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Abstract 
The discovery that glucagon-like peptide 1 (GLP-1) mediates a 
significant proportion of the incretin effect during the postprandial 
period and the subsequent observation that GLP-1 bioactivity is 
retained in type 2 diabetes (T2D) led to new therapeutic strategies 
being developed for T2D treatment based on GLP-1 action. Although 
owing to its short half-life exogenous GLP-1 has no use 
therapeutically, GLP-1 mimetics, which have a much longer half-life 
than native GLP-1, have proven to be effective for T2D treatment since 
they prolong the incretin effect in patients. These GLP-1 mimetics are 
a desirable therapeutic option for T2D since they do not provoke 
hypoglycaemia or weight gain and have simple modes of 
administration and monitoring. Additionally, over more recent years, 
GLP-1 action has been found to mediate systemic physiological 
beneficial effects and this has high clinical relevance due to the post-
diagnosis complications of T2D. Indeed, recent studies have found 
that certain GLP-1 analogue therapies improve the cardiovascular 
outcomes for people with diabetes. Furthermore, GLP-1–based 
therapies may enable new therapeutic strategies for diseases that can 
also arise independently of the clinical manifestation of T2D, such as 
dementia and Parkinson’s disease. GLP-1 functions by binding to its 
receptor (GLP-1R), which expresses mainly in pancreatic islet beta 
cells. A better understanding of the mechanisms and signalling 
pathways by which acute and chronic GLP-1R activation alleviates 
disease phenotypes and induces desirable physiological responses 
during healthy conditions will likely lead to the development of new 
therapeutic GLP-1 mimetic–based therapies, which improve prognosis 
to a greater extent than current therapies for an array of diseases.
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Introduction
Glucagon-like peptide 1 (GLP-1) was initially identified as a  
gut-derived incretin hormone that augments insulin secretion 
in a glucose-dependent manner from pancreatic islet beta cells  
during the postprandial period1,2. Subsequent research discov-
ered that GLP-1 also lowered glycaemia by inhibiting glucagon  
secretion from pancreatic alpha cells, delaying gastric empty-
ing and mediating induction of satiety1–4. Thus, GLP-1 maintains 
metabolic homeostasis during the postprandial period via mul-
tiple actions. For over a decade now, GLP-1 receptor agonists, 
which have a much longer half-life than endogenous GLP-1,  
have been an effective treatment option for type 2 diabetes  
(T2D)5,6. Interestingly, studies over more recent years have also 
identified that GLP-1 has beneficial physiological effects on 
a variety of tissues such as the cardiovascular and neurologi-
cal systems and this has high clinical relevance given the multi-
ple and common post-diagnosis complications associated with  
T2D1,2,5,7–10. GLP-1 mediates its effects by binding to its recep-
tor, the GLP-1 receptor (GLP-1R), which is a G protein–coupled 
receptor that is abundantly present in the pancreatic beta cells, 
gut, and the central nervous system (CNS) and moderately in 
the lung, heart, kidney, blood vessels, pancreatic alpha cells, 
and peripheral nervous system2,4,7. However, studies have 
reported that GLP-1 exerts its effects on certain extrapancreatic  
tissues despite the absence of GLP-1R, which implies that this 
hormone may also act via currently unidentified receptors or  
mechanisms2,7. Therefore, given the continual emerging evidence, 
it has become accepted that GLP-1 has systemic physiological  
effects and that the actions of this hormone are not limited to  
mediating the incretin effect, although this is still widely accepted 
to be GLP-1’s most important and clinically relevant role to  
date2,7,11,12. Given these observations, GLP-1–based therapies 
may also provide new strategies for diseases that can arise  
independently of T2D in tissues susceptible to GLP-1 action7,11,13.  
This review aims to summarise the well-established and  
speculative physiological roles of GLP-1 and highlight what 

studies have found over recent years in different tissues with  
regard to the physiological responses induced by endogenous  
GLP-1 and GLP-1R agonists (used for therapeutic purposes)  
and discuss the future implications and clinical relevance of  
these findings.

