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Abstract: The photocatalyst materials correlation with the radiation scenario and pollutant molecules
can have a significant influence on the overall photocatalytic efficiency. This work aims to outline the
significance of optimizing the components mass ratio into a tandem structure in order to increase
the photocatalytic activity toward pollutant removal. ZnO_SnO2 and TiO2_SnO2 tandem structures
were obtained by the doctor blade technique using different mass ratios between the components.
The samples contain metal oxides with crystalline structures and the morphology is influenced by
the main component. The photocatalytic activity was tested using three radiation scenarios (UV,
UV-Vis, and Vis) and two pollutant molecules (tartrazine and acetamiprid). The results indicate
that the photocatalytic activity of the tandem structures is influenced by the radiation wavelength
and pollutant molecule. The TiO2_SnO2 exhibit 90% photocatalytic efficiency under UV radiation
in the presence of tartrazine, while ZnO_SnO2 exhibit 73% photocatalytic efficiency in the same
experimental conditions. The kinetic evaluation indicate that ZnO_SnO2 (2:1) have a higher reaction
rate comparing with TiO2_SnO2 (1:2) under UV radiation in the presence of acetamiprid.

Keywords: metal oxides; doctor blade; tandem structures; photocatalysis; kinetics

1. Introduction

The semiconductor-mediated photocatalysis is considered as a promising pathway of
removing various pollutants from aqueous and gaseous phase by directly harvesting and
utilizing the solar energy [1–3]. Merging the sustainability with durability may be the key
of transferring the photocatalytic process from the laboratory scale up to large applications.
Until now there are many wide gap oxides (TiO2 [4,5], SnO2 [6,7], and ZnO [8,9]) and
narrow band gap materials (Bi2WO6 [10,11], Ag3PO4 [12,13], BiPO4 [14,15], g-C3N4 [16,17],
WO3 [18,19], and BiOX [20,21]) studied for the potocatalytic removal of wastewater organic
contaminants and indoor pollutants. The mono-components photocatalyst have disadvan-
tages such as narrow visible light absorption [22,23], low specific surface area [24,25], and
fast charge carriers recombination [26,27].

Advanced oxidation processes (AOPs) are considered as future alternative to tradi-
tional methods of removing organic pollutants: pharmaceutical active compounds [28,29],
pesticides [30,31], dyes [32,33], volatile organic compounds [34,35], etc. The sustainability
represents an important advantage of AOPs due to the use of light radiation as the main
energy source to provide oxidative species responsible for pollutant mineralization [36–38].
However, the transfer from a laboratory scale to a large application requires important
optimizations in terms of energy consumption, materials, and design [39,40]. The lack
of standardizations and procedures make it difficult to compare the experimental results
reported in the field of photocatalysis. However, it must be underlined that the photocat-
alytic efficiency depends on many parameters such as pollutant type and concentration,
photocatalyst composition, structure and dosage, as well as radiation wavelength and
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photon flux. Bi2MoO6/Fe3O [41] and Ta3B2@Ta2O5 [42] heterostructures were employed
to investigate methylene blue (MB) dye removal under Vis irradiation. The results indicate
that Bi2MoO6/Fe3O4 heterostructure have 93% photocatalytic efficiency after 180 min of
irradiation with 500 W light source. Using the same irradiation scenario, the Ta3B2@Ta2O5
heterostructures exhibit 80% photocatalytic efficiency. A similar experiment was done on
ZnAl2O4/Bi2MoO6 [43] photocatalyst but with a different irradiation scenario (UV light,
100 W), and after 180 min, the MB removal efficiency was 86%. Coupling the photocatalytic
process with adsorption represents another way to optimize the energy consumption and
to increase the pollutant removal efficiency [44].

