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Small Rho GTPases are molecular switches that are involved in multiple processes
including regulation of the actin cytoskeleton. These GTPases are activated (turned on)
and inactivated (turned off) through various upstream effector molecules to carry out
many cellular functions. One such upstream modulator of small Rho GTPase activity
is delta-catenin, which is a protein in the p120-catenin subfamily that is enriched in
the central nervous system. Delta-catenin affects small GTPase activity to assist in the
developmental formation of dendrites and dendritic spines and to maintain them once
they mature. As the dendritic arbor and spine density are crucial for synapse formation
and plasticity, delta-catenin’s ability to modulate small Rho GTPases is necessary
for proper learning and memory. Accordingly, the misregulation of delta-catenin and
small Rho GTPases has been implicated in several neurological and non-neurological
pathologies. While links between delta-catenin and small Rho GTPases have yet to
be studied in many contexts, known associations include some cancers, Alzheimer’s
disease (AD), Cri-du-chat syndrome, and autism spectrum disorder (ASD). Drawing
from established studies and recent discoveries, this review explores how delta-catenin
modulates small Rho GTPase activity. Future studies will likely elucidate how PDZ
proteins that bind delta-catenin further influence small Rho GTPases, how delta-catenin
may affect small GTPase activity at adherens junctions when bound to N-cadherin,
mechanisms behind delta-catenin’s ability to modulate Rac1 and Cdc42, and delta-
catenin’s ability to modulate small Rho GTPases in the context of diseases, such as
cancer and AD.
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INTRODUCTION

Small Rho GTPases are enzymes that bind and hydrolyze GTP. They act as molecular on-
off switches by cycling between their GTP-bound active state and their GDP-bound inactive
state through their interactions with a wide variety of regulatory and effector molecules. While
GTPases are involved in almost all cellular processes, the Rho subfamily is best known for
cytoskeletal reorganization. Small Rho GTPases have many modulators of their activity, with
one being delta-catenin (Martinez et al., 2003; Abu-Elneel et al., 2008; Kim et al., 2008; Gu
et al., 2009; Ghose et al., 2015). Delta-catenin is predominantly expressed in nervous tissue
and is required for regular neuronal function (Lu et al., 1999; Ho et al., 2000). For example,
delta-catenin affects the formation and maintenance of dendrites and dendritic spines, both of
which are crucial for forming neuronal contacts and networks, and for synaptic plasticity and
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learning (Abu-Elneel et al., 2008; Yuan et al., 2015; McCann
and Ross, 2017). As such, alterations of delta-catenin expression
have been found in several neurological pathologies, including
Alzheimer’s disease and Cri-du-chat syndrome. Many of delta-
catenin’s functions are known or thought to be through its ability
to modulate small Rho GTPase activity. Thus, delta-catenin’s
ability to modulate small Rho GTPases is crucial for healthy
neuronal function.

Structure, Localization, and Expression
of Delta-Catenin
Delta-catenin—also known as NPRAP or neurojungin
(Paffenholz and Franke, 1997)—is a member of the p120-
catenin protein subfamily, which also includes p120-catenin
itself, ARVCF-catenin, and p0071-catenin. As is characteristic
of the p120-subfamily, delta-catenin contains a central series of
10 Armadillo (ARM) repeats, with this Armadillo region being
flanked by N- and C-terminal tail domains. Along with ARVCF
and p0071, delta-catenin contains a PDZ-binding motif at its
very C-terminus. In the brain, delta-catenin can additionally
be found as a longer isoform that contains an extra coiled-coil
within its N-terminal tail (Markham et al., 2014). While delta-
catenin has four transcript variants, only the longest one contains
the coiled-coil domain (Adegbola et al., 2020). A schematic of
delta-catenin’s protein structure is shown in Figure 1. Unlike the
other members of the p120-subfamily that are more uniformly
expressed across mammalian tissues, delta-catenin is highly
enriched in the central nervous system and retina (Lu et al., 1999;
Ho et al., 2000). Delta-catenin has a splice variant that generates
a 25-residue insert at the start of the 7th Armadillo domain
(Paffenholz and Franke, 1997). While this variant is expressed
throughout the fetal and adult brain, the shorter variant lacking
this insert is predominant in most regions of the developing
and mature brain (Kawamura et al., 1999). Currently, there are
no known functional differences between these two isoforms
(Ishiyama et al., 2010), but the location of the 25-residue insert
on the longer isoform suggests a potential role in regulating
the structure and function of the insert region (Yuan and
Arikkath, 2017). Delta-catenin has established roles at adherens
junctions where it stabilizes N-cadherin (Fannon and Colman,
1996; Benson and Tanaka, 1998; Israely et al., 2004; Yuan et al.,
2015). It is also present in the cytoplasm and nucleus, even as
delta-catenin’s roles in the latter are less certain. For example,
while delta-catenin was found to bind the gene regulatory protein
ZIFCAT in the nucleus upon delta-catenin’s caspase3-mediated
cleavage, the functional extent of this interaction remains to be
studied (Gu et al., 2011). Furthermore, uncleaved delta-catenin
can enter the nucleus to bind and modulate the transcriptional
regulator Kaiso (Rodova et al., 2004; Dai et al., 2011; McCrea and
Gottardi, 2016). Delta-catenin also functionally interacts with the
Wnt pathway, although it may not need to enter the nucleus itself
in this context, where it promotes canonical Wnt/β-catenin/LEF-
1-mediated transcription (Nopparat et al., 2015). Intriguingly,
delta-catenin is also reported to be degraded by the Wnt-
pathway destruction component Axin, suggesting some parallels
with beta-catenin (Hong et al., 2010). In central neurons,