GLP-1 and its mimetics: physiological roles, therapeutic 
uses and recent developments
Given the prevalence and incidence of T2D and the disease- 
associated post-diagnosis complications such as cardiovascular  
disease (CVD), and the observation that GLP-1 activity is 
retained in T2D whereas gastric inhibitory polypeptide (GIP) 
activity is greatly reduced, research was conducted to develop a 
new therapeutic strategy for T2D treatment using GLP-1–based  
therapies8–10,14. Initially, success was limited, as endogenous GLP-1  
and many of its early analogues have very short half-lives due 
to rapid inactivation by dipeptidyl peptidase 4 (DPP-4) in the  
circulation, requiring continuous treatment to maintain therapeu-
tic levels, which was not practical6,7,15. However, GLP-1 analogues 
were developed that had much greater half-life than endogenous 
GLP-1 whilst retaining the bioactivity12,16. GLP-1R agonists used 
in T2D treatment are either derivatives of native GLP-1 (liraglutide,  
albiglutide, semaglutide and dulaglutide), which have been  
modified to be resistant to DPP-4 inactivation, or derivatives  
of exendin-4 (exenatide, lixisenatide and exenatide-LR)4,17.  
Exendin-4, which shares 53% homology with human GLP-1, was 
originally isolated from the saliva of the Gila monster lizard and is 
resistant to the action of DPP-44. Key pharmacological and clinical 
features of clinically available GLP-1R agonists are presented in 
Table 1.

These agonists were found to effectively reduce hyperglycae-
mia in subjects with diabetes by prolonging the incretin effect 
and have proven to be a welcome addition to the therapeutic  
armamentarium in patients where insulin therapy was deemed 
as the next step after the failure of oral hypoglycaemic agents.  

Table 1. Current glucagon-like peptide 1 receptor (GLP-1R) agonists used in type 2 
diabetes therapy.

GLP-1R agonist generic 
name (trade name)

Dosing Half-life Administration required 
before meals?

Short-acting

Exenatide (Byetta) Twice daily 2.4hours Yes

Lixisenatide (Lyxumia) Once daily 4hours Yes

Intermediate-acting

Liraglutide (Victoza) Once daily 12hours No

Long-acting

Exenatide-LAR (Bydureon) Once weekly 96hours No

Albiglutide (Tanzeum)a Once weekly 6–8 days No

Dulaglutide (Trulicity) Once weekly 90hours No

Semaglutide (Ozempic) Once weekly 165–184hours No

Information in this table is taken from 4,16,17.
a This product was globally withdrawn in July 2018 for commercial reasons.
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GLP-1R agonist therapies have low rates of hypoglycaemia 
and are also associated with weight loss and not weight gain 
(with current dosages used in therapies), which is an undesirable  
side effect of some other glucose-lowering therapies4,6. The 
availability of various GLP-1R agonists with differing pharma-
cokinetic profiles enables individualised treatment options for 
T2D management, which has clinical relevance given patients’  
differing routines, glycaemic control and diets4. Furthermore, 
T2D is a highly multifactorial disease and pathology arises in  
multiple organs8,9,14. Many of these organs express GLP-1R, 
which gives GLP-1 analogue therapies the potential to alleviate 
the diabetic phenotype systemically and the potential to provide 
new treatments for other diseases such as dementia and CVD in  
non-diabetic individuals2,7.