This paper presents the correlation between the components mass ratio in a tandem
structure and the photocatalytic activity using different radiation scenarios and pollutant
molecules. Four tandem structures based on ZnO_SnO2 and TiO2_SnO2 were tested using
UV, UV-Vis, and Vis radiations. The tandem structures based on ZnO, TiO2, and SnO2 may
benefit from the extended light absorption spectra due to the effective band gap established
between the components. Additionally, due to their band energies values and efficient
charge carrier’s separation, the tandem structures are able to exhibits higher performance
compare with the individual components [45–47]. The photocatalytic properties were
tested using two types of pollutants: pesticide (acetamiprid) and dye (tartrazine). Pesticides
and dyes represent two important categories of organic compounds affecting the water
properties and consequently the life quality. The water contamination with dyes substances
such as tartrazine (Tr) have raised human health issues and this molecule is characterized
by strong chemical stability toward traditional wastewater treatment processes due to
the aromatic structure [48,49]. The acetamiprid pesticide is considered harmful due to
the high toxicity (especially at high concentrations), high accumulation rate, and possible
carcinogenic effect induced by their non-biodegradable aromatic structure [50,51]. The
results correlate the tandem structure composition with the photocatalytic kinetics based
on radiation parameters (wavelength, total irradiance, and photon flux) for each pollutant.

2. Materials and Methods
2.1. Tandem Structures Films Based on Metal Oxides

The ZnO, SnO2, and TiO2 metal oxide powders were purchased (Sigma Aldrich,
Saint Louis, MO, USA) and used without any purification procedures. Four samples with
different mass ratio composition were prepared as follows:

(1) Sample ZnO_SnO2 (2:1) with a mass ratio between ZnO and SnO2 of 2:1;
(2) Sample ZnO_SnO2 (1:2) with a mass ratio between ZnO and SnO2 of 1:2;
(3) Sample TiO2_SnO2 (2:1) with a mass ratio between TiO2 and SnO2 of 2:1;
(4) Sample TiO2_SnO2 (1:2) with a mass ratio between TiO2 and SnO2 of 1:2.

Another three samples containing bare ZnO, SnO2, and TiO2 were prepared to be
compared with tandem samples.

The deposition technique was a doctor blade and the substrate was microscopic glass.
In the first step, the metal oxide-based paste was prepared considering the above mass
ration between the components. The metal oxide powder was dispersed into a mixture
of ethanol, acetylacetonate, triton ×100 in a volumetric ratio 10:1.5:1.5. The dispersion
procedure includes 30 min of vigorous magnetic stirring to assure the paste uniformity.
In the second step, the substrate, previously cleaned using surfactants to remove grease
traces and then immersed in ethanol for 20 min using an ultrasound bath, was immobilized
on a flat surface using a non-conductive transparent tape. The third step is represented
by the paste addition (100 µL) on the substrate surface where a glass scraper ensures the
uniform paste distribution at constant velocity (1.5 s/cm2). The last step includes a thermal
treatment procedure done at 500 ◦C for 5 h in order to eliminate the organic additives.

2.2. Photocatalytic Procedures

The photocatalytic experiments where done in a reactor able to assure a uniform light
intensity distribution due to 3 light sources placed in suitable positions. The reactor room
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is characterized by low humidity and 20–25 ◦C temperature (depending on the radiation
sources). Three light scenarios where employed and the corresponding total irradiance
was measured and presented in Table 1. The UV irradiation was provided by 18 W black
light Philips tubes T8 model (Amsterdam, Olanda), with 3Lx flux intensity, spectral range
between 310 and 390 nm, and a maximum emission at 365 nm. The Vis irradiation was
obtained from 18 W white cold light Philips tubes TL-D 80/865 model, with 28Lx flux
intensity, spectral range between 400 and 700 nm, and a maximum emission at 565 nm.

Table 1. Irradiation sources and total irradiance.

Irradiation Sources UV (310–390 nm) Vis (400–800 nm) Total Irradiance (W/m2) Φ [µmol/(m2·s)]

UV light 3 0 12.6 24.83
UV-Vis light 2 1 13.8 46.10

Vis light 0 3 17.3 68.42

The irradiance characteristics considering each light source type were EUV = 2.9 W/m2

corresponding to the UV light and EVis = 4.2 W/m2 corresponding to the Vis light. The
maximum photon flux, Φ, was calculated using Equation (1) and the values are presented in
Table 1. The evaluation takes into consideration the light maximum wavelength (λUV, max,
λVis, max) as well as the number of irradiation sources (nuv and, respectively, nvis) [52].

Φ =
EUV ·λUV ·nUV + EVis·λVis·nVis

h·c·NAv
, (1)

where: the Planck constant (h), the speed of light (c), and the Avogadro number have the
usual values.

