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Abstract 
Background: Biochar is a promising material in mitigating 
greenhouse gases (GHGs) emissions from paddy fields due to its 
remarkable structural properties. Rice husk biochar (RhB) and 
melaleuca biochar (MB) are amendment materials that could be used 
to potentially reduce emissions in the Vietnamese Mekong Delta 
(VMD). However, their effects on CH4 and N2O emissions and soil 
under local water management and conventional rice cultivation have 
not been thoroughly investigated. 
Methods: We conducted a field experiment using biochar additions to 
the topsoil layer (0-20 cm). Five treatments comprising 0 t ha-1 (CT0); 5 
t ha-1 (RhB5) and 10 t ha-1 (RhB10), and 5 t ha-1 (MB5) and 10 t ha-1 
(MB10) were designed plot-by-plot (20 m2) in triplicates. 
Results: The results showed that biochar application from 5 to 10 t ha
-1 significantly decreased cumulative CH4 (24.2-28.0%, RhB; 22.0-
14.1%, MB) and N2O (25.6-41.0%, RhB; 38.4–56.4%, MB) fluxes without 
a reduction in grain yield. Increasing the biochar application rate 
further did not decrease significantly total CH4 and N2O fluxes but 
was seen to significantly reduce the global warming potential (GWP) 
and yield-scale GWP in the RhB treatments. Biochar application 
improved soil Eh but had no effects on soil pH. Whereas CH4 flux 
correlated negatively with soil Eh (P < 0.001; r2 = 0.552, RhB; P < 0.001; 
r2 = 0.502, MB). Ameliorating soil aeration and functions by adding 
RhB and MB resulted in improving soil physicochemical properties, 
especially significant SOM and AN boosting, which indicate better soil 
health, structure, and fertility. 
Conclusions: Biochar supplementation significantly reduced CH4 and 
N2O fluxes and improved soil mineralization and physicochemical 
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properties toward beneficial for rice plants. The results suggest that 
the optimal combination of biochar-application rates and effective 
water-irrigation techniques for soil types in the MD should be further 
studied in future works.
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Introduction
In Vietnam, the agricultural sector contributes approximately 30% of national greenhouse gases (GHGs) emissions
(MONRE, 2017). For rice cultivation, paddy fields are the primary source of GHGs emissions (Nan et al., 2020; Shinoda
et al., 2019), accounting for 50% of the sub-sectors in agricultural production and roughly 14.6% of national GHG
emissions in Vietnam (MONRE, 2017). According to NDC (2020), Vietnam is committed to reducing 8% of total
national GHGs emissions from domestic resources by 2030. Management and technological strategies will play a vital
role in reducing the total carbon footprint. Biochar is a carbonized biomass product produced from thermochemical
conversion of organic materials under oxygen-limited conditions (Lohri et al., 2016;Wu et al., 2012;Waqas et al., 2018).
Biochar applications have been noted as one of the most promising approaches for reducing GHGs emissions from
rice production (Koyama et al., 2015; Wu et al., 2019a; Nan et al., 2021), and IPCC recently recommended the
method (Ji et al., 2020). Previous studies have demonstrated that biochar incorporated into soil paddy fields positively
rehabilitated soil properties such as pH neutralization, cation exchange capacity (CEC), and buffering capability, soil
organic materials (SOM), and nitrogen storage (Qin et al., 2016; Luo et al., 2020); improved plant available water,
microporosity, and soil aggregate stability, and decreased bulk density (Burrell et al., 2016); effected on soil functions
and fertility (Giagnoni et al., 2019; Siedt et al., 2021); and ameliorated nutrient availability of carbon (C), nitrogen (N),
phosphorus (P), potassium (K), magnesium (Mg) and Calcium (Ca) (Li et al., 2019). Furthermore, biochar forms a great
habitat for different microorganisms via providing macro-, meso- and micropores (Palansooriya et al., 2019; Wu et al.,
2019a), supports microbial communities by providing labile C substrates for degradation (Smith et al., 2010), stimulating
biodiversity and abundance of methanotrophic microbes (Qin et al., 2016). Moreover, the addition of biochar to the soil
reduces GHGs emissions (Spokas and Reicosky, 2009; Koyama et al., 2015; Nan et al., 2020; Huang et al., 2019) and
increases rice yield under different favorable conditions (Yang et al., 2019; Paiman and Effendy, 2020).

In the Vietnamese Mekong Delta (VMD), melaleuca is an abundantly available hard firewood resource, accounting for
176,295 ha (GIZ, 2009); the wood reserve of melaleuca is estimated at 13 million m3. In addition, rice husk is known as a
by-product of rice production, accounting for 20% of rice yields (Chungsangunsit et al., 2009). It is estimated that VMD
annually produces around 1.9million tons of rice husk (Son et al., 2017). Biomass (hardwood and crop residues) are often
used as typical feedstock for making biochar pyrolysis owing to their multiple-porous structure (Nguyen et al., 2018; Nan
et al., 2020), which facilitates the multifunctional purposes of soil amendment and pollutant remediation. Therefore, both
melaleuca and rice husk could be used to produce biochar, which is then applied to rice paddy fields as a GHGs emission
reduction strategy. Although previous studies have demonstrated the effectiveness of biochar incorporation on reducing
GHGs emissions, little attention has been paid to the quantitative variation of rice husk biochar (RhB) and melaleuca
biochar (MB) onGHGs emissions and soil improvement inVMD lowland conditions.Moreover, themajority of previous
studies exclusively emphasize CH4 andN2O emissions onwater practices by controlled irrigation, and alternative wetting
and drying, and midseason drainage (Yang et al. 2019, Sriphirom et al. 2020, Uno et al. 2021), while atypical water
irrigation regime has not been thoroughly elucidated.

