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Abstract

Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the

most common neurological disorders. The underlying neural mechanisms of func-

tional disturbances in the brains of concussed individuals remain elusive. Novel forms

of brain imaging have been developed to assess patients postconcussion, including

functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI),

diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have

been mixed with a more common utilization in the research environment and a

slower integration into the clinical setting. In this review, the benefits and drawbacks

of the methods are described: fMRI is an effective method in the diagnosis of con-

cussion but it is expensive and time-consuming making it difficult for regular use in

everyday practice; SWI allows detection of microhemorrhages in acute and chronic

phases of concussion; dMRI is primarily used for the detection of white matter

abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to

the BOLD method with its ability to track cerebral blood flow alterations. Thus, the

absence of a universal diagnostic neuroimaging method suggests a need for the

adoption of a multimodal approach to the neuroimaging of mTBI. Taken together,

these methods, with their underlying functional and structural features, can contrib-

ute from different angles to a deeper understanding of mTBI mechanisms such that a

comprehensive diagnosis of mTBI becomes feasible for the clinician.
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1 | INTRODUCTION

Mild traumatic brain injury (mTBI), frequently used synonymously with

concussion, is one of the most common neurological disorders with an

incidence rate of up to 600/100,000 in North America and Europe,

occurring in males in two-thirds of cases (Li, Zhao, Yu, & Zhang, 2016).

The mTBI is a serious challenge for society and economics as it can be

a risk-factor for such consequences as a decline in cognitive functions,

early dementia and mental illness (McInnes, Friesen, MacKenzie, Westwood,

& Boe, 2017). The mechanism of injury in mTBI is usually describedAlain Ptito and Rajeet Singh Saluja contributed equally to the study.
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as a result of a transfer of mechanical energy into the brain from a

traumatic event such as rapid acceleration/deceleration or a direct

impact to the head (Jeter et al., 2013). The other type is a blast-

related mTBI, caused by an explosive blast, which may result in brain

damage due to tissue-transmitted shock waves within the vascular

system traveling to the brain (Cernak, 2015).

According to The American Congress of Rehabilitation Medicine

(ACRM), mTBI is a traumatically induced physiological disruption of

brain function in the presence of one or more of the following symp-

toms: period of loss of consciousness (LOC), posttraumatic amnesia

(PTA), alteration in mental state, and focal neurological deficit(s). Fur-

thermore, the ACRM has underlined that standard neuroimaging tools

[computed tomography (CT), MRI, electroencephalography (EEG),

etc.] may show normal results (Head, 1993).

The World Health Organization (WHO) has modified the definition

of mTBI to specify that manifestations of mTBI must not be due to

drugs, alcohol, medications, other injuries or treatment for other injuries,

or penetrating craniocerebral injury (Carroll et al., 2004). Additionally, the

WHO suggested to substitute the term “concussion” for “mTBI,” even

though both terms are still used interchangeably. The term “concussion”
is more commonly used in sports contexts and is often referred to as

Sport Related Concussion (SRC); in turn, “mTBI” is mostly seen in the

medical environment (Greenwald, Ambrose, & Armstrong, 2012;

McCrory, Meeuwisse, & Johnston, 2009; Ruff et al., 2009).

From the perspective of diagnosis, the assessment of concussion

currently relies heavily on subjective clinical symptoms reports that

are often unreliable and/or nonspecific. MTBI is distinct from moder-

ate and severe TBI on the basis of the Glasgow Coma Scale (GCS); this

scale is used for assessing consciousness level, ranging from 3/15

(deep coma or death) to 15/15 (fully awake; Sternbach, 2000). MTBI

patients in the acute phase have GCS scores ranging from 13 to

15/15 (Mena et al., 2011). As defined by the WHO and ACRM, LOC

in mTBI is to be less than 30 min and PTA duration less than 24 hr.

However, it was shown that concussions can also occur without LOC

(Kelly & Rosenberg, 1997). Physicians also look for somatic symptoms

such as dizziness, fatigue, headache, and so on. In addition, a neuro-

psychological assessment used in the acute phase may show deficits

that become less apparent in the chronic phase (Echemendia,

Putukian, Mackin, Julian, & Shoss, 2001). Thus, in the field of mTBI,

the data are controversial and seemingly involve more diverse aspects

than initially thought. Reports of subjective symptoms and results of

neuropsychological assessment vary broadly, while LOC and PTA are

not always present in mTBI patients. There is therefore a dire need to

develop an objective assessment tool of mTBI. New neuroimaging

approaches offer this opportunity.