Two organic pollutants were used to evaluate the tandem structures photocatalytic
properties: acetamiprid pesticide (Apd) and tartrazine dye (Tr). During the investigation,
the tandem structures were immersed for 10 h in 35 mL of pollutant solution (0.025 mM).
In the first 120 min, the tandem structures were kept in the dark which is enough to
attempt the absorption equilibrium. During the following 8 h, the tandem structures were
irradiated based on the three radiation scenarios presented in Table 1. The changes in
pollutant concentration were investigated based on the UV-Vis calibration curve and hourly
evaluated up to 8 h of photo-catalysis.

The photocatalytic removal efficiency was calculated using Equation (2):

η =

[
(C0 − C)

C0

]
·100, (2)

where: C0 represents the initial concentration and C represents the pollutant concentration
at moment t. The UV-Vis calibration curve based on the absorption spectra of the pollutant
was done using the following procedure: (1) several solutions with accurately known
concentrations (in the range of working conditions) were prepared; (2) the absorbance at
the wavelength of strongest absorption was measured; (3) a graph plot representing the ab-
sorbance against concentration was done considering Beer-Lambert law for diluted solutions.

2.3. Investigation Instruments

The crystalline composition was studied using X-ray diffraction (XRD, Bruker D8 Dis-
cover Diffractometer, Karlsruhe, Germany) with a setup consisting on locked-couple system
at 0.004 degree scan step and 0.02 s/step. Field emission scanning electron microscopy (FE-
SEM, SU8010, Fukuoka, Japan) was used to investigate the samples morphology, operated
at an accelerated voltage of 25 kV. The optical and photocatalytic investigations were done
using the UV-Vis spectrometry (Perkin Elmer Lambda 950, Waltham, MA, USA) technique
with a scanning step of 1.0 nm and 6◦ incidence angle for reflectance measurements. Total
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irradiance for each scenario was measured using a class A pyranometer (SR11, Hukselflux,
Berlin, Germany) and the sensor was placed in the central position of the sample holder.

3. Results and Discussion
3.1. Composition and Morphology

The diffraction analysis presented in Figure 1 indicates the presence of crystalline struc-
tures in all samples, which is a pre-requisite for further photocatalytic applications [53,54].
The peak intensity varies based on the mass ration of each component. There are no addi-
tional peaks which may suggest the formation of other non-stoichiometric metal oxides
or carbonaceous species [55]. However, possible doping between metal oxides during the
post-deposition thermal treatment cannot be excluded. Samples ZnO_SnO2 contains ZnO
with hexagonal crystalline structure (ICCD 89-1397) and SnO2 with tetragonal structure
(ICCD 41-1445) which is consistent with the as-received powders. The ZnO peak intensity
increases in sample ZnO_SnO2 (2:1) where the ZnO ratio is double compared with SnO2. A
similar observation can be done for ZnO_SnO2 (1:2) where the SnO2 peak is predominant.

Figure 1. Diffraction patents for the tandem metal oxides structures.

The samples TiO2_SnO2 have the characteristic peaks of anatase TiO2 (ICCD 89-4203)
and SnO2 tetragonal phase. However, there are no peaks corresponding to rutile TiO2 even
if the TiO2 Degussa contains both crystalline structures. Based on the close proximity of
the metal oxide diffraction peaks, the rutile TiO2 main peak may be covered by the SnO2
(110) peak intensity which is present in the same diffraction area [56]. The SnO2 peak
intensity increases in sample TiO2_SnO2 (1:2) where the SnO2 ratio is higher. Moreover, the
shape of the SnO2 peaks is different compared with ZnO_SnO2 samples that may suggest
changes of the crystallite sizes [57,58]. The post-deposition thermal treatment used in order
to eliminate all the carbonaceous species may also influence the synergy between the metal
oxide particles.

The EDS measurements were done to investigate the elemental composition at the
tandem structures surface and the results are presented in Table 2. The qualitative results
were compared with theoretical oxygen content calculated considering the stoichiometric
compounds identified in XRD results. In all samples, the values indicate an oxygen excess
which is consistent with our previous studies [59,60] showing that the samples submitted to
post-deposition treatment in reach oxygen atmosphere will develop higher oxygen content.
The ratio between metal ions at the surface is not the same as the initial values used during
the tandem structure deposition. This was expected considering that the deposition method
and the dispersive procedure do not allow an accurate control in terms of homogeneity [61].
In this case, the possibility of composition variation may occur especially in bulk where the
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tendency of forming aggregates is higher. However, the element which is in higher ratio
during the deposition will remain predominant at the sample surface. In addition, due to
the annealing treatment in air at elevated temperatures, most of the oxygen vacancies will
be passivated according with Equation (3).