Thus, we aimed (i) to elucidate the CH4 and N2O emissions and global warming potential (GWP) from the incorporation
of RhB and MB into the paddy field soils under locally typical water management regimes in the VMD, and (ii) to
determine the effects of RhB and MB amendments on soil physicochemical properties. We, therefore, conducted a field
experiment with a variety of RhB and MB amendment amounts under conventional farming practices. Our field
experimentation confirmed that RhB and MB application to rice paddy fields was feasible in reducing GHGs emissions.
Simultaneously, biochar application improved soil availability of SOM and anaerobically mineralized N.

Methods
Site description
A field experiment was carried out on a typical smallholding farmer's paddy field in Thoi AnDongVillage, Can Tho city,
Vietnam (10°304400N, 105°4105500E). The study area was located in the center of the Mekong Delta, Vietnam, which is a
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tropical area influenced by the monsoon climate zone, with measured mean annual rainfall (2,088.4 mm), air temperature
(27.5 °C), humidity (78.0 – 86.0%), sunshine (2,467.4 – 2,695.4 hours) in the period from 2015-2019 (DONRE, 2020).
The precipitation and temperature during the experiment were recorded by a weather station placed at the farmer's house
(~150 m from the field experiment). The soil was classified as Thionic Glycesol (International Union of Soil Sciences
(IUSS) working group World Reference Base (WRB), 2015) (Dong et al., 2012, Minamikawa et al., 2021). The
elementary properties were (0-20 cm depth) as follows: pH (H2O), 5.41; EC, 0.9 mS cm�1; bulk density, 0.92 g.cm�3,
silty clay texture (59.3% clay, 39.5% silt, 1.2% sand); organic matter, 87 g kg�1; total N, 4.21 g kg�1; cation exchange
capacity (CEC), 37.4 meq 100 g�1; exchangeable K, 0.54 meq 100 g�1, exchangeable Mg, 5.47 meq 100 g�1;
exchangeable Ca, 10.5 meq 100 g�1; and total C, 40.76 g kg�1.

Biochar preparation
RhB was made on-site using a simple semi-industrial pyrolysis batch method (Oikawa et al., 2016). Here a short iron
bar was to set onto the ground. A stainless chimney pipe 1.5m long was vertically erected to the bar using wire. The pipe
was kept at a 10-cm distance from the ground to release smoke generated during the pyrolysis process. Embers were
placed adjacent to the bar to kick off the carbonization process. Then, rice husk was poured around the bar according to a
coniform shape with 1.5 m height and 1.5 m diameter. RhBwas generated from the bottom to the summit. After finishing
the pyrolysis process (two days), RhB was watered to achieve ambient temperature.

MB was produced by a poor-oxygen pyrolysis process under a traditional bell-shaped charcoal production kiln for a
30-day batch. The kiln was made from baked bricks, clay, and sand mortar. The kiln’s structure comprises a bell-shaped
heating firewood chamber, a door used for firewood loading, and biochar unloading. A combustion chamber provided hot
air for the carbonization process, while four chimneys were installed around the heating chamber discharging smoke
during the carbonization process. Firewood was fully loaded according to each layer inside the heating chamber; the
lowest layer was kept 10 cm away from the ground to ensure air convection. Before starting, the door was closed to begin
the carbonization process. Air heating from the combustion chamber was slowly provided to the inner heating chamber to
form carbonization. After 30 days of pyrolysis, the heating was switched off, and the combustion chamber was blocked
off for an additional 15 days to cool to ambient temperature. The images of RhB andMB and their properties are shown in
Figure 1 and Table 1, respectively.

Experimental design
The size of each experimental plot was 20 m2 (4 m � 5 m) which were arranged in a randomized complete block
design with three replications. Each plot was separated by soil banks and covered with mulch film. Five treatments with
RhB and MB incorporated into the soil paddy field comprised 0 t ha�1 (conventional rice cultivation without biochar
supplementation), 5 t ha�1, and 10 t ha�1 (based dried weight) named CT0, RhB5, RhB10, MB5, and MB10,
respectively. Biochar was manually spread on the soil surface of each pot and evenly incorporated into the plow layer
of soil (approximately 20 cm) by shovels and rakes before sowing. Biochar additions were applied one time solely at the
beginning of the experiment.

Figure 1. Scanning electron microscope (SEM) images of biochar produced from rice husk (a) and melaleuca
(b) at X800 magnification.
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Rice cultivation and water management
According to the local crop calendar, the experiment time correspondedwith the Spring-Summer (SS) season (the second
crop) (Table 2). This is a transitional season between the dry and wet seasons. Rice straw and rice stubble from the
previous rice crop cycle (Winter-Spring) were plowed by a hand tractor and underwent a 7-day fallow period before
sowing. A short-duration variety of rice (IR50404 cultivar) typically grown in VMD was used in this field experiment
(85-90 days of maturity). Pre-germinated seeds were sown on the wet-leveled soil using drum seeders at a rate equivalent
to 120 kg ha�1. The irrigation followed regionally typical water management based on the farmer’s practical experience.