Neuroimaging data on mTBI have, however, been controversial.

Structural imaging such as computer tomography (CT) and conven-

tional MRI (T1-weighted and T2-weighted) have essentially been inef-

ficient to help with the diagnosis of mTBI. Other neuroimaging

methods such as functional MRI (task-based MRI and resting state

MRI; e.g., Chen, Johnston, Collie, McCrory, & Ptito, 2007; Mayer

et al., 2015), diffusion weighted imaging (DWI) (Shenton, Price,

Levin, & Edersheim, 2018), susceptibility weighted imaging (SWI; Lu,

Cao, Wei, Li, & Li, 2015; Studerus-Germann, Thiran, Daducci, &

Gautschi, 2016), perfusion weighted imaging (PWI; Andre, 2015;

Hamer, Churchill, Hutchison, Graham, & Schweizer, 2020; Clark

et al., 2020), positron emission tomography (PET) (Jensen &

Lauritzen, 2019; Raji & Henderson, 2018), and single photon emission

computed tomography (SPECT) (Amen et al., 2016; Romero, Lobaugh,

Black, Ehrlich, & Feinstein, 2015) have shown promise, but even then

the results have been mixed with a more common utilization in the

research environment and a slower integration in the clinical setting

due to cost and a lack of a standardization of the procedures.

With time, recovery after a single concussion tends to be com-

plete in about 80% of cases (McCrory et al., 2009) while in the rest,

individual characteristics and specifics of injury will come into play. In

the latter group, many patients remain with postconcussive symptoms

(PCS) months or even years post injury, with various contributing fac-

tors needing to be identified. Timely and accurate diagnosis of mTBI,

with the purpose of developing more effective personalized rehabilita-

tion strategies, along with the time course of recovery and eventual

return to activity are needed. This also will contribute to a more

short-term goal in the diagnosis, such as determination if a concussed

subject can take an important exam or participate in a competition

right after the incidence of the trauma to the best of their abilities,

and if any special accommodations are needed to be provided (exten-

sions, etc.).

Given the high incidence of this type of injury and the significant

medico-legal implications of an accurate diagnosis, particularly in the

realm of professional sports and insurance claims, there is a tremen-

dous requirement for objective, clinically useful tools for the assess-

ment of concussed patients. To date, the only objective approach that

has shown consistent and reproducible results in the diagnosis of con-

cussion is functional MRI (Chen et al., 2007; Holmes, Singh-Saluja,

Chen, Gagnon, & Ptito, 2019; Saluja, Chen, Gagnon, Keightley, &

Ptito, 2015). It is, however, a technique that is not widely available

outside research centers while most other imaging techniques such as

those mentioned above have proven more or less contributory. In

essence, a multimodal approach combining multiple imaging modali-

ties may prove to be more powerful for diagnosis than each of the

modalities individually.

It is particularly relevant as mTBI can be accompanied by various

underlying neuropathological alterations, such as metabolic deviations

(Giza & Hovda, 2014), diffuse axonal injury and myelin loss (Johnson,

Stewart, & Smith, 2013), cerebral microhemorrhages (Park et al., 2009),

and changes in the cerebral blood flow (Wang et al., 2016). The pres-

ence and extent of these alterations can be discovered using different

MRI sequences such as fMRI (both task-based and resting state), dMRI

and myelin imaging, SWI, and ASL, respectively. Thus, only complex use

of these techniques can give an extensive and comprehensive

diagnosis.

In this review, we aim to describe the advantages and drawbacks

of the aforementioned noninvasive MRI sequences available on a con-

ventional MRI scanner, that may prove helpful in mTBI diagnosis. We

will review articles on the topic of mTBI and concussion, published

mostly throughout the past decade, to evaluate the neuroimaging
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findings of fMRI, SWI, ASL, and dMRI in the different stages of mTBI,

and to analyze the potential predictive ability of these neuroimaging

techniques as they relate to the appearance and dynamics of PCS

after a mTBI.