immunocytochemistry has shown that delta-catenin is present in
the cytosol and at the inner cell membrane and that it localizes to
dendrites, postsynaptic terminals, and growth cones (Martinez
et al., 2003; Arikkath et al., 2008; Yuan et al., 2015; Baumert et al.,
2020).

Small Rho GTPases
The Rho subfamily of small GTPases is part of the Ras
superfamily of proteins. While more than 20 Rho GTPases
are known to exist, the most fully characterized are RhoA
(Ras homologous member A), Rac1 (Ras-related C3 botulinum
toxin substrate 1), and Cdc42 (cell division cycle 42). GTPases
are small G-proteins that bind to and hydrolyze guanosine
triphosphate (GTP) to guanosine diphosphate (GDP). These
GTPases cycle between their active GTP-bound states and their
inactive GDP-bound states through the involvement of guanine
nucleotide exchange factors (GEFs), GTPase-activating proteins
(GAPs), and GDP dissociation inhibitors (GDIs). GEFs enhance
the exchange of GDP for GTP to increase GTPase signaling,
GAPs increase GTP hydrolysis to decrease GTPase signaling,
and GDIs prevent the exchange of GDP for GTP to inhibit
GTPase signaling (Zalcman et al., 1999; Hoffman et al., 2000;
Schmidt and Hall, 2002; Bernards, 2003; Bernards and Settleman,
2004). Cycling between their active and inactive states allows
for GTPases to regulate various biomolecular pathways that act
upon the cytoskeleton. Among others, these pathways involve cell
migration, cell adhesion, cell polarity, wound healing, membrane
trafficking, and cytokinesis (Tapon and Hall, 1997; Heasman
and Ridley, 2008; Hall, 2012; Zegers and Friedl, 2014; Arrazola
Sastre et al., 2020; Clayton and Ridley, 2020). As such, Rho
GTPases are involved in some capacity in all stages of neuron
development, including regulating dendrite morphogenesis,
dendritic spine dynamics, synaptic plasticity, neurotransmitter
receptor clustering, long-term potentiation and neuronal survival
(Jones et al., 2004; Auer et al., 2011; Martino et al., 2013;
Musilli et al., 2013; Stankiewicz and Linseman, 2014; Vaghi
et al., 2014; Hedrick and Yasuda, 2017; Zamboni et al., 2018).
Functionally, these parameters in neuron development influence
memory, learning, and cognition. Thus, misregulation of Rho
GTPases leads to neurological impairments and pathologies
(Guiler et al., 2021).

RhoA
Small Rho GTPase activity can be experimentally modulated
through the use of constitutively active (CA) and dominant
negative (DN) mutations. As these GTPases have roles in actin
reorganization, modulating their activity in various neuronal
model systems has shown that small Rho GTPases play a
substantial role in dendritic arbor development. RhoA tends to
have an inhibitory effect on neuronal dendrites, as CA RhoA
reduces dendritic arbor growth in mouse and rat hippocampal
neurons, Drosophila mushroom body neurons, and Xenopus
retinal ganglion cells (Ruchhoeft et al., 1999; Lee et al., 2000;
Nakayama et al., 2000; Ahnert-Hilger et al., 2004; Pilpel and
Segal, 2004). Conversely, DN RhoA increases the dendritic
arbor in mouse and rat hippocampal neurons, overextends
dendrites in Drosophila mushroom body neurons, and increases
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FIGURE 1 | Schematic of delta-catenin protein structure. The structures include a coiled-coil domain (green), 9 armadillo (ARM) repeats (purple), and a PDZ binding
motif (yellow). An alternative splicing insert that is 25 amino acids in length is in the 7th ARM repeat (cyan). The amino acid number corresponding to where each
domain is listed below. Amino acids corresponding to small gaps between ARM domains are not shown.