Fertilizer application
Inorganic fertilizers with the total amount of 80 kg N ha�1, 40 kg P2O5 ha

�1 and 40 kg KCl ha�1 were applied. The
fertilization was divided into intervals at 9, 23, and 38 days after sowing (DAS) by broadcasting. Nitrogen (N) was
applied as urea at a rate of 16-32-32 kg N ha�1 (broadcasted three times). Phosphorus (P) was applied as superphosphate
at a rate of 8-16-16 kg P2O5 ha

�1 tolerant (broadcasted three times). Whereas potassium (K) was applied as potassium
chloride at a 20-0-20 kg KCl ha�1 rate (broadcasted twice). The rice cropping calendar and fertilizer application are
shown in Table 2.

Measurements
Scanning electron microscope (SEM) images of RhB and MB were captured by microscope (TM-1000, Hitachi, Japan).
Specific surface area and total pore volume were determined using BET Surface Area Analyzer (Quatachrome Nova
1000e, USA).

A weather station (WS-GP1, Delta-T Devices, Cambridge, UK) was installed on-site to record hourly temperature and
rainfall at the experimental site. Redox potential (Eh) at plow-layer soil (20 cm) was measured by using platinum-tipped

Table 2. Rice cropping calendar in the field experiment.

Cultivated schedule Date of experiment1) Days after sowing

Plowing 14/03/2019 �7

Biochar incorporation 21/03/2019 0

Sowing 21/03/2021 0

Starting irrigation 29/03/2021 8

Fertilization

1st topdressing (16-8-20)2) 30/03/2019 9

2nd topdressing (32-16-0)2) 13/04/2019 23

3rd topdressing (32-16-20)2) 27/04/2019 38

Drainage 30/05/2019 70

Harvest 14/06/2019 85
1)dd/mm/yyyy.
2)The numbers in parenthesis indicate the amount (kg ha�1) of fertilizers applied in terms of N, P and K, respectively.

Table 1. Main properties of biochar derived from rice husk and melaleuca used in the field experiment.

Items Rice husk Melaleuca

pH (H2O) 9.56 7.54

EC (mS cm�1) 0.78 0.28

CEC (cmol (+) kg�1) 13.2 9.55

Total C (g kg�1) 253.5 291.8

Total N (g kg�1) 3.26 2.50

Total P (g kg�1) 0.13 0.33

Specific surface area (m2 g�1) 51.93 2.04

Total pore volume (cm3 g�1) 0.026 0.001
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electrodes pined into the ground at a depth of 5, 10, and 20 cm; a portable Eh meter (HM31P; TOA-DKK, Japan) was
connected to the electrodes to record soil Eh values at corresponding times to gas sampling. Surface water levels were also
recorded simultaneously with gas sampling, using a ruler to read values directly in a plastic-perforated tube pre-installed
in each plot.

Topsoil samples (0-20 cm) in each plot were collected before adding biochar and harvest by an auger 3 cm diameter.
Visible remaining biomass was eliminated before air drying and sieved at 2.0 mm. Initial soil samples (n = 15) were
mixed into a collective sample for analysis. Harvest soil samples were collected for each plot separately. Physical soil
properties were measured as follows: soil texture - Pipette Robinson method (Carter and Gregorich, 2008), bulk density -
Core method, and the particle density of soil (Blake and Hartge, 1986). Biochar and soil chemical properties were
detected as follows: pH (H2O) – a portable pH meter (HANA, Germany), soil organic matter (SOM) and total organic C
(TOC) – Walkley and Black (1934), total P - Bowman (1988), available P (AP) - Olsen and Sommers (1982), total
N – semi-micro Kjeldahl method (Bremner, 1996), anaerobically mineralized N (AN)– a 7-day anaerobic incubation at
40 °C (Keeney and Bremner, 1996), and CEC and exchangeable cations – Thomas (1982).

Rice yield was determined by harvesting from a 2.5 m� 2.0 m area in each plot at physiological maturity and removed
unfilled grains by water before sun drying. A grain moisture tester (Riceter f2, Kett Electric Laboratory, Tokyo, Japan)
was used to measure moisture content. The presented rice yield was adjusted to a 14% moisture content.

The closed chamber method was used to collect gas samples. A chamber was made from transparent polyvinyl chloride
(PVC) panels with a 1.5 mm thickness. The cross-sectional area was 0.25 m2 (0.5 m� 0.5 m). The height of the chamber
was 70 cm from the bottom to the top layer. The chamber inside was equipped with a circulating fan, a temperature meter,
and a pressure control plastic bag as described in detail byMinamikawa (2015). The chamber was placed on a plastic pre-
installed base (a groove 4.5 cm depth) in each plot and sealed off by water before sampling. After chamber closure, a
syringe (50mL) was utilized to take inside gas at 1, 11, 21, and 31minutes. Then, gas samples were injected into a 20-mL
evacuated vial. The gas sampling was carried out from 10 DAS to 73 DAS at 7-day intervals. The concentrations of CH4

and N2Owere analyzed with a gas chromatograph (8610C, SRI Instruments, CA, USA) equipped with a flame ionization
detector (FID) and an electron capture detector (ECD) for the analysis of CH4 and N2O, respectively. The columns for the
analysis of CH4 and N2Owere packed with Porapak Q (50–80mesh); dinitrogen (N2) was used as the carrier gas for both
FID and ECD.