VO
− + 1/2O2 → OO

x + 2h−. (3)

Table 2. Average atomic composition at the surface (EDS) and the corresponding oxygen percentage
based on stoichiometric composition.

Components
Elemental Composition [% at]

Zn Ti Sn O Oth
1

ZnO_SnO2 (2:1) 28.8 - 12.6 56.3 54.0
ZnO_SnO2 (1:2) 13.8 - 22.5 61.7 58.8
TiO2_SnO2 (2:1) - 19.3 12.1 65.9 62.8
TiO2_SnO2 (1:2) - 10.7 21.3 66.2 64.0

1 Theoretic content calculated based on the stoichiometry.

The morphology plays an important role in the photocatalytic activity considering
that most of the active sites that generate the oxidative species are located on the film
surface [62,63]. The results were correlated with the quantitative evaluation of the tandem
structures presented in Table 3.

Table 3. Tandem structures quantitative evaluation.

Properties ZnO SnO2 TiO2
ZnO_SnO2

(2:1)
ZnO_SnO2

(1:2)
TiO2_SnO2

(2:1)
TiO2_SnO2

(1:2)

Thickness [µm] 1 2.63 2.41 1.88 3.27 3.52 2.13 2.61
Volume [cm3] 18.07 × 10−5 17.84 × 10−5 14.62 × 10−5 23.68 × 10−5 28.17 × 10−5 16.51 × 10−5 18.33 × 10−5

Density [g/cm3] 6.4 6.2 4.9 7.1 6.3 5.4 6.5
Weight [g] 1.15 × 10−3 1.10 × 10−3 7.16 × 10−4 1.68 × 10−3 1.77 × 10−3 8.91 × 10−4 1.19 × 10−3

1 Calculated from the reflectance spectra at 6◦ incident angle.

The SEM images (Figure 2) indicate that the surface morphology depends on the
composition ratio of the tandem structure. The mono-component samples (Figure 2a–c)
exhibit lower thickness compared to tandem systems due to the uniform particles size
(60–80 nm for ZnO, 50–70 nm for SnO2, and 20–40 nm for TiO2) used to prepare the
precursor paste. The aggregates formation is present in all samples but the size is lower
in mono-component samples compared with the tandem system. The tandem systems
include particles with various sizes which have the tendency to form larger agglomerations
which are not completely dispersed during the diffusion process. Sample ZnO_SnO2 (2:1)
(Figure 2d) exhibits higher density compared with sample ZnO_SnO2 (1:2) and large grains
with irregular shape. When SnO2 is the majority component, the sample density increases
as well as the film thickness. Sample ZnO_SnO2 (1:2) shows a porous morphology and a
thickness of around 3.52 µm. However, the tandem sample composed from TiO2 and SnO2
presents small grains closely packed and smaller thickness values which indicate a good
structural compatibility between the components. The formation of surface irregularities
on the TiO2_SnO2 samples may be attributed to the residual particles that occur during the
post-deposition thermal treatment [64,65]. The extension of these irregularities is limited,
indicating that it is not a characteristic of the tandem structures morphology. The organic
additives were used to increase the mechanical adhesion on the microscopic glass substrate,
otherwise there is a risk of film collapse during the photocatalytic experiments [66].
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Figure 2. Scanning electron microscopy images of the samples: (a) ZnO, (b) SnO2, (c) TiO2,
(d) ZnO_SnO2 (2:1), (e) ZnO_SnO2 (1:2), (f) TiO2_SnO2 (2:1), and (g) TiO2_SnO2 (1:2).

3.2. Photocatalytic Activity
3.2.1. Photocatalytic Efficiencies and Kinetics

The photocatalytic removal efficiency of Tr and Apd molecules were tested for all
tandem structures using three different irradiation scenarios. The lowest photocatalytic
efficiencies (Figure 3a,b) were obtained using a Vis irradiation scenario due to the metals
oxides band gap energies which correspond to the UV region.