the dendritic arbor growth rate in Xenopus optic tectal neurons
(Lee et al., 2000; Li et al., 2000; Ahnert-Hilger et al., 2004).
Furthermore, RhoA activation causes growth cone collapse
(Stankiewicz and Linseman, 2014). These studies collectively
show that RhoA activation negatively regulates dendritic growth,
and conversely that RhoA inhibition enhances it. Along with
dendritic arborization, small Rho GTPases are known to play
roles in dendritic spine morphology and maintenance. Similar to
its negative regulation regarding dendrite arborization, CA RhoA
reduces dendritic spine density in hippocampal neurons and slice
cultures (Nakayama et al., 2000; Tashiro et al., 2000; Impey et al.,
2010). While CA RhoA decreases spine length in mouse and rat
hippocampal neurons, the effects of RhoA inhibition on spine
morphology are less clear. DN RhoA increased spine length and
reduced spine density in rat hippocampal neurons, increased
spine density and spine length in mouse hippocampal neurons,
and did not influence spine density in pyramidal neurons from
rat hippocampal slices (Nakayama et al., 2000; Tashiro et al.,
2000; Pilpel and Segal, 2004; Tashiro and Yuste, 2004; Impey
et al., 2010; Murakoshi et al., 2011; Orefice et al., 2016; Zhang
et al., 2021). These discrepancies may be caused by differences in
neuron age, type, local levels of activity, definitions used for what
constitutes dendritic spines, or distinctions in the extent of cell
contact with other neurons or glia arising from non-equivalent
plating densities (Govek et al., 2005). Overall, RhoA activity is
generally a negative regulator of dendritic arborization, spine
density, and spine growth.

Rac1
While RhoA serves as a negative regulator, Rac1 works as a
positive regulator in dendritic arborization, spine formation, and
spine morphology. CA Rac1 increases dendritic complexity in
Xenopus retinal ganglion cells and rat primary cortical neurons,
while DN Rac1 results in a significant reduction in dendritic
length and branching in Xenopus retinal ganglion cells, rat
primary cortical neurons, Drosophila mushroom body neurons,
and mouse cortical pyramidal neurons (Threadgill et al., 1997;
Ruchhoeft et al., 1999; Hayashi et al., 2002; Ng et al., 2002).
Rac1 activity also increases growth cone development and
neurite growth (Stankiewicz and Linseman, 2014). However,
these findings are likely dependent on the specific neuron type,
as studies in some systems have shown that CA and DN Rac1
have little to no effect on dendrite length and branching (Luo
et al., 1994, 1996; Nakayama et al., 2000). These results may
also highlight that Rac1 must cycle between its active and

inactive forms in order to function properly. Furthermore, CA
Rac1 decreases spine size and increases spine density in mice
Purkinje cells, mouse cortical and hippocampal neurons, and rat
hippocampal neurons (Luo et al., 1996; Nakayama et al., 2000;
Tashiro et al., 2000; Pilpel and Segal, 2004). Interestingly, these
same experiments have shown that the presence of CA Rac1
causes a distinct spine morphology—these spines form multiple
smaller protrusions that look like miniature spines, which often
form double synapses (Govek et al., 2005). Conversely, DN
Rac1 decreases spine density, increases spine length, increases
spine head width, but impairs spine stability and head motility
(Nakayama et al., 2000; Tashiro and Yuste, 2004; Hedrick et al.,
2016). Taken together, Rac1 is generally a positive regulator in
dendritic arborization, spine formation, and spine maintenance.

Cdc42
Like Rac1, Cdc42 is a positive regulator of dendritic arborization,
spine formation, and spine morphology, though Cdc42 generally
has less pronounced effects relative to Rac1. CA Cdc42 increases
branching in Xenopus optic tectal neurons and increases
dendritic growth in chick spinal neurons, while DN Cdc42
reduces the number of dendrites and dendritic length in Xenopus
retinal ganglion cells mouse pyramidal neurons (Ruchhoeft
et al., 1999; Kuhn et al., 2000; Li et al., 2000). Cdc42 activity
also leads to increased growth cone development and neurite
growth (Stankiewicz and Linseman, 2014). While there have
been some conflicting studies in which Cdc42 occasionally
appears to negatively regulate dendritic arborization, these
discrepancies may again be caused by differences in model
systems and the inability of Cdc42 to cycle between its active
and inactive states. Furthermore, Cdc42 is still thought to be
a positive regulator because many of its upstream regulators
increase dendritic arborization (Govek et al., 2005). The role
of Cdc42 in spine formation and morphology is less studied
and less well understood than those of RhoA and Rac1, but
some findings suggest Cdc42 may act as a positive regulator in
this case as well. Decreased Cdc42 activity causes a reduction
in pyramidal neuron spine density in mice and Drosophila
(Cheng et al., 2003; Scott et al., 2003). Furthermore, Cdc42
inhibition was found to impair spine maintenance (Murakoshi
et al., 2011). However, in other cases, neither CA nor DN
Cdc42 affects spine density or morphology (Tashiro et al., 2000).
Taken together, these studies suggest that Cdc42 is generally a
positive regulator of dendritic arborization, spine formation, and
spine maintenance.
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While this review focuses on the cytoskeletal functions of
small Rho GTPases in neuron development with relevance
to delta-catenin as a modulator, more comprehensive reviews
describe detailed mechanisms of these GTPases in many aspects
of neuron development (Govek et al., 2005; Stankiewicz and
Linseman, 2014).

DELTA-CATENIN MODULATES Rho
GTPase ACTIVITY

Delta-catenin has been shown to modulate small Rho GTPase
activity—specifically the Rho GTPases RhoA, Rac1, and Cdc42
(Braga, 2000; Abu-Elneel et al., 2008; Ghose et al., 2015). Several
studies have indicated that delta-catenin expression correlates
with Rho inhibition, Rac1 activation, and Cdc42 activation
(Martinez et al., 2003; Abu-Elneel et al., 2008; Kim et al., 2008;
Gu et al., 2009; Ghose et al., 2015).