Porosity was calculated by dividing volume pores (based on the subtraction between bulk density and particle density of
soils) by volume total (Flint and Flint, 2002). CH4 and N2O fluxes were calculated by a linear progression of gas
concentration change over time, and total fluxes of CH4 and N2O were calculated using a trapezoidal integration method
described byMinamikawa (2015). Global warming potential (GWP) was calculated based on CO2 equivalence (1 CH4 =
34CO2-eq; 1 N2O = 298 CO2-eq) at a 100-year scale of climate-carbon feedbacks (Myhre et al., 2013). Yield-scale GWP
was calculated by dividing the GWP by grain yield (Minamikawa et al., 2021).

Statistical analysis
One-Way analysis of variance (ANOVA) was used to assess the effects of each biochar on grain yield, gas fluxes, GWP,
yield-scale GWP, and soil improvement. The difference of treatments was carried out using Duncan’s method for all
pairwise multiple comparison procedures. Linear regression analyses were performed to assess the relationship between
Eh change and methane emission. We also analyzed the relationship between biochar application rate and gas emissions.
In the statistical analysis, we did not compare the difference between RhB and MB. All analyses were carried out using
R stats Version 4.2.0 (R Project for Statistical Computing, RRID:SCR_001905). The results are presented in tabular form
with the values including mean � standard deviation (SD) and the different symbols with a confidence level of 95%.
Significant different comparison among treatments was considered at Duncan’s multiple range test (***P < 0.001,
**P < 0.01, *P < 0.05 and †P > 0.05) after passing homogeneity of variance.

Results
Weather and water management
The mean air temperature and the total rainfall during the experiment were 28.9 °C and 429 mm, respectively (Figure 2).
High rainfall was observed between 40-60 and 65-80 DAS. Figure 3 shows that the flooding water regime was
predominantly observed during the experimental regression. The trend of water levels variation was similar over
treatments. Water was irrigated from 7 DAS, reflooded 3-5 cm from soil surface for fertilizing (9, 23, and 38 DAS),
and respective multiple drainage practices (�10 to 5 cm) (Uno et al., 2021) was carried out for the remaining periods.
Fifteen days before harvesting (70 DAS), the soil was drained and kept saturated to minimize rice lodging and easy-to-
harvest grain. Rice plants flowered and headed during 45-60 DAS.
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CH4 and N2O emissions
CH4 emissions gradually increased in the early rice growth stage (0-17DAS) and almost stopped after drainage (70DAS)
(Figure 3). It should be noted that CH4 flux was predominant in the period from 17 – 59 DAS and several CH4 flux peaks
were observed between treatments (i.e., three peaks were observed in MB5 andMB10). Maximum CH4 flux peaks were
reached simultaneously in all treatments after 31 DAS. Highest peaks between treatments are represented in a descending
way as follows: CT0 > MB5 > MB10 > RhB5 > RhB10. Compared to the CT0 treatment, biochar application reduced
total CH4 emissions significantly (Table 3). Particularly, RhB5 and RhB10 mitigated total CH4 flux from 24.2 to 28.0%,
respectively, while MB5 and MB10 alleviated between 22.0 and 14.1%, respectively. Irrespective of RhB and MB, the
CH4 flux was insignificant with an increasing biochar addition rate from 5 to 10 t ha�1 (P < 0.01). There was a negative
linear regression relationship between biochar application rate and total CH4 emission (P < 0.001, r2 = 0.825) (Figure 4).

Figure 3. Time course changes in soil redox potential (Eh), water level, hourly CH4 andN2O fluxes in the paddy
fieldappliedwithout (left) orwithRhB (center) orMB (right) during the field experiment.Error bars indicate the
standard error (n = 3). Vertical dotted lines illustrate agronomic management of the first, the second and the third
topdressing fertilizer (F1, F2 and F3, respectively), drainage (D) and harvest (H).

Figure 2. Temperature and rainfall during the field experiment.
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In contrast, the linear regression of melaleuca biochar was poorly explained with increasing biochar amendment rate and
total CH4 flux (P = 0.095, r2 = 0.254).

N2O was released mainly in the early stage of rice growth in all treatments (Figure 3). The highest N2O flux peaks
were observed in the CT0 (24 DAS). All measured values were below 1.5 mg N2O m�2 h�1. As observed, N2O flux

Table 3. Grain, total CH4 and N2O fluxes, global warming potential (GWP) and yield-scaled GWP at 100 years
scale in the paddy field applied without or with biochar1).