Figure 3. Photocatalytic activity toward Tr molecule: (a,b) removal efficiency, (c) photocatalytic removal efficiency vs. total
irradiance, and (d) photocatalytic removal efficiency vs. photon flux.
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The bare ZnO and TiO2 samples exhibit 58% and, respectively, 76% photocatalytic
removal efficiencies under UV irradiation. The lowest photocatalytic activity was recorded
for bare SnO2 which is able to reach only 35% efficiency using UV light sources. The
tandem structures show higher photocatalytic activity due to the cumulated effect of
multiple charge carriers generation and low recombination rate. The highest efficiency of
90% was recorded for Tr removal during the UV irradiation of TiO2_SnO2 (2:1) sample
(Figure 3b). Using the same irradiation scenario but changing the TiO2_SnO2 ratio to
1:2, the photocatalytic removal efficiency decreased to 80%. These results indicate that
TiO2 content in the TiO2_SnO2 tandem structure is the driving photocatalitic factor with a
significant contribution on the pollutant removal efficiency.

The ZnO_SnO2 samples exhibit similar photocatalytic behavior (Figure 3a) and reach
73% photocatalytic efficiency under UV irradiation when the ZnO_SnO2 ratio is 2:1. The
total irradiance (Figure 3c) and the photon flux (Figure 3d) evaluations indicate that in
order to obtain high photocatalytic values the wavelength radiation must be correlated
with the photocatalytic materials. Otherwise, high irradiance and photon flux is not
enough to enhance the photocatalytic properties. By coupling UV with Vis radiation,
the photocatalytic removal efficiency decreases due to the lower photons concentration
available to generate the oxidative species during the Tr removal.

The Apd photocatalytic removal efficiency (Figure 4a,b) is lower compared with Tr
due to the higher chemical stability of the Apd molecule [67].

Figure 4. Photocatalytic activity toward Apd molecule: (a,b) removal efficiency, (c) total irradiance vs. pollutant removal
efficiency, and (d) photocatalytic removal efficiency vs. photon flux.
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The highest photocatalytic efficiency (Figure 4b) was recorded for sample TiO2_SnO2
(2:1) under UV irradiation able to reach 57% compared with 42% for bare TiO2 or 30%
for bare ZnO. However, the difference between TiO2_SnO2 and ZnO_SnO2 samples in
terms of photocatalytic activity is not so obvious for the Apd molecule. Due to the higher
induction period, the samples require a longer period to produce enough oxidative species
(manly ·O2

−, HO− radicals) necessary to decompose the pollutant molecules. Figure 4c,d
indicates that using 12.6 W/cm2 total irradiance and 24.83 µmol/m2·s photo flux from UV
sources can induce an increase of the photocatalytic activity compared with 17.3 W/cm2

and 68.42 µmol/m2·s from Vis sources. Based on the photocatalytic efficiency curve shape,
the ZnO_SnO2 samples will reach the saturation point faster compared with TiO2_SnO2
tandem structures. In this case, longer irradiation periods can increase the photocatalytic
activities differences between the samples.

Furthermore, the influence of the light radiation and tandem structure composition
was correlated with the photocatalytic kinetic data, based on the simplified Langmuir-
Hinshelwood (L-H) mathematical equation, see Equation (4):

ln C/C0 = −kt. (4)

The kinetic evaluation of the Tr photocatalytic removal (Figure 5) indicates that the
rate constant is almost double (Table 4) when TiO2/SnO2 samples are irradiated with UV
radiation compared with mixed UV-Vis radiation. Additionally, the photocatalytic activity
under UV radiation of the TiO2_SnO2 samples is 28× faster compared with Vis radiation.

Figure 5. Kinetic evaluation of photocatalytic activity toward Tr molecule: (a,b) removal kinetics, (c) photon flux vs. removal
rate constant.
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Table 4. Kinetic data corresponding to Tr pollutant.