In the 1960s, it was shown that orally administered glucose  
induces a much larger insulin response than that induced by  
intravenously administered glucose, despite the similar resulting 
plasma glucose levels: the incretin effect18. Subsequently, it was 
identified that two hormones (GIP and GLP-1) released by the  
gastrointestinal tract (GIT) mediate the incretin effect2,7,19. In 
response to postprandial nutrient loads, enteroendocrine L cells 
from the intestine secrete GLP-11,2. It has been established that 
there is a direct correlation between the levels of nutrients exposed 
to L cells and the levels of GLP-1 in circulation20. Initially, 
GLP-1 secretion by L cells was postulated to be dependent on  
postprandial glucose loads20,21. However, ingestion of mixed  
nutrients (carbohydrates, fats and proteins) was shown to result 
in greater GLP-1 secretion in comparison with just glucose  
ingestion21. It has also been demonstrated that fats and proteins, like 
glucose, can independently induce GLP-1 secretion20. The levels 
of GLP-1 in fasting plasma are about 5 to 15 pM, which increases 
to 40 to 60 pM during the postprandial period22,23. L cells initiate 
the GLP-1 response within 15 minutes after food ingestion, and 
GLP-1 levels peak in the circulation after about 30 minutes20,24,25.  
It is still unclear how the GLP-1 response is generated so rapidly  
but it has been suggested that the vagal nerve and L cells in the  
upper jejunum part of the small intestine may be involved1.  
However, the response is generated after the ‘cephalic phase’ of 
insulin secretion, implying that neuronal signals that promote  
insulin release do not influence GLP-1 release1,23. Rodent studies 
have demonstrated that, upon GIP stimulation, the nervous system 
promotes GLP-1 secretion from L cells, which express the recep-
tors involved in neuronal signalling26,27. However, in chloralose- 
anaesthetised pigs, electrical stimulation of the vagal trunks at 
the level of the diaphragm had no effect on GLP-1 secretion, and  
human cephalic phase studies and studies in vagotomised humans 
found similar results28–30. Figure 1 summarises the processes in  
L cells that are known to lead to or that may lead to GLP-1  
secretion.

Studies have revealed that the role of GLP-1 release from L cells 
is not limited to initiating the desired physiological response to 
ingested glucose but also proteins and lipids (for example, reducing  
triglyceride excursions), giving GLP-1 a more diverse role in 
maintaining metabolic homeostasis during the postprandial  
period2,20,21. Additionally, understanding the neuronal regulation 
of GLP-1 release in humans is unclear, as is how other  
hormones involved in metabolic homeostasis regulate L-cell  
GLP-1 secretion26,27.

GLP-1 has a very short half-life (1–2 minutes) in the  
circulation1 because of its rapid inactivation by proteolytic 
actions of  DPP-41,7. Consequently, it has been become generally 
accepted that about 85% of GLP-1 exists in the inactive form in  
circulation23. Since the majority of GLP-1 is inactivated rapidly 
after secretion, its response is highly inefficient with regard to  
ATP expenditure (GLP-1 synthesis requires ATP)2,23. It has become 
generally accepted that endogenous GLP-1 activates sensory  
afferents of the enteric nervous system, which helps to promote  
the desired postprandial response, in addition to mediating the 
incretin effect via the endocrine route to islet beta cells1,2,31,32. 
Although it is still unclear why the GLP-1 response is so wasteful  
from a bioenergetics perspective, recent studies have suggested  
that the inactive GLP-1 has actions on the liver, vasculature 
and heart which are comparable to those of insulin33. However, 
the notion that GLP-1 has any action on the liver is an area of  
controversy, given the absence of GLP-1R in hepatocytes2.  
Therefore, it is possible that the ‘inactive forms’ are not actually 
inactive and act on currently unidentified signalling pathways 
and this seems likely to be the case as it is very unlikely that  
evolution has developed such an ATP-wasteful response.  
However, GLP-1R agonists (such as liraglutide and exenatide)  
that are used in T2D therapy are all synthetically developed. In  
contrast to endogenous GLP-1, they have a half-life of several  
hours or more as they are resistant to DPP-4 inactivation4,34. This 
results in prolonged pancreatic beta-cell GLP-1R activation that  
in turn prolongs the incretin effect, resulting in a reduction of  
hyperglycaemia in most patients4,35.