Treatment2) Grain
(g m�2)

CH4
(g CH4 m

�2)
N2O
(g N2O m�2)

GWP
(g CO2-eq m�2)

Yield-scaled GWP
(g CO2-eq m�2)

CT0 498 � 47.6 18.6 � 0.80aA 0.39 � 0.07aA 749 � 13.5aA 1.51 � 0.13aA

RhB5 513 � 56.2 14.1 � 0.23b 0.29 � 0.07ab 566 � 25.5b 1.12 � 0.18b

RhB10 510 � 33.0 13.4 � 0.30b 0.23 � 0.04b 524 � 2.76c 1.03 � 0.06c

MB5 519 � 9.86 14.5 � 1.00B 0.24 � 0.01B 563 � 31.6B 1.09 � 0.08B

MB10 517 � 10.9 15.9 � 0.90B 0.17 � 0.07B 591 � 10.8B 1.14 � 0.44B

P value3)

CT � RhB † *** * *** **

CT � MB † ** ** *** **
1)Data represent as means � SD (n = 3).
2)CT0, control treatment; RhB5 and RhB10, 5 and 10 t ha�1 rice-husk biochar amendment, respectively; MB5 and MB10, 5 and 10 t ha�1

melaleuca biochar amendment, respectively.
3)Statistical analysis did not compare between RhB and MB. The letters indicate significant difference according to Duncan’s multiple
range test (***P <0.001, **P <0.01, *P <0.05 and †P >0.05). Normal and capital lowercases indicate a significant differencebetweenCT0 vs.
RhB and CT0 vs. MB, respectively.

Figure 4. Relationship between biochar application rate and total CH4 (above) and N2O (below) fluxes during
the field experiment. Each symbol represents one replication in each treatment.
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flushed mainly during the fertilizing period from 9 to 38 DAS, even though experimental pots were predominantly
flooded, especially in the CT0 accounted for 56.8% in total, while RhB and MB varied by 50.6-53.1% and 52.3-47.6%,
respectively. Total N2O emission was reduced in RhB or MB applied soil compared to CT0 (Table 3). Specifically,
RhB10 significantly reduced by approximately 41.0%, whereas MB5 and MB10 by 38.5 and 56.4%, respectively.
However, the reduction of total N2O flux was insignificant in MB5. As a result, there were different negative linear
relationships of biochar application rate and total N2O flux (RhB, P = 0.012, r2 = 0.619; MB, P = 0.002, r2 = 0.757)
(Figure 4).

Rice yield, GWP, and yield-scaled GWP
Biochar addition to the soil slightly increased rice yield compared to the CT0, but the statistical analysis was insignificant
(Table 3). A similar pattern about emissionswas seen amongGWP, yield-scaledGWP, and total CH4 flux due toCH4 flux
was greatest contribute toGWP, yield-scaledGWP. TheRhB additions significantly decreased theGWP and yield-scaled
GWP by 24.4 – 30.0% and 25.8 – 31.8% for RhB5 and RhB10, respectively. Although MB significantly diminished the
GWP and yield-scaled GWP by 24.8 – 21.09% and 27.8 – 24.5%, respectively, there was no significant difference
between MB5 and MB10.

Soil characteristics
A similar performance pattern of soil Eh condition was seen among treatments (Figure 3). Eh reduced after initial
irrigation andwas seen to reach a stable level (below -250mV) during the rice growth period from 17 to 66DAS.Whereas
the final drainage rapidly increased the soil Eh condition (73DAS) in all treatments. The supplementation ofRhB andMB
obviously improved soil Eh condition compared to the CT0 by 7.44 – 14.5% and 10.7 – 19.0%, respectively (Table 4).
There was a negative linear relationship between hourly CH4 flux and the Eh values in RhB (P < 0.001; r2 = 0.552) and
MB (P < 0.001; r2 = 0.502) (Figure 5).

Table 4 represents the soil characteristic differences between treatments at the time of harvest. Overall, although biochar
amendment was seen to increase soil pH slightly, statistical analysis implied no significant difference between treatments.
Yet, biochar amendment significantly reduced the soil bulk density (RhB5, 19%; RhB10, 23%; MB5, 22.7% and MB10
26.8%) and ameliorated the soil porosity (RhB5, 8.2%; RhB10, 11.8%; MB5, 2.2%, and MB10 9.6%). However,
increasing RhB and MB biochar application rate from 5 to 10 t ha�1 did not significantly change soil bulk density and
porosity. Moreover, intensifying biochar incorporation significantly increased SOM by 38.6 – 52.7% for RhB and 25.4 –
45.9% for MB. Notably, AN in biochar-applied treatments was higher than that of the CT0 by 44.8 – 38.3% and 35.5 –
55.1% for RhB and MB, respectively. AP significantly increased in the MB treatments by 32.1 – 51.58% but did not in
RhB. Although additional biochar increased the available andmineralized nutrients, statistical analysis results showed no
significant difference between biochar application rates of 5 to 10 t ha�1 (Table 4) (Tran Sy et al., 2021).