Kinetic Data
ZnO_SnO2 (2:1) ZnO_SnO2 (1:2) TiO2_SnO2 (2:1) TiO2_SnO2 (1:2) ZnO SnO2 TiO2

k [s−1] R2 k [s−1] R2 k [s−1] R2 k [s−1] R2 k [s−1] R2 k [s−1] R2 k [s−1] R2

Tr

UV 0.1731 0.9972 0.1340 0.9922 0.2724 0.9495 0.1997 0.9709 0.1169 0.9885 0.0571 0.9927 0.1790 0.9771
UV-Vis 0.1240 0.9898 0.0976 0.9927 0.1728 0.9724 0.1392 0.9842 0.0794 0.0016 0.0257 0.9940 0.1187 0.9870

Vis 0.0153 0.9962 0.0104 0.9840 0.0097 0.9910 0.0086 0.9938 - - - - - -

Adp

UV 0.0844 0.9987 0.0582 0.9979 0.1030 0.9910 0.0804 0.9904 0.0462 0.9989 0.0228 0.9959 0.0678 0.9950
UV-Vis 0.0291 0.9954 0.0214 0.9962 0.0624 0.9949 0.0406 0.9954 0.0252 0.9968 0.0139 0.9977 0.0340 0.9938

Vis 0.0199 0.9942 0.0092 0.9943 0.0063 0.9456 0.0063 0.9456 - - - - - -

Lower differences are recorded for ZnO_SnO2 samples where the photocatalytic
activity under UV radiation is 1.4× higher compared with mixed UV–Vis radiation and
11× faster compared with Vis radiation. Based on the comparative evaluation of the rate
constant vs. photon flux (Figure 5c), TiO2_SnO2 (2:1) exhibits the optimum photocatalytic
activity for both UV and UV-Vis radiation scenarios.

The kinetic evaluation for Apd photocatalytic removal (Figure 6) indicates that the
reaction rate decreases significantly compared with Tr photocatalytic removal and the
differences between radiation scenarios are lower.

Figure 6. Kinetic evaluation of photocatalytic activity toward Apd molecule: (a,b) removal kinetics, (c) photon flux vs.
removal rate constant.
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Even if the photocatalytic activity remains higher under UV radiation, the reaction
rate is influenced by the pollutant molecule stability. The TiO2_SnO2 and ZnO_SnO2
samples exhibit under UV radiation 2× higher photocatalytic activity compared with
UV-Vis radiation. However, this results indicate that the ZnO_SnO2 (2:1) sample is suitable
for the pesticide removal and the rate constant (Figure 6c) at 24.83 µmol/m2·s photo flux is
higher comparative with the TiO2_SnO2 (1:2) tandem structure.

The influence of photon absorption based on the UV scenario was evaluated using the
L-H model proposed by Turchi and Ollis [68]:

r = −dC
dt

=
krKSC

1 + KSC
, (5)

where kr (mol/L·min) represent the apparent reaction rate constant, C is the acetamiprid
and tartrazine (Tr and Apd) concentrations (mol/L), r (mol/L·min) represent the photo-
catalytic removal rate, and KS (L/mol) is the apparent adsorption constant. Consequently,
the kr·KS term is used to describe the apparent rate constant k (min−1) corresponding to
the photocatalytic activity. The kr constant should consider the photon flux values and
Equation (5) can be changed accordingly:

1
r
=

1
krKS

· 1
C
+

1
kr

. (6)

Using the linear plot 1/C vs. 1/r, as well as the (1/kr) intercept and the (/krKS) slope allow
evaluating the kinetic parameters, and the results obtained for UV radiation are presented
in Table 5.

Table 5. Kinetic parameters based on Equation (6) for UV radiation.

Tandem Structure, Pollutant kr·108 (mol/L·min) KS (mol/L)

ZnO/SnO2 (2:1), Tr 4.13 163,392.4
ZnO/SnO2 (2:1), Apd 2.44 105,831.8

ZnO/SnO2 (1:2), Tr 1.83 95,273.5
ZnO/SnO2 (1:2), Apd 1.38 48,527.9

TiO2/SnO2 (2:1), Tr 5.28 294,772.3
TiO2/SnO2 (2:1), Apd 3.71 149,934.0

TiO2/SnO2 (1:2), Tr 5.14 263,972.6
TiO2/SnO2 (1:2), Apd 3.53 135,729.1

The values based on the mathematical model indicate that L-H exhibit a good fit
with the experimental data for ZnO_SnO2 (2:1), TiO2_SnO2 (2:1), and TiO2_SnO2 (1:2)
tandem structures. In these three situations, the apparent reaction rates and the apparent
adsorption constant have the some order of magnitude, while for the ZnO_SnO2 (1:2)
tandem structure, there is one order of magnitude difference. These results were also
observed by Isac et al. [69], showing that using tandem structures based on metal oxides
with compatible band gaps will favor the charge carriers photogeneration and conversion
to oxidative species. The results show that it is feasible to consider that the degradation
mechanism is affected not only by the radiation type but also by the pollutant chemical
stability during the photocatalytic activity.