The incretin hormones play a crucial role in maintaining metabolic  
homeostasis since about 60 to 70% of the total postprandial 
insulin released into circulation is due to the action of these  
hormones2,36. GIP and GLP-1 account for about 60% and 40% of  
the incretin effect, respectively2. The action of GLP-1 is dependent  
on blood glucose levels since it can only potentiate glucose- 
stimulated insulin secretion from islet beta cells7. Furthermore, 
GLP-1 suppresses glucagon secretion from islet alpha cells, but 
only when glucose levels are above fasting, which assists in the 
ability of postprandial insulin to mediate anabolism of ingested  
nutrients1,2,7. Given the importance of the correct balance of insulin  
and glucagon activity being maintained to mediate desired net  
systemic anabolic or catabolic metabolic effects in response to 
nutrient supply and demand, GLP-1 activity plays a critical role in 
maintaining metabolic homeostasis during the postprandial period 
via insulinotropic and glucagonostatic effects2,4. Activation of  
GLP-1R results in a rapid (seconds to minutes) potentiation of  
insulin secretion from islet beta cells which is achieved via rapid 
cAMP production, which results in the activation of protein kinase 
A (PKA) and exchange protein directly activated by cAMP (Epac), 
and these two effectors modify several targets in the secretory 
machinery, resulting in enhanced insulin secretion2,12. Additionally,  
GLP-1R activation results in transcription of genes involved 
in proliferation, neogenesis and apoptotic resistance in islet  
beta cells, expanding GLP-1’s role from potentiating insulin  
secretion from islet beta cells to promoting their survival via  
translocation of pancreatic duodenal homeobox 1 (PDX-1)  
transcription factor to the nucleus2,12,42. Chronic liraglutide  
treatment in diabetic mice was shown to prevent loss of beta-cell 
mass, by increasing the proliferation of beta cells and decreasing 
beta-cell apoptosis, after alloxan injection35. Inhibition of beta-cell 
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Figure 1. Summary of L-cell processes that are known to lead to or that may lead to glucagon-like peptide 1 (GLP-1) secretion 
into the circulation. Sodium entry into the L cell promotes calcium influx by inducing depolarisation, and glucose also induces calcium 
influx by raising ATP levels as a result of its catabolism. The binding of fatty acids to specific receptors also raises intracellular calcium levels. 
The now-elevated calcium levels promote exocytosis of GLP-1–containing vesicles, releasing GLP-1 into the circulation. Proteins also promote 
GLP-1 release, but it is not currently mechanistically understood how. L cells have been shown to express receptors for metabolic hormones, 
including insulin, leptin and gastric inhibitory polypeptide (GIP). The degree to which leptin and insulin stimulate overall GLP-1 secretion is 
still unclear, but GIP-mediated GLP-1 release has been shown to occur in rodents via acetylcholine release by the enteric nervous system. 
Supraphysiological concentrations of GIP potentially activate GIP receptors on L cells, potentially enhancing GLP-1 secretion. This figure and 
information in its legend are adapted from26,37–41.
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apoptosis in isolated human pancreatic beta cells was also 
reported after liraglutide administration, and the beta-cell pro-
liferation rate was increased up to threefold after incubation for  
24 hours43. GLP-1/exendin-4 has also been shown to facili-
tate beta-cell neogenesis in rat and human pancreatic ducts44.  
Endogenous GLP-1 not only protects against apoptosis but 
also induces proliferation of rat primary islet cells and beta-cell  
lines12,45. GLP-1R activation has also been proposed to reduce 
lipotoxicity, glucotoxicity, Ca2+ depletion, excess nitric oxide,  
cytokine-induced endoplasmic reticulum (ER) stress and oxidative 
stress in both primary beta cells and cell lines via multiple 
downstream signalling pathways46–50. One study found that 
GLP-1R signalling alters the intracellular response from the  
translational repression to the translational recovery phase in 
a PKA-dependent manner46. GLP-1 has recently been shown 
to regulate autophagy in beta cells51,52. Exendin-4 treatment 
was shown to facilitate autophagy in rat INS-1E cells and  
isolated human islets under chronic exposure to excess nutri-
ents by preventing autophagosomal-lysosomal fusion impair-
ment. Its treatment was also reported to increase lysosomal  
function, which improved autophagosome clearance and 
thereby reduced islet beta-cell injury in a rat model of  
tacrolimus-induced diabetes53. Additionally, exendin-4 treatment 
in vivo has been shown to decrease tacrolimus-induced oxida-
tive stress, hyperglycemia, and apoptosis [43]. Interestingly, 
recent studies have found that chronic GLP-1R activation  
results in metabolic reprogramming associated with upregula-
tion of glycolytic enzymes and increased ATP production54.  
It has been postulated that an enhancement in metabolism 
by GLP-1 treatment likely decreases ER stress by increasing  
intracellular Ca2+ and mitochondrial ATP levels, which then 
are used in the maintenance of ER homeostasis12. Interest-
ingly, chronic GLP-1R activation also results in the activation 
of distinct signalling pathways; for instance, GLP-1R agonists  
have been reported to promote the secretion of insulin-like 
growth factor 2 and induce expression of its receptor, which 
is thought to contribute to the pro-survival abilities of GLP-1 in 
islet beta cells12,55,56. Given that ER stress, impaired autophagy  
and proliferation, and increased apoptosis are all thought 
to contribute to islet beta-cell dysfunction in T2D, and the  
findings that GLP-1R activation can alleviate all of these, sug-
gests GLP-1 and its analogues do more than just augmenting 
insulin secretion12. However, currently, there are no data from 
recent long-term clinical studies to suggest that GLP-1–based  
therapies exert protective effects on islet beta cells, and it is 
unclear whether the maximum insulin enhancement is achieved 
with present dosages used clinically, which are currently lim-
ited by side effects10,57–60. Figure 2 summarises the processes 
in islet beta cells that are influenced by postprandial glucose  
loads and GLP-1 action.