Discussion
Effects of biochar incorporation on CH4 and N2O fluxes
Conventional practices without biochar application released 18.6 gCH4m

�2 and 0.39 gN2Om�2 (Table 3). These values
are in accordance with previous findings conducted in the VMD (Vo et al. 2020; Minamikawa et al. 2021; Uno et al.
2021). Notably, RhB and MB amendments under typically local water management, and conventional practices
significantly reduced CH4 flux by 24.2 % in RhB5, 28.0 % in RhB10, 22.0 % in MB5, 14.1 % in MB10 and N2O
flux by 38.5 % in RhB5, 56.4 % in RhB10, 25.6 % in MB5, 41.0 % in MB10, and slightly improved rice yield (2.41-
4.21%) (Table 3). Similarly, Yang et al. (2019) demonstrated that biochar additions (20 - 40 t ha�1) under controlled
irrigation in the Taihu Lake region, China mitigated both CH4 and N2O emissions by 35.7% and 21.5%, respectively,
and simultaneously enhanced rice yield by 16.7-24.3%. Moreover, Wu et al. (2019b) reported that biochar additions
(20 - 40 t ha�1) significantly decreased CH4 and N2O fluxes by 11.2-17.5% and 19.5-26.3%, respectively, and increased
grain yield by 7.9-9.2%. In line with our findings, a long-term biochar application (5 – 10 t ha�1) in China's typical double
rice plantation region also significantly decreasedCH4 flux by 26.18% (Qin et al. 2016). Nevertheless,Wang et al. (2011)
reported that the biochar incorporation (50 ton ha�1) into the soil significantly decreased N2O flux by 41.4-93.5% in lab-
scale experiments. In parallel, a meta-analysis based on 30 studies with 261 experimental treatments (lab-scale and pilot-
scale) from 2007 to 2013 demonstrated that the addition of biochar reduced N2O emissions by 54% (Cayuela et al. 2014).
However, Koyama et al. (2015) reported that biochar application (10-40 t ha�1) reduced CH4 flux but did not
N2O. In the case of Liu et al. (2014), biochar supplementation (24-48 t ha�1) significantly reduced CH4 flux by 33.9-
40.2%, while N2O flux significantly increased by 150 to 190%. Overall, biochar amendment could reduce CH4 flux from
a rice paddy field, but in some cases, the effect on N2O flux remains uncertain. Our study demonstrated that rice husk
and melaleuca biochar applications with a range of 5-10 t ha�1 significantly reduced both CH4 and N2O fluxes within
a Thionic Glycesol soil in the VMD. Albeit, the biochar application rate between 5 and 10 t ha�1 hardly obtained the
disparity of CH4 and N2O emissions. Thus, a wide range of biochar application amounts should be evaluated to provide
more tailored recommendations.
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The CH4 mitigation by biochar application consistently pertains to the increasing soil oxidation rate and methanotrophs
community. Although we did not determine the number of methanogens and methanotrophs, Nan et al. (2021)
demonstrated that biochar application stimulates the abundance in either methanogens or methanotrophs, with a high
amount ofmethanotrophs detected inmost cases resulted in decreasing of CH4 flux.Moreover,Wu et al. (2019a) reported
that biochar applications to fertilized paddy field soils increased the total type I pmoA (preferred the CH4 environment)
and type II pmoA (more dynamic in low CH4 conditions) methanotrophs compared to non-amended biochar, indicating
that CH4 flux mitigation by promoting potential CH4 oxidation. Thus, we adopted a hypothesis that the balance of
activities between methanogens and methanotrophs in a site-specific environment results in either an increasing or
decreasing CH4 flux. Feng et al. (2012) revealed the main mechanisms of CH4 flux reduction in a biochar-supplemented
field were by (1) increased methanotrophic proteobacterial abundance significantly and (2) decreased the methanogenic
to methanotrophic proportion substantially. Thus, an increase of methanotrophs dynamic in paddy field soil by biochar
addition can be expected to play a vital role in mitigating CH4 fluxes. Our study demonstrated that rice husk and
melaleuca biochar could promote low-GHG emissions in the rice production system in the VMD.

We achieved N2O flux reduction by incorporating biochar into the topsoil layer when compared to the non-amended
biochar field. However, several hypotheses supposed that soil applied with biochar could not decrease the N2O flux
(Koyama et al., 2015; van Zwieten et al., 2010). Similar to our field study, several findings achieved a total N2O flux
reduction (Shaukat et al., 2019; Zhang et al., 2010). Themitigation ofN2O flux in biochar-treated soils could be attributed
to soil moisture contents and nitrification processes (Ameloot et al., 2016). In agreement with the hypothesis, Shaukat
et al. (2019) demonstrated that fields with biochar added retained 9-14% higher moisture contents than fields without
biochar amended and resulted in a significant reduction of the N2O flux. Supporting the idea,Wang et al. (2013) revealed
the relationship between the denitrifying community and N2O flux change, where biochar supplementation significantly

Figure 5. Relationship between the hourly CH4 flux and Eh in the field appliedwith RhB (above) orMB (below).
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shifted the abundance of NO3-utilizing bacteria (carrying the nirK and nirS genes), leading to less N2O generation
and more N2O-consuming bacteria (carrying the nosZ gene). Moreover, Cayuela et al. (2013) used 15N gas-flux to
observe the reduction of N2O/(N2+N2O) and demonstrated that biochar facilitated the last step of denitrification. The
key mechanisms of N2O flux reduction under biochar amendment were by (i) stimulated nitrification generation via
electron donation, a decrease in total denitrification by serving as an alternative electron acceptor by acting as electron
shuttle to soil NO3

� consumingmicroorganisms (Cayuela et al., 2013), and (ii) based on the entrapment of N2O in water-
saturated soil pores and co-occurrent stimulation of microbial N2O reduction deriving in an overall decrease of the N2O/
(N2O + N2) ratio (Harter et al., 2016). Therefore, biochar could be attributed as a decisive factor to inhibit N2O
production and simultaneously stimulate N2O utilization. As such, these findings and the above-discussed mechanisms
strongly support our findings in suggesting N2O flux reduction from biochar amendment in the rice paddy field.