3.2.2. Photocatalytic Mechanisms

The structure representation of the tandem components band energies (Figure 7) will
provide additional information regarding the photocatalytic experimental results. The
charge carriers concentration and mobility depend on the suitable disposal of the energy
bands and were evaluated based on the Gao et al. [70] and Mise et al. [71] algorithms.
The details procedure for the conduction band (CB) and valence band (VB) potentials
evaluation for tandem structure was previously presented [72].
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Figure 7. Band energy diagrams (a) and the corresponding band gap values (b–d).

The bands energy diagram indicates that under light irradiation the photogenerated
electrons from the SnO2 valence band are transferred on zinc oxide valence band which is
the closest energy level in the ZnO_SnO2 tandem structure or on titanium oxide valence
band in the TiO2_SnO2 sample. The photogenerated electron-hole pairs within the charged
space region are efficiently separated by the electric field [73]. The charge carrier’s insertion
in the depletion layer will induce an increase of the concentration gradient over the tandem
structure, resulting in the development of a diffuse layer [74,75]. Consequently, due to the
combined effect of drift and diffusion, the photogenerated electrons and holes will flow
through the tandem components. The ZnO, TiO2, and SnO2 conduction band (CB) edges
are situated at−0.25,−0.31, and−0.10 eV vs. normal hydrogen electrode (NHE). The SnO2
valence band (VB) edge (+3.41 eV) is lower compared to ZnO (+2.85 eV) and TiO2 (+3.00 eV).
The charge carrier’s diffusion in both tandem structures will evolve form the SnO2 valence
band to the most closely energy level represented by the ZnO or TiO2 valence band and
overcome the band gap energy in order to transfer in the conduction bands [76]. The
effective band gap value of the ZnO_SnO2 and TiO2_SnO2 tandem systems was evaluated
according to Scanlon et al. [77]. The results confirm the extended Vis activation (up to
420 nm) of the ZnO_SnO2 which explain the presence of photocatalytic activity (even at
low values) under the Vis irradiation. As expected, there is no evidence that the band gap
values depends on the mass ration between the components.

The pollutant mineralization is related with the tandem structure ability to generate
interfacial oxidative species according to the following Equations (7)–(10):

Tandem structure + hν→ e− + h+, (7)

h+ (Tandem structure) + H2O→ OH (Tandem structure) + H+, (8)

Organic Pollutant + OH→ Photocatalysis products, (9)

O2 + e− → O2
− (aqueous solution). (10)
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4. Conclusions

The photocatalytic activity evaluation shows that the highest efficiency (90%) for Tr
dye removal was obtained for sample TiO2_SnO2 (2:1) under UV radiation. Based on the
same radiation scenario, the ZnO_SnO2 (2:1) sample exhibits 70% photocatalytic removal
efficiency. The photocatalytic reaction rate is significantly influenced by the radiation
type and tandem composition. The TiO2_SnO2 samples reaction rate is double under UV
radiation compared with UV–Vis radiation and 28× higher compared with Vis radiation.
Compared with bare ZnO, SnO2, and TiO2, the tandem structures exhibit improved photo-
catalytic efficiency due to the lower recombination rate and higher photogenerated charge
carrier density.

The changes in the photocatalytic activity are smaller during the Apd photocatalytic
removal. The reaction rate for TiO2_SnO2 samples is 13× higher in UV compared with Vis
radiation. Additionally, the constant rate of the ZnO_SnO2 (2:1) sample is higher than that
of TiO2_SnO2 (1:2) under UV radiation. The charge carriers mobility based on the energy
band diagram indicate that the photogenerated electrons follows the type II mechanism
and have a significant contribution on the development of oxidative species.

These results indicate that the photocatalytic process optimization should consider a
suitable optimization between the radiation sources, photon flux, catalyst materials, and
pollutant type. Using high irradiance and photon flux is not enough to assure high photo-
catalytic efficiency. The correlations of the irradiation scenario with photocatalyst materials
and pollutant type will have a positive impact on the overall photocatalytic efficiency,
improving the charge carrier’s photogeneration and the formation of oxidative species.
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