The regulation of alpha cells by GLP-1 remains an area of  
controversy2,7,61,62. However, it is firmly established that the ability  
of GLP-1 to inhibit glucagon secretion is not dependent on its 
insulinotropic effects, given that GLP-1 is able to lower fasting 
plasma glucose levels in people with type 1 diabetes7,63. 
Despite the low and controversial GLP-1R expression in islet  
alpha cells, recent studies have provided evidence that GLP-1R 
agonists mediate direct effects on alpha cells via the presence  
of GLP-1R7,61,62. Islet alpha-cell GLP-1R knockout mice failed to 

 

 

 

 

 

 

 
 

 
 

 

 
 
 

 
 

 

 

 

 

 
 

 

 

 
 
 

inhibit  glucagon  secretion  at  high  glucose  levels;  interestingly,
these  mice  had  impaired  glucagon  secretion  during  low  glu-
cose  conditions62.  Another  recent  study  found  that  GLP-1 
action  on  human  pancreatic  islet  alpha  cells  was  not  dependent 
on  paracrine  signalling  since  preventing  insulin  and  somato-
statin  signalling  had  no  effect  on  the  inhibition  of  glucagon 
secretion61.  Until  recently,  there  was  a  strong  consensus  in  the 
literature  that  GLP-1  acts  on  alpha  cells  through  an  unidenti-
fied  receptor  or  through  paracrine  mechanisms  (or  both)  via 
insulin  and  somatostatin  release  from  islet  beta  and  delta  cells,
respectively2,7.  Hyperglycaemia  in  T2D  is  now  accepted  to  be 
induced  by  both  hyperglucagonemia  and  hypoinsulinemia,
and  up  to  50%  of  the  excess  plasma  glucose  levels  in  patients 
has  been  postulated  to  arise  from  inappropriate  glucagon 
secretion64,65.  Given  that  T2D  is  now  considered  to  be  a  bihor-
monal  disorder,  how  GLP-1R  agonists  influence  glucagon 
secretion is of high clinical relevance7,66.

Studies  have  revealed  that  GLP-1  has  multiple  extrapancreatic 
targets  and  effects,  which  not  only  assists  with  inducing  the 
desired  physiological  response  during  the  postprandial  period 
but also has beneficial effects on alleviating pathology associated 
with  certain  tissues  and  organs  systemically,  which  arises 
because  of  T2D  manifestation  or  independently  of  T2D2,8,9,12.
These  findings  are  of  clinical  importance  since  there  is  demand 
for new therapeutic strategies that both reduce the prevalence and 
incidence  of  T2D  post-diagnosis  complications  and  provide 
better  prognosis  than  current  treatments  for  diseases  such  as 
dementia2,7–9,12.  Indeed,  recent  studies  have  found  that  certain 
GLP-1  analogue  therapies  confer  cardiovascular  benefits  to 
people  with  diabetes,  which  has  high  clinical  importance  given 
the  prevalence  of  the  cardiovascular  comorbidity  of  diabetes10.
Owing  to  the  weight  loss  achieved  as  a  result  of  the  ability 
of  this  drug  to  mediate  satiety,  liraglutide  was  also  recently 
approved  for  the  treatment  of  obesity  in  individuals  without 
diabetes67.  It  was  initially  postulated  that  the  effect  of  GLP-1 
on  appetite  could  be  due  to  its  negative  regulation  of  gut  motil-
ity;  however,  evidence  that  GLP-1  has  direct  effects  on  specific 
neurons  in  the  hypothalamus  has  emerged24.  GLP-1  is  expressed 
in  neurons  of  the  brainstem  and  GLP-1R  is  present  in  the 
hypothalamic  areas  that  control  energy  homeostasis  and  food 
intake,  including  the  arcuate  nucleus,  paraventricular  nucleus,
and  dorsomedial  nucleus1,68.  Intracerebroventricular  injection 
of  GLP-1  inhibits  food  intake  in  rats  and  this  activity  is  blocked 
by  exendin