Our study showed that N2O emission was mainly concentrated during fertilization, which indicates fertilization provides
more available N driving for soil N2O emission. Xie et al. (2013) observed 15N abundance significantly intensified by the
application of 15N-enriched urea. Our study did not measure NH4

+ or NO3
� concentration during fertilizing, so the

mechanism remains uncertain. N2O emission via the nitrification process directly pertains to soil physical, chemical, and
biological properties (Huang et al., 2019). Thus, we speculate that N fertilizing increased the nitrification activities and
stimulated the strong metabolism of potential N2O-producing bacteria. Minamikawa et al. (2021) reported that higher N
availability levels in soil than rice plant uptake demands resulted in increasing N2O emissions. Although N-fertilizing
obviously promoted N2O emissions for themajority of the time, N2O emission peaks of biochar-amended soil were lower
than that of biochar-unamended soil. This would indicate that biochar potentially changed the functionality and diversity
of denitrifiers within the soils and inhibited the conversion of NO2

� and NO3
� to N2O (Zhang et al., 2010).

Watermanagement is a crucial factor in the strategy of GHGs reduction, althoughwe achieved the GHGs reduction under
typical water management when most of the time the soil was flooded. Multiple-flooded times in this study were due to
the combination of high rainfall in the transition season (rainfall, Figure 2; water level, Figure 3) and the typical flooding
water management practice of the farmers in the region. Uno et al. (2021) conducted a 2-year field experiment in An
Giang province in the VMD and demonstrated that AWD (known as multiple drainages) significantly reduced CH4 by
35%, while found no difference in N2O emissions, but a 22% yield improved. Moreover, Minamikawa et al. (2021)
registered that the intermittent irrigation technique is also a promising approach to mitigate CH4 emissions by reductive
soil conditions. Thus, integrating AWD and intermittent irrigation by incorporating biochar into the soil under the MD’s
edaphology, climate, and traditional practices could be feasible for further works.

Relationship between biochar amendment ratios and CH4 and N2O fluxes
There is a negative correlation between CH4 flux and RhB application rate (P < 0.001, r2 = 0.825) (Figure 4). It is
indicated that CH4 flux decreased with the increase of rice-husk biochar application (Xiao et al. 2018). On the other hand,
although increasing MB application rate could mitigate the CH4 emission, the relationship found a poor explanation
(P = 0.095, r2 = 0.254). This contrast could be partly attributed to biochar-carbonized properties. MB was low in the
specific surface area and total pore volume compared to RhB (Table 1). Ji et al. (2020) revealed that biochar structure
intimately related to anaerobic CH4 oxidation and created a suitable environment for CH4-consuming bacteria.

Similarly, we found a negative correlation between the N2O flux reductions and the application rate of RhB (P = 0.012,
r2 = 0.619) and MB (P = 0.002, r2 = 0.757). In agreement with our finding, a meta-analysis of Cayuela et al. (2014)
showed a negative relationship between biochar application rates and reduced N2O flux, where sufficient N2O reduction
was 1-2% biochar amendments, whereas, incorporating more than 10% of biochar into the soil was found to reach up
to 80%. In line with our study, Huang et al. (2019) also showed a negative relationship between biochar application rates
and N2O flux. Overall, the increase of biochar application rates could potentially stimulate the CH4 and N2O reduction.
However, for CH4 and N2O fluxes, the application of 5 and 10 t ha�1 remains unclear.

Effect of biochar incorporation on Soil Eh and CH4 emission
Our study found that the negative linear relationship between soil Eh and hourly CH4 flux with RhB (P < 0.001;
r2 = 0.552) and MB (P < 0.001; r2 = 0.502) (Figure 5). Similar results were also observed by Wang et al. (2018). This
indicates that an increase of soil redox potential decreased CH4 emission, which is in line with the report by Towprayoon
(2020). Moreover, soil Eh remained below �250 from 17 to 66 DAS in our study (Figure 4), implying a favorable
condition for CH4 emission (Wang et al. 1993). Final drainage rapidly increased soil Eh and reduced CH4 flux (Figure 3),
indicating the strong sensibility of soil Eh and CH4 flux under water management.

Biochar application increased soil Eh compared to non-amended soils (Table 4). This indicates that biochar was the
critical factor contributing to the positive effects of anaerobic CH4 oxidation activities known as the electronic accepting
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capacities (EAC) of biochar (Nan et al., 2021). The supplementation of biochar intensifies oxygen-containing functional
groups (carboxyl, carbonyl, quinone phenolic hydroxyl group) and positively improves biochar redox potential (Klüpfel
et al. 2014; Wu et al. 2016). The increase of Eh and the reduction of CH4 emissions could also be explained by the
porosity and absorbability characteristics of biochar, which enable robust CH4-utilizing bacteria activities and intensify
the diffusion and metabolism process. In a similar way, biochar incorporation into soils improves soil aeration, creating
a favorable environment for methanotrophic bacteria resulting in soil Eh amelioration and better reduction of CH4

oxidation (Feng et al., 2012).