Delta-Catenin in the Cytoplasm
While delta-catenin has been shown to modulate the activity
of all three aforementioned Rho GTPases, the mechanism
underlying delta-catenin’s interaction with RhoA is the most
well-characterized. Delta-catenin overexpression has been shown
in several instances to inhibit RhoA, which is associated with
increased dendritic branching (Martinez et al., 2003; Abu-Elneel
et al., 2008; Kim et al., 2008; Gu et al., 2009). More specifically,
higher cytosolic levels of delta-catenin inhibit RhoA activity
(Kim et al., 2008). Increased cytosolic levels of delta-catenin
have been shown to sequester p190RhoGEF, which in turn
prevents RhoA from cycling to its GTP-bound active state,
as represented in Figure 2 (Kim et al., 2008). Furthermore,
delta-catenin requires phosphorylation at T454 by Akt in
order to sequester p190RhoGEF (Kim et al., 2008). Because
Akt phosphorylation of T454 does not alter Rac1 or Cdc42
activity, delta-catenin’s interactions with RhoA likely occur
through a different mechanism than Rac1 or Cdc42 (Kim

et al., 2008). Furthermore, p190RhoGEF sequestration and RhoA
inhibition by delta-catenin may be modulated by manipulating
N-cadherin levels. When N-cadherin levels are elevated, more
delta-catenin becomes associated with the N-cadherin-catenin
complex which decreases the cytosolic levels of delta-catenin,
and in turn, decreases delta-catenin’s cytosolic ability to sequester
p190RhoGEF (Gilbert and Man, 2016). Thus, one model is
that elevated N-cadherin levels, through increased membrane
association of delta-catenin, result in raised RhoA activity and
therefore decreased dendritic arborization.

It should be noted that while delta-catenin’s interaction
with p190RhoGEF to inhibit RhoA activity is currently the
major model that points to a mechanism, delta-catenin may
regulate RhoA and other small Rho GTPases through unstudied
mechanisms. This is supported by the fact that p120-catenin
is known to modulate small Rho GTPases through various
mechanisms in which it can associate with GEFs, GAPS, or
act as a GDI by binding directly to RhoA (Niessen and Yap,
2006; Anastasiadis, 2007). As such, further studies are needed
to elucidate delta-catenin’s potential mechanisms of small Rho
GTPase modulation.

RhoA inhibition by delta-catenin may be cell-type and
cell-compartment specific. For example, the overall RhoA
activity levels in neurons were not altered in homozygous
and heterozygous delta-catenin “N-term” mice, which are
mice where the generated delta-catenin polypeptide lacks the
central-Armadillo and C-terminal tail domains required for its
localization and much of its function (Yuan and Arikkath, 2017).
On the other hand, in expression studies, the phosphorylation
state of delta-catenin’s C-terminal PDZ-binding motif has a
significant impact on the activity of RhoA situated in dendrites,
if not RhoA in the soma (Baumert et al., 2020). Thus, the
response of RhoA to delta-catenin presence may depend on the
cellular compartment in question, as well as phospho-states of
delta-catenin that influence its protein associations.

While less well-understood, delta-catenin has been indicated
to alter Rac1 and Cdc42 activity as well. Delta-catenin increased

FIGURE 2 | Cytosolic RhoA is inhibited upon the sequestration of p190RhoGEF by cytosolic delta-catenin. An increase in membrane-bound N-cadheren levels in
turn lowers delta-catenin presence in the cytosol, such that p190RhoGEF can now transition RhoA from its GDP-bound inactive state to its GTP-bound active state.
Created with https://BioRender.com.
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Rac1 and Cdc42 activity in lymphatic endothelial cells and
Chinese hamster ovary cells (Abu-Elneel et al., 2008; Ghose
et al., 2015). Furthermore, a dominant negative Rac1 construct
was able to inhibit the increased spine density caused by delta-
catenin (Abu-Elneel et al., 2008). While neurons from delta-
catenin N-term mice did not exhibit lower levels of Rac1 than
neurons from wild-type mice (Arikkath et al., 2008), delta-
catenin’s ability to alter Rac1 activity levels may be cell-type and
cell-compartment dependent. Measuring global levels of small
Rho GTPase activity may not detect key changes in the activity of
subpopulations of GTPases, such as distinctions in the activity of
Rho GTPase in neurites vs. the cell body. Biosensors, that permit
visualization of subcellular small Rho GTPase activity, may be
useful in future studies to address this issue (Hodgson et al., 2010;
Kim et al., 2019).