9–39
,  demonstrating  that  GLP-1  has  direct  effects  on

neurons69,70.  Studies  have  shown  that  intracerebroventricular 
administration  of  GLP-1  in  rodents  induces  satiety  even  in 
the  absence  of  food  in  the  GIT  and  when  gastric  emptying  has 
been  inhibited;  thus,  GLP-1  induces  satiety  via  its  direct 
effects  on  neurons  in  the  caudal  brainstem1,24,68.  The  mecha-
nism  by  which  peripherally  administered  GLP-1  induces  sati-
ety  has  yet  to  be  elucidated,  but  it  likely  involves  signals  being 
generated  by  GLP-1  binding  to  GLP-1R  on  neurons  in  the  GIT,
hepatoportal  bed  and  CNS1,71.  The  differences  in  weight  loss 
reported  for  the  various  GLP-1  analogues  currently  used  to  treat 
T2D  are  likely  related  to  their  penetration  of  the  CNS,  allowing 
central  GLP-1R  binding72,73.  Additionally,  some  studies  have 
found  evidence  that  GLP-1–based  therapies  alleviate  pathology 
associated  with  other  diseases  such  as  dementia  in  non-
diabetic  individuals,  although  there  is  controversy  about  the
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Figure 2. Summary of islet beta-cell processes that are influenced by postprandial glucose loads and glucagon-like peptide 1  
(GLP-1) action. When the plasma glucose rises, glucokinase initiates glucose catabolism, resulting in an increase in the cell’s ATP levels, 
which results in closure of ATP-sensitive potassium channels, causing membrane depolarisation and calcium influx. The resulting calcium 
influx triggers insulin secretion by promoting movement of insulin vesicles to the cell membrane. The binding of GLP-1 to GLP-1R enhances 
glucose-stimulated insulin secretion by initiating cAMP production via adenylyl cyclase activity that in turn activates protein kinase A 
(PKA) and exchange protein directly activated by cAMP (Epac). Activated PKA and Epac augment extracellular calcium influx induced by 
glucose catabolism via further promoting closure of potassium channels, and Epac also raises the intracellular calcium levels directly via 
promoting calcium release from the endoplasmic reticulum. Evidence suggests that PKA increases the permeability of calcium channels, 
which further enhances the influx of extracellular calcium. The elevated intracellular calcium levels further enhance exocytosis of insulin 
vesicles. The activation of GLP-1R also induces activation of PDX-1 transcription factor and its translocation to the nucleus, which results in 
the transcription of the preproinsulin, GLUT2 and glucokinase genes for further insulin production, glucose uptake and glucose catabolism, 
respectively. PDX-1 activation also induces the transcription of genes involved in apoptotic resistance, neogenesis and proliferation, giving 
GLP-1 a role in promoting beta-cell survival during the postprandial period in addition to enhancing insulin secretion. Studies have found 
that GLP-1R activation enhances autophagy and metabolic profiles and reduces ER stress via PKA-dependent mechanisms. This figure and 
information in its legend are adapted from1,2,46–52,56.
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potential for these therapies in dementia treatment based on  
different findings, especially in human studies12,74. Non-alcoholic  
fatty liver disease (NAFLD) and subsequent non-alcoholic  
steatohepatitis (NASH) are highly prevalent among individuals 
with T2D or obesity (or both) because of the excessive hepatic fat  
deposition associated with these diseases75,76. Studies have found 
that GLP-1R agonist treatments reduce liver pathology not  
only by promoting weight loss and improving glycaemic control 