Effects of biochar incorporation on grain yield, GWP and Yield-scaled GWP
Although biochar amendments could improve yield (2.41-4.21%) (Table 3), multiple comparison analyses found no
significant difference between amended and unamended soils. Several studies have found similar results (Qin et al. 2016;
Nguyen et al. 2016). The undistinctive grain yield could be partly attributed to spatial and temporal variations,
i.e., climatic conditions, field practices, soil substrates (Xie et al. 2013).

Biochar-amended soil significantly decreased GWP by 21.1-30.0% and yield-scaled GWP by 24.5% - 31.8% (Table 3).
It was indicated that RhB and MB application potentially mitigates total CH4 and N2O emissions without scarifying
grain yield. Yang et al. (2019) performed a double-season field experiment on biochar applications ranging from
20 to 40 t ha�1 and found that the average GWP and yield-scaled GWP reduced by 18.7% - 16.4%, and 80.3% - 41.6%,
respectively. Similarly, Zhang et al. (2019) observed a six-year field experiment on biochar-applied soils at rates of
between 20-40 t ha�1 and showed a GWP and yield-scaled GWP reduction by 12.1-18.4% and 35.9-56.4%, respectively.
Here we observed that CH4 fluxwas the key contributor in the GWP and yield-scaled GWP via the field experiment in the
VMD’s transition season, while N2O flux was more neglectable. Thus, future works should emphasize on reducing the
GWP, yield-scaled GWP, and concentrate on the CH4 mitigation technology solutions rather than N2O emissions.

Effects of biochar incorporation on soil improvement
Soil improvement under short-term and long-term biochar applications has been widely recognized. Our study showed
that biochar amendment insignificantly increased soil pH (Table 4), which indicated no effect of biochar addition on soil
pH perfection as suggested by previous studies (Yang et al., 2019). However, biochar amendment significantly decreased
the soil bulk density and improved soil porosity in comparison to non-amended soils. Furthermore, higher applied biochar
rates showed lesser soil bulk density and higher porosity indicating that biochar directly upgraded soil physiology.
Amelioration of soil surface area and porosity by biochar amendment intensifies soil aeration and functions of aeration,
such as CH4 oxidation, and provides habitat for methanotrophs (Nan et al., 2021). Moreover, it stimulates NH4

+

absorbance ability resulting in suppressing nitrification processes and N2O flux reduction in the field (Wang et al., 2020).

It is evident that increasing biochar application boosted SOM and AN, with a slightly increased available P through
the season (Table 4). The increase of SOM and AN showed a high nutrient availability in the soil. Notably, the soil
improvement did not increase soil CH4 andN2O emissions as above-mentioned and discussed. AN could be used as a soil
health indicator (García et al., 2020). The interdependence among AN, SOC, and particulate OC was demonstrated by a
positive correlation (Domínguez et al., 2016). In connection with our study, Yang et al. (2019) observed that biochar
amendment slightly increased SOC, significantly increasedNH4

+ by 47.7%, and significantly decreasedNO3
� by 30.4%.

Incorporating biochar into soils could inhibit nitrification and produce more NH4
+ than NO3

� consisting of an anoxic
environment (water level and redox potential; Figure 2). Increasing NH4

+ concentrations and declining NO3
� concen-

trationswould partly explain the enhancedCH4-consuming figure andN2O oxidation (Xiao et al., 2018). Overall, biochar
application offers benefits not only for nutrient availability but also for GHGs mitigation.

Conclusions
This study assessed the effects of rice husk biochar or melaleuca biochar amendment at 5 or 10 t ha�1 on CH4 and N2O
emissions and the physiochemical soil properties after rice cultivation under typical water management and conventional
practice regime in the VMD. Incorporating biochar into soils significantly mitigated CH4 and N2O emissions without
reducing grain yield. Consequently, a lower GWP and yield-scaled GWP from biochar-amended soils were achieved.
Although higher biochar applications decreased CH4 and N2O emissions, there was no significant difference between
biochar-amended rates. Biochar significantly increased soil Eh conditions. There was a negative linear relationship
between soil Eh and CH4 emission rate for biochar-applied fields. N2O emissions from biochar fields were relatively
low and mostly concentrated during the fertilization period. Biochar amendments improved soil fertility via physical
properties of soils by decreasing bulk density and intensifying porosity and the chemical characteristics of the soils
by ameliorating SOM, AN and AP, but did not affect soil pH. Similar to GHG emissions, biochar application rates of
between 5 and 10 t ha�1 could not obtain significant soil improvement. This study will help lower-GHG emissions from
rice farming practices in the VMD. Further works should study the combination of biochar-application rates and effective
water irrigation techniques on different soils in the VMD.
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Data availability
Underlying data
Figshare: Biochar reduces GHGs from paddy fields. https://doi.org/10.6084/m9.figshare.16625137.v1 (Tran Sy et al.,
2021).

This project contains the following underlying data:

- Nam et al_Raw data biochar_F1000research.xlsx
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