Delta-Catenin at Adherens Junctions
At adherens junctions, delta-catenin binds to the cytoplasmic
juxta-membrane region of transmembrane classical cadherins,
which engage in cell-cell adhesion and signaling (Lu et al.,
1999). In mammalian neurons, N-cadherin is the most widely
distributed of the classical cadherins (Yagi and Takeichi,
2000). Delta-catenin is thought to stabilize the cadherin-catenin
complex. In delta-catenin N-term mice, there is a significant
reduction in N-cadherin, beta-catenin, and alpha-catenin protein
levels (Fannon and Colman, 1996; Benson and Tanaka, 1998;
Israely et al., 2004), which given their linkage to the actin
cytoskeleton, participate in conferring adhesive and motility
related properties to adherens junctions. This dependence
indicates that delta-catenin’s presence is crucial for catenin-
cadherin complex stability. While there is currently no evidence
that delta-catenin directly interacts with Rho GTPases while
bound in the cadherin-catenin complex, N-cadherin-dependent
adhesion has been shown to stimulate RhoA activity and decrease
Rac1 and Cdc42 activity in C2C12 myoblasts (Charrasse et al.,
2002). Delta-catenin’s direct or indirect modulation of small
Rho GTPases when bound to cadherins might be suggested by
analogy to p120-catenin, which has been more intensively studied
in non-neuronal systems (Niessen and Yap, 2006; Anastasiadis,
2007). For example, when associated with N-cadherin, it is
conceivable that delta-catenin dissociates briefly to interact
with effector molecules of small Rho GTPases before rebinding
to N-cadherin. Thus, in addition to cytoplasmic roles, delta-
catenin’s modulation of Rho GTPase activity may include doing
so through relationships with the N-cadherin-catenin complex at
adherens junctions.

Delta-Catenin’s C-Terminal Binding
Partners
Delta-catenin’s morphological influence in neurons is due to
interactions that occur with effectors at its various domains.
One such domain is the PDZ-binding motif, which is present
at delta-catenin’s C-terminus and enables it to bind to select
protein partners that contain PDZ domains. Although the
interactions involving delta-catenin’s binding partners are still
being studied, delta-catenin’s PDZ domain interactions have been

found necessary for dendritic spine morphology in developing
neurons (Yuan et al., 2015). While expression of a full-length
delta-catenin construct can rescue spine density and architecture
following shRNA-mediated knockdown in developing neurons,
a delta-catenin construct that is missing its small C-terminal
PDZ motif is unable to do so (Yuan et al., 2015). A notable
interaction at delta-catenin’s PDZ motif is with Erbin (Laura
et al., 2002). Erbin regulates the localization of delta-catenin,
which influences delta-catenin’s effects on dendrite morphology
(Arikkath et al., 2008). Furthermore, phosphorylation of delta-
catenin’s PDZ-binding motif influences its binding partners
and thus functions. In primary rat hippocampal neurons, the
phosphorylation state of S1242 and S1245 (corresponding to
the –3 and –6 residues counting back from delta-catenin’s
C-terminal valine), determines whether delta-catenin binds to
Magi1 or Pdlim5 (Baumert et al., 2020). When these serine
residues are unphosphorylated, delta-catenin binds with Magi1,
which promotes dendritic elongation; conversely, when the same
serine residues are phosphorylated, delta-catenin binds Pdlim5,
which promotes dendritic branching (Baumert et al., 2020).
Selected functional outcomes of delta-catenin’s PDZ domain-
containing binding partners are shown in Figure 3. Delta-
catenin also has associations within its C-terminal domain that
are upstream of its above-noted PDZ binding motif, and that
likewise influence dendrite morphogenesis (Lee et al., 2015).
Some notable interactions are with cortactin and thereby with
actin (Kim et al., 2002; Martinez et al., 2003). When the
tyrosine that resides ninety-nine residues upstream from delta-
catenin’s C-terminus (Y1126) is unphosphorylated, delta-catenin
associates with cortactin, which promotes neurite elongation but
not branching in PC12 cells and hippocampal neurons (Martinez
et al., 2003). While delta-catenin’s PDZ-binding motif has not
been shown to directly influence Rho GTPase activity, several
PDZ-domain proteins are known to both function and physically
interact with Rho GTPases, including members of the PDZ/LIM
(also known as Pdlim or Enigma protein) family, the Magi family,
Ptpl family, and the protein PIST (Saras et al., 1997; Neudauer
et al., 2001; Sakurai et al., 2006; te Velthuis and Bagowski, 2007;
Zhang et al., 2007; Kozasa et al., 2011; Liu et al., 2015). Thus,
delta-catenin’s PDZ-binding motif may serve as another method
to indirectly influence Rho GTPase activity.