but also by reducing alanine aminotransferase (ALT) levels, which 
was linked to the degree of weight loss induced75. The ability  
of GLP-1R agonists to reduce weight and lower ALT levels  
suggests a role for these compounds in treating NAFLD/NASH 
and reducing liver damage. A recent study found that semaglu-
tide treatment significantly reduced ALT levels in NAFLD at-risk  
patients, and histological data are awaited from an ongoing  
phase 2 trial of semaglutide in biopsy-proven NASH76. Figure 3 
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Figure 3. Summary of the reported extrapancreatic effects of glucagon-like peptide 1 (GLP-1)-based therapies (A–C) and the 
clinical implications of these findings (D). In frame C, organs that are underlined indicate that GLP-1 receptor (GLP-1R) expression is 
controversial/unconfirmed, and it is not clear whether or how GLP-1 is able to mediate any direct physiological effects on them. ANP, atrial 
natriuretic peptide; CVS, cardiovascular system; eNOS, endothelial nitric oxide synthase; EPAC, exchange protein directly activated by cAMP; 
ERK1/2, extracellular signal-related kinase 1/2; MAPK, mitogen-activated protein kinase; NOD, non-obese diabetic; PI3K, phosphoinositide-
3-kinase; PKA, protein kinase A; ROS, reactive oxidative species; T1D, type 1 diabetes; T2D, type 2 diabetes; T2DM, type 2 diabetes mellitus; 
VCAM, vascular cell adhesion molecule-1; VEGF, vascular endothelial growth factor. This figure and information in its legend are adapted  
from 1,2,7,12,77–98.
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summarises the findings from studies on the extrapancreatic effects 
of GLP-1-based therapies and the clinical implications of these 
findings.

A recent longitudinal study found that GLP-1–based agonist action 
may not only be an effective treatment for T2D but also prevent 
or delay disease manifestation in at-risk individuals: Liraglutide  
treatment reduced the risk of T2D manifestation in obese  
individuals and individuals who had a body mass index of more 
than 27 and had hypertension or dyslipidaemia; after 160 weeks, 
the liraglutide-treated group (n = 1472) had a smaller percentage 
of the population with diagnosed T2D (2% versus 6%) than the 
placebo-treated control group (n = 738)99. Additionally, time to  
T2D onset during the 160-week study was found to be 2.7 times 
longer in the liraglutide-treated group than the placebo control 
group. Interestingly, recent studies have also demonstrated that 
the therapeutic potential of GLP-1 action in the treatment of dis-
eases such as T2D and dementia can likely be enhanced by co- 
activation of other receptors involved in maintaining metabolic 
homeostasis. The dual GLP-1R and GIP receptor (GIPR) agonist  
treatment induced better glycaemic control and body weight  
reduction in diet-induced obesity (DIO) mice compared with 
liraglutide (GLP-1R agonist)-only-treated controls100. Co-agonism 
of GLP-1R and glucagon receptor (GR) was also shown to reduce 
body weight synergistically in rodent obesity models101. These  
co-agonists have also improved glycaemic control in monkeys  
and humans100. In a recent study, tirzepatide, a novel GLP-1R and 
GIPR co-agonist, was found to induce greater glucose control and 
weight loss in human patients with T2D than duglatide (a GLP-
1R–only agonist)102. Recently, a triple agonist for GLP-1R, GR and 
GIPR was developed and tested on DIO mice, and it was found 
that the tri-agonist lowered body weight to a greater extent than 
GLP-1R/GIPR co-agonist treatment103. The co-agonist and the  
tri-agonist were equally effective at reducing blood glucose levels  
and improving glucose tolerance without the induction of  
hypoglycaemia and this demonstrates that chronic GR agonism 
does not counteract the anti-hyperglycemic effects of GLP-1R 
and GIPR activity. Surprisingly, tri-agonist treatment lowered 
plasma insulin levels to a greater extent than the GLP-1R/GIPR co- 
agonist, indicating improved insulin sensitivity. Interestingly, no  
difference in food intake was observed between wild-type mice 
treated with the dual incretin GLP-1R/GIPR co-agonist and 
those treated with the tri-agonist despite the difference in weight 
loss and this was found to be due to significantly enhanced ATP 
expenditure in tri-agonist–treated DIO mice. The capacity of the tri- 
agonist to prevent the development of spontaneous diabetes  
compared with the dual incretin GLP-1R/GIPR co-agonist was  
also tested in mouse models of T2D. The tri-agonist treatment  
prevented the excessive weight gain in vehicle-treated mice to 
a greater degree than the GLP-1R/GIPR co-agonist and this  
difference was not due to cumulative food intake. The tri-agonist 
also protected these mice from fasting hyperglycaemia and to a 
better degree than the GLP-1R/GIPR co-agonist. Interestingly, the 
tri-agonist also significantly reduced alpha-cell infiltration into the 
core of pancreatic islets, helping to preserve the islet architecture 
observed in healthy pancreatic islets. Glycaemic improvements  
were maintained in Zucker diabetic fatty rats 3 weeks after  
treatment cessation although they had gained body weight and  
were comparable in mass to vehicle-treated controls, demon-
strating that the tri-agonist delays T2D progression in rodent 

