þ

� �
^ : _

m

j~1
yj tð Þ

� �
ð1Þ

where _,^ and : denote the logical operators and, or and not

respectively. The rule in Equation 1 states that for a gene to be

activated, at least one activator and no inhibitors must be active

[10 12, 27].

In our specific case we had a set of 43 rules involving 51 genes,

that was the result of data mining and manual annotation. These are

listed in Table 4. The network so specified was compiled in other

formats, in particular GML (Graph Modeling Language), which is

used in several applications specialized in graphical layout, and

CNET which is the input form accepted by the algorithm to

compute the attractors. Whereas the GML output was based simply

on activation/inhibition network links, in the CNET format we had

to specify the updating function for each node.

The last part of this work was the systematic characterization of

the networks obtained by knocking out genes one at a time. As a

consequence of these in silico knockout experiments we anticipated

two results: a) to identify the set of genes which are pivotal to the

Th1/Th2 differentiation; b) to spot subsets of co-expressed genes

belonging to the attractors, since from analysis of microarray data

we expected these genes to be correlated.

Changes in the set of the attractors were used to highlight

relevant nodes. As a first approximation, differences in the mere

number of attractors were considered; if a node did not affect the

number of attractors, then from the point of view of the dynamics

it was considered irrelevant.
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Compilation and analysis of gene expression microarray
data

To examine whether Th1 and Th2 gene activation patterns

denoted two opposed pathways, gene expression data were

downloaded from Gene Expression Omnibus (http://www.ncbi.

nlm.nih.gov/geo/). Datasets were selected based on the criteria that

they i) measured mRNA expression from CD4+ cells from healthy

controls or patients with T-cell related diseases (e.g., SLE) and ii) that

there were at least 5 samples per disease or per controls, (Table 5).

Differentially expressed genes between patients and controls in

each disease were determined using the unpaired Student’s t-test.

Genes with a significance p{valuev0:05 were considered

differentially expressed.

In order to examine if the differentially expressed genes in the

Th1 and Th2 attractors were negatively or positively correlated we

performed the following analyses: for each disease, the ratio

between differentially expressed genes in the Th1 attractor and all

genes in the Th1 attractor was computed. This analysis was

repeated for the Th2 attractor genes. It resulted in a list of ratios

for each attractor and for each disease. The Pearson correlation

coefficient between those ratios was then computed.

To test if gene pairs in the network model that had counter-

regulatory relationships were also negatively correlated, micro-

array data belonging to healthy controls in each dataset was

pooled and Pearson correlation coefficients were calculated for all

the gene pairs with counter-regulatory relationships.

Supporting Information

Text S1 References for interactions. In this document we

present references supporting interactions introduced in our

model network.

Found at: doi:10.1371/journal.pcbi.1001032.s001 (0.12 MB PDF)
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Table 4. Specification rules for activation/inihibition links of
the network in Figure 1.

IRF4, NFAT, MAF, GATA3 ? IL-13

IRF4, NFAT, MAF, GATA3 ? IL-5

IFN-cR, -GATA3, STAT1 ? TBET

IL-7R, TBET, STAT4,STAT1,IRAK ? IFN-c

STAT6 ? MAF

STAT6, -TBET ? GATA3

IL-7 ? IL-7R

IL-18, -IL-4R ? IL-18R

IL18R ? IRAK

IFN-aR1, IFN-cR ? STAT1

IFN-a ? IFN-aR1

IFN-c ? IFN-cR

IL-4, -SOCS1 ? IL-4R

IRF4, NFAT, MAF, GATA3 ? IL-4

CD80 ? CTLA4

CTLA4 ? SHP1

CD45, CD4 ? LCK

TCR, CD3, -SHP1,LCK ? ZAP70

ZAP70 ? SLP76

LCK ? VAV1

CD28, VAV1, SLP76 ? ITK

ITK ? PLCPG

ANTIGEN ? CD4

ANTIGEN ? TCR

ANTIGEN ? CD3

ANTIGEN ? CD45

TNFSF4 ? TNFRSF4

-IFN-cR, TNFRSF4, IKBKB ? NFKB

STAT6, NFKB ? IRF4

CD28, TNFRSF4, PLCPG, IRF4 ? NFAT

CD28, ICOS ? PI3K

PI3K ? AKT1

AKT1 ? COT

COT ? NIK

NIK ? IKBKB

CD86 ? CD28

IL-4R, -SHP1,-SOCS1 ? JAK1

IL-4R ? JAK3

IFN-aR1, JAK1,JAK3 ? STAT6

IL12R, IFN-aR1, -STAT6 ? STAT4

IFN-cR, STAT1, TBET ? SOCS1

IL-12 ? IL-12R

TNFSF4 ? ICOS

doi:10.1371/journal.pcbi.1001032.t004

Table 5. Gene expression microarray datasets downloaded
from the Gene Expression Omnibus repository.

GEO Accession Number Disorder

GSE4588 Systemic Lupus Erythematosus (SLE),
Rheumatoid Arthritis (RA)

GSE6740 HIV

GSE8835 B cell chronic lymphocytic leukemia (CLL)

GSE9927 Type I HIV (HIV-I)

GSE10586 Type 1 Diabetes (T1D)

GSE12079 Hypereosinophilic syndrome

GSE13732 Clinically Isolated Syndrome - Multiple Sclerosis

GSE14317 Adult T-cell leukemia/lymphoma (ATL)

GSE14924 Acute Myeloid Leukaemia (AML)

GSE17354 Adenosine deaminase (ADA) - Severe combined
immunodeficiency (SCID) (Therapy treated)

doi:10.1371/journal.pcbi.1001032.t005
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