FUNCTIONAL ROLES OF
DELTA-CATENIN

Dendrites, Spines, and Synapses
Delta-catenin has several known functional roles in neurons,
including regulating dendrite arborization and spine morphology
(Abu-Elneel et al., 2008; Yuan et al., 2015). Given the roles
of small Rho GTPases in cytoskeletal reorganization, these
functional roles are likely due to delta-catenin’s ability to
modulate RhoA, Rac1, and Cdc42. Upon overexpression, delta-
catenin increases dendritic protrusion density in primary
hippocampal neurons (Abu-Elneel et al., 2008; Kim et al.,
2008; Brigidi et al., 2014; Baumert et al., 2020). Conversely,
delta-catenin loss via shRNA-mediated knockdown reduces the
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FIGURE 3 | Delta-catenin’s PDZ-binding motif at its C-terminus is essential for shaping dendrite morphology via binding with PDZ-domain proteins. (A) Delta-catenin
requires Erbin to bind its PDZ-binding motif for delta-catenin to promote dendritic arborization. In the absence of delta-catenin association with Erbin (e.g., Erbin
depletion), delta-catenin cannot localize properly which results in decreased dendrite length and branching. Based on findings from Arikkath et al. (2008). (B) When
delta-catenin’s PDZ-binding motif is phosphorylated, delta-catenin favors binding Pdlim5, which promotes dendritic branching. Conversely, when delta-catenin’s
PDZ-binding motif is unphosphorylated, delta-catenin has the propensity to bind Magi1, which promotes dendritic lengthening. Based on findings from Baumert
et al. (2020). Neuron morphology is not intended to be compared between panels (A,B), as they are based on findings from separate studies. Created with
https://BioRender.com.

TABLE 1 | Summary of delta-catenin’s associated pathologies.

Pathology Delta-catenin modifications References

Neurological pathologies

Alzheimer’s Disease SNP rs17183619 found in GWAS.
Rare missense mutation G810R found in GWAS.

Jun et al., 2012

Intellectual Disability CNVs found in a case study (partial deletions).
Translocation breakpoint found in a case study.
Deletion of exons 12–18 found in a case study.

Hofmeister et al., 2015; Belcaro et al., 2015

Cri-du-chat
Syndrome

CNV found in a case study (partial duplication + partial deletion).
Functional deletion found in delta-catenin N-term mice.
Hemizygous deletion of 5p15.2 found in case studies.

Israely et al., 2004; Sardina et al., 2014

Autism Spectrum
Disorder

CNV found in case studies (partial duplication + partial deletion).
Mutations G274C, G34S, Q507P, R713C, T862M found in a case study.

Turner et al., 2015

Schizophrenia CNV found in a case study (duplication).
Several CNVs found in GWAS.
Several SNPs found in GWAS (strongest association rs4524507).

Stefansson et al., 2008; Vrijenhoek et al., 2008; Nivard et al., 2014

Non-neurological pathologies

Cancer Multiple mutations found in GWAS, samples, and case studies. Lu et al., 2016

Myopia Multiple SNPs found in case studies and meta-analysis. Lu et al., 2011; Yu et al., 2012; Liu and Zhang, 2014

Malaria Resistance An environmental correlation analysis showed that delta-catenin contributes to
malaria resistance.

Mackinnon et al., 2016

dendritic arbor in primary hippocampal neurons (Arikkath
et al., 2008; Baumert et al., 2020). Reduced dendritic length
and arborization upon delta-catenin knockdown have been
confirmed in vivo via N-term mice (Israely et al., 2004; Arikkath
et al., 2008). Based upon two-photon imaging of brain tissue
from these N-term mice, delta-catenin knockdown does not
affect the dendritic arbor before 5 weeks. However, the amount
of distal dendritic branches in neurons decreased in mice after
that time (Matter et al., 2009). Based on these morphological
effects observed following delta-catenin overexpression and
knockdown, delta-catenin may possess distinct roles during
different stages of development, for example, promoting dendrite

arborization during development and stabilization in adulthood
(Yuan and Arikkath, 2017).

While delta-catenin is known to influence dendritic spine
morphology, studies have shown somewhat contradicting results.
In primary hippocampal neurons, the overexpression of delta-
catenin increases spine and synapse density (Abu-Elneel et al.,
2008; Turner et al., 2015). Furthermore, siRNA-mediated
knockdown of delta-catenin in primary hippocampal neurons
decreases spine and synapse density (Abu-Elneel et al., 2008).
However, similar studies in neurons from N-term mice have
shown differing results. In these studies, the endogenous
expression of N-term delta-catenin leads to an increase in
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synapse and spine density (Arikkath et al., 2009; Brigidi et al.,
2014). There are several possible explanations for the seeming
inconsistencies among studies of delta-catenin’s effects on spine
morphology. For example, a genuine knock-out of delta-catenin
still needs to be generated and assessed, since delta-catenin
N-term, even while lacking delta-catenin’s central-Armadillo and
C-terminal-tail domains, may have unknown (e.g., dominant-
active or –negative) properties. Further, differences in neuron or
glial cell density in culture, or in which splice variant of delta-
catenin is expressed, may influence how delta-catenin interacts
with its binding partners to influence spine density (Yuan and
Arikkath, 2017). Subsequent work will be needed to resolve these
puzzles. In all cases, given delta-catenin’s interactions with Rho
GTPases and the impact that Rho GTPases have on dendrite
and spine morphology, delta-catenin’s morphological effects are
likely to result in significant part from functional interactions
with small Rho GTPases.