models of spontaneous diabetes. Interestingly, this study also  
demonstrated that the effects of the tri-agonist are dependent  
on an excess of nutrient storage as weight and food intake were 
not altered in lean mice even after chronic treatment with the tri-
agonist. A recent study also found that tri-agonist treatment was 
able to ameliorate diet-induced steatohepatitis in mice77. However, 
the clinical importance of the co- and tri-agonists has yet to be  
established since the majority of the studies using these ago-
nists were carried out using rodent models. Some GLP1R/GIPR  
co-agonists are in clinical development for T2DM treatment.

Summary
In summary, abundant evidence has emerged over recent years  
to demonstrate that GLP-1 has multiple pancreatic effects and 
extrapancreatic targets and actions throughout the body, which 
likely play a significant role in maintaining metabolic homeos-
tasis during healthy conditions and therefore to label GLP-1 as 
just an ‘incretin hormone’ is now outdated1,2,7,12. Thus, GLP-1 has 
a much more complex and diverse physiological role than previ-
ously thought. Despite all the research that has been conducted on 
GLP-1 and its actions, the mechanisms that regulate the secretion 
of this hormone are still not fully understood, nor are the mecha-
nisms by which it exerts its actions. It is unclear whether GLP-1 is 
able to mediate its effects by an unidentified receptor, and there is  
controversy as to whether the inactive forms are able to induce 
physiological effects2,7,12. Native GLP-1 has no use therapeutically, 
but the advent of GLP-1R agonists that have much longer half-lives 
has enabled GLP-1–based actions for therapeutic uses as a viable 
option5–7. Initially, GLP-1R agonists were thought to be limited to 
T2D treatment, but it has become clear that these drugs have the 
potential to treat other diseases such as obesity, CVD, dementia  
and NAFLD2,7,12,77,103. Better understanding the mechanisms and  
signalling pathways by which acute and chronic GLP-1R  
activation both alleviates disease phenotypes and induces  
desirable physiological responses during healthy conditions 
will likely lead to the development of new therapeutic GLP-1  
action–based therapies, which improve prognosis to a greater  
extent than current therapies. Importantly, the observations that 
GLP-1–based therapies delay/prevent the manifestation of T2D99 
may enable expansion of the role of GLP-1 mimetics from  
treating diseases to delaying or preventing diseases manifesting in 
tissues susceptible to GLP-1–based action. Additionally, given the  
observations from co- and tri-agonist studies, future research 
will need to investigate what the long-term effects of synergistic  
activation of other receptors will be78,100,101,103. Finally, over recent 
years, allosteric agonists that act on sites distinct from those of 
GLP-1 and its mimetics have been developed for the GLP-1R23. 
Research is ongoing to determine whether these agonists can  
modulate GLP-1R downstream effectors to better alleviate  
pathology than current GLP-1R agonists used in the therapy. 
One advantage of these allosteric agonists is that, in contrast to  
current therapies which require injection, they can be adminis-
tered orally. Ongoing and future research into the modulation of  
GLP-1 action will likely lead to the development of new  
therapeutic strategies for an array of diseases.
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