PATHOLOGICAL ASSOCIATIONS OF
DELTA-CATENIN

Neurological Pathologies
Consistent with delta-catenin’s influence on dendrite and
spine morphogenesis and maintenance in neurons through
interactions with small Rho GTPases, abnormalities in delta-
catenin have been implicated in several neurological pathologies.
A summary of delta-catenin’s associated pathologies is shown in
Table 1. In fact, delta-catenin was first identified in a screen to
identify binding partners with presenilin 1 (PS1), which is the
most commonly mutated gene in AD (Zhou et al., 1997). Further
investigation showed that delta-catenin recruits PS1 to cadherins,
which inhibits amyloid-beta production (Zhou et al., 1997;
Kouchi et al., 2009). A genome-wide association study (GWAS)
found multiple delta-catenin mutations associated with AD,
including SNP (single nucleotide polymorphism) rs17183619 and
a rare missense mutation (G810R), both of which significantly
increase amyloid-beta in neuronal cell culture (Jun et al., 2012).
This same study also found that cortical cataracts may predict
future AD and that both are associated with the same delta-
catenin mutations (Jun et al., 2012). Small Rho GTPases have
also been extensively implicated in AD, which has been reviewed
elsewhere (Bolognin et al., 2014). In AD, synaptic degeneration
is a significant cause of cognitive impairment (Arendt, 2009). As
small Rho GTPases modulate dendritic spine density as described
above, they have well-established involvement in synaptic
degeneration associated with AD. While interactions between
delta-catenin and small Rho GTPases have not been studied in
the context of AD, it is conceivable that such interactions may
play a role in AD progression. As mentioned above, delta-catenin
expression inhibits RhoA and activates Rac1 and Cdc42, all of
which generally increase synaptic density. Thus, loss of function
mutations in delta-catenin would increase RhoA activity while
decreasing that of Rac1 and Cdc42. This would theoretically
decrease spine density, which could contribute to the synaptic
degeneration associated with AD. However, as this proposed
mechanism is purely speculative, further studies are required to

determine if the delta-catenin mutations associated with AD alter
small Rho GTPase activity and spine morphology as predicted.

Alterations of delta-catenin are also known to cause
intellectual and cognitive dysfunction. N-term mice
demonstrated severe spatial learning deficiency compared
to normal mice (Israely et al., 2004). These same mice also had
synaptic plasticity and composition deficits and accordingly
displayed reduced N-cadherin and PSD95 levels (Israely et al.,
2004). Studies in humans have confirmed delta-catenin’s link
to intellectual disability by investigating mutations in patients
with said disabilities. Delta-catenin’s lowered or aberrant
expression resulting from copy number variations (CNVs),
delta-catenin microdeletions, and a breakpoint of intron 9 on
chromosome 5 of delta-catenin have all been seen in patients
with intellectual disability and dyslexia (Belcaro et al., 2015;
Hofmeister et al., 2015). Similar to the possible mechanism
described in the context of AD, the synaptic plasticity
deficits associated with lowered delta-catenin expression
may be due to the corresponding alterations of small Rho
GTPase activity.

Abnormal delta-catenin expression has also been correlated
with Cri-du-chat syndrome. Hemizygous delta-catenin loss has
been found in children with Cri-du-chat syndrome that are
characterized by severe intellectual disability, although deletions
of the entire 5p15.2 region of the chromosome encompass genes
other than delta-catenin as well. However, the partial deletion
of delta-catenin has also been associated with mild cases of Cri-
du-chat syndrome (Sardina et al., 2014), which helps confirm its
association with the disease in general. While small Rho GTPases
have not been extensively studied in the context of Cri-du-chat
syndrome, it is thought that the cognitive effects of Cri-du-chat
may be in part due to alterations of small Rho GTPase activity
caused by delta-catenin loss of function (Correa et al., 2019).

Delta-catenin haploinsufficiency has also been linked to
autism spectrum disorder (ASD), which is a neurodevelopmental
disorder that affects behavioral and social attributes (Schieve
et al., 2012). Multiple mutations in delta-catenin (G274C, G34S,
Q507P, R713C, T862M) were found to be associated with ASD,
which were then functionally confirmed in ASD patients and
zebrafish (Turner et al., 2015). This study further found that
these mutations are loss-of-function mutations that affect Wnt
signaling (Turner et al., 2015). Though studies on the roles of
small Rho GTPases in ASD are limited, mutations in several genes
that affect small Rho GTPase activity have been implicated (Lin
et al., 2016; Tian et al., 2018; Guo et al., 2020).

There have additionally been several mutations identified that
appear relevant to delta-catenin contributions in schizophrenia.
GWAS studies have shown that both CNVs and SNPs of delta-
catenin are associated with schizophrenia (Stefansson et al., 2008;
The International Schizophrenia Consortium, 2008; Nivard et al.,
2014). Furthermore, a patient with schizophrenia had a CNV that
caused a breakpoint in delta-catenin (Vrijenhoek et al., 2008).
Interestingly, GWAS studies have also shown SNPs on delta-
catenin that are associated with anxiety and depression (Nivard
et al., 2014). Recent studies in delta-catenin transgenic mice have
confirmed that higher levels of delta-catenin are correlated with
reduced anxiety and improved memory (Ryu et al., 2019).
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Non-neurological Pathologies
Despite a relatively diminished presence in non-neuronal tissue,
delta-catenin has been implicated in several non-neurological
diseases. Both delta-catenin and small Rho GTPases have been
well implicated in multiple cancer types. Given that the roles
of delta-catenin and small Rho GTPases in cancer have been
reviewed in detail previously (Lu, 2010; Haga and Ridley, 2016; Lu
et al., 2016; Svensmark and Brakebusch, 2019), and that the focus
of this review is upon neurons, only a brief overview is presented
here. To date, according to the Sanger Catalog of Somatic
Mutations in Cancer, there have been 4,161 unique samples
with delta-catenin mutations from 41,032 total samples. Most
cancers exhibit increased expression of delta-catenin, except for
central nervous system cancers, which exhibit reduced delta-
catenin expression (Lu et al., 2016). Point mutations and CNVs
on delta-catenin have been reported in the skin, large intestine,
stomach, lung, cervical, bladder, esophagus, urinary tract, soft
tissue, prostate, liver, breast, ovarian, and endometrial cancers
(Burger et al., 2002; Zheng et al., 2004; Lu et al., 2005, 2009;
Huang et al., 2006). In recent years, there has been an increase
in studies regarding delta-catenin’s roles in prostate cancer, with
the proposal that delta-catenin may prove to be a therapeutic
target (Shrestha et al., 2018; Zhang et al., 2018; Zhou et al.,
2019; Li et al., 2020; Shen et al., 2021; Chen et al., 2022). While
both delta-catenin and small Rho GTPases have been implicated
in cancer, studies linking the two are limited. That being said,
delta-catenin has been shown to modulate lymphangiogenesis,
proposed to be via consequent effects upon small Rho GTPases
(Ghose et al., 2015). Aside from its roles in cancer, delta-catenin
has been implicated in several genomic studies with potential
roles in myopia and malaria resistance, each being diseases where
the altered activity of small Rho GTPases has been implicated
(Lam et al., 2008; Lu et al., 2011; Atkinson et al., 2012; Yu et al.,
2012; Band et al., 2013; Liu and Zhang, 2014; Wang et al., 2014;
Mackinnon et al., 2016; Yuan et al., 2018; Paone et al., 2020).
However, delta-catenin’s specific roles in these diseases have yet
to be thoroughly grounded. That is, future studies may consider
the interplay between delta-catenin and small Rho GTPases in the
context of these diseases.

CONCLUSION

Although the field has advanced delta-catenin as an established
modulator of small Rho GTPases in neuronal morphology
and function, understanding delta-catenin’s more defined
mechanisms of action will in many cases require further work.
In general, delta-catenin expression inhibits RhoA and activates
Rac1 and Cdc42 (Martinez et al., 2003; Abu-Elneel et al., 2008;
Kim et al., 2008; Gu et al., 2009; Ghose et al., 2015). However,
evidence indicates that these interactions may depend on a
variety of other factors, including the subcellular compartment
under consideration (e.g., neurite vs. soma), type of cell, tissue,
species, or the phosphorylation or splice-isoform status of delta-
catenin’s various domains (i.e., binding partners). Of delta-
catenin’s known effects on small Rho GTPase activity, only
its inhibition of RhoA has been studied to the point of a

proposed mechanism. That mechanism is likely to represent but
one of many distinct functional interactions of delta-catenin
with RhoA, analogous to p120-catenin having more than one
mechanism supporting its functional relationships with RhoA
(Niessen and Yap, 2006; Anastasiadis, 2007). Further studies
are needed to elucidate a mechanism for how delta-catenin
activates Rac1 and Cdc42, with possibilities that may again
be suggested from the studies of other structurally related
catenins. Among variables to consider in such an undertaking,
we will require a better understanding of upstream factors
that instruct outcomes including delta-catenin’s phosphorylation
status, isoform usage, and sub-cellular localization. Various
techniques are available to do this, such as protein modifications
to mimic phosphorylation or dephosphorylation, as well as
existing biosensors to examine small Rho GTPase activity at
the subcellular level. As future studies in the field elucidate
mechanisms acting upon delta-catenin that in turn modulate
small Rho GTPases, our understanding of synaptic formation,
learning, and memory will progress.

While both delta-catenin and small Rho GTPases have been
implicated in many of the same pathologies, links between the
two in the context of disease have rarely been studied, particularly
in neurological pathologies (Govek et al., 2005; Lu et al., 2016).
As dendritic arbor and spine abnormalities are seen in many
of these cases, there are likely contributing interactions between
delta-catenin and small Rho GTPases. However, further studies
are required to determine if abnormal delta-catenin expression
affects small Rho GTPase activity accordingly in disease models.
This could be done by investigating how small Rho GTPase
activity changes in diseases with mutant delta-catenin (i.e.,
specific delta-catenin mutations that have been correlated with
disease) compared to wild-type delta-catenin. Connecting delta-
catenin to small Rho GTPase activity in disease models could help
further our mechanistic understanding of several debilitating
diseases, such as cancer, AD, ASD, and Cri-du-chat syndrome.
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