2 | METHODS

The studies were searched using the PubMed resource, with the filters

set to the time period of the past 6 years from the moment when the

paper was written (2015–2020) for task-based fMRI and rs-fMRI, and

for the past 12 years (2009–2020) for ASL and SWI due to a significantly

less volume of studies on the topic. The following key words were used

in the search: “mTBI,” “concussion,” “fMRI,” “resting state fMRI,” “task-
based fMRI,” “SWI,” “ASL,” and “perfusion MRI.” To provide a complete

description of all available methods, we also included a brief overview of

diffusion MRI and myelin-based imaging. Given that the scope of litera-

ture on the topic is too broad to fully review within this paper, this

section was not performed using a systematic review approach.

2.1 | Task-based fMRI

Task-based fMRI has proven to be an effective tool in the diagnosis of

concussion. This technique is based on blood-oxygen-level-dependent

imaging (BOLD) methodology where the difference in the MR signal

between deoxyhemoglobin and oxyhemoglobin are picked up and

monitored using gradient echo sequences. The main processes exam-

ined by fMRI can be described as an activation of the neurons in

response to the action of the stimulus and an increase in their meta-

bolic needs which leads to local alterations in blood flow. Thus, these

alterations are recorded during scanning as a BOLD signal, which

measures the hemodynamic response of the brain in relation to the

neural activities (Buchbinder, 2016; Buxton, 2013).

Multiple studies have demonstrated altered BOLD signal during

performance of cognitive tasks in patients with concussions compared

with healthy controls (HCs). Most of the recent studies have used

working memory tasks (N-back) for their ease of presentation in the

scanner as well as for their sensitivity to alterations in brain activity.

Other tasks proven to be useful in studies on the role of fMRI in the

diagnosis of mTBI are, among others, the spatial navigation task

(Holmes et al., 2019; Saluja et al., 2015), the Flanker task (Sullivan,

Hayes, Lafleche, Salat, & Verfaellie, 2018), the Shifted-attention Emo-

tion Appraisal Task (SEAT; Wang et al., 2017) and the visual tracking

eye movement tests (Astafiev et al., 2015).

Regarding alterations in brain activity after mTBI, the findings

vary and are often controversial (Table 1). The majority of the latest

studies on the topic have yielded mixed activity patterns during task

performance, with an elevation of the activity in some areas and deac-

tivation in others. These results appear in keeping with the suggested

earlier explanation that higher activity in certain brain areas reflects a

compensation strategy for damaged areas that show diminished acti-

vation (McAllister et al., 1999). However, there are studies demonstrating

either increased or decreased activity during task-performance by mTBI

patients, possibly also due to cognitive requirements of the task. The

main regions showing increased fMRI activation in mTBI patients during

task performance are parietal (Chen et al., 2016; Hsu et al., 2015; Mayer

et al., 2015; Sullivan et al., 2018), occipital (Holmes et al., 2019; Mayer

et al., 2015; Sullivan et al., 2018), and frontal lobe (Holmes et al., 2019;

Hsu et al., 2015; Westfall et al., 2015) areas as well as the middle tem-

poral gyrus (Saluja et al., 2015; Westfall et al., 2015) and cingulate cor-

tex (Sullivan et al., 2018; Wylie et al., 2015). Decreased activation has

been reported, particularly in the components of the default mode net-

work (DMN). These involve the left (Saluja et al., 2015; Sullivan

et al., 2018) and right (Chen et al., 2016) precuneus and the right dorso-

lateral (Saluja et al., 2015), left dorsomedial (Sullivan et al., 2018), and

medial (Van der Horn et al., 2016) regions. It should be noted as well

that most of the aforementioned studies were conducted in patients in

the subacute phase of mTBI (<1 year postinjury).

First, in patients with mTBI compared with HCs, performance on

the N-back task has been associated with altered activation in the

dorsolateral prefrontal cortex (DLPFC), which has proven to be one of

the major components in the working memory network in numerous

studies (Barch, Sheline, Csernansky, & Snyder, 2003; Kim, Kroger, Cal-

houn, & Clark, 2015; Mansouri, Tanaka, & Buckley, 2009). Likewise,

alterations in DLPFC activation with additional para-hippocampal

involvement have been reported in two studies using the spatial navi-

gation task (Holmes et al., 2019; Saluja et al., 2015). These findings,

validated in studies using animal models, have established an involve-

ment of direct hippocampal–prefrontal afferent pathways in the con-

tinuous updating of the task-related spatial information during spatial

working memory performance. Thus, direct hippocampal–prefrontal

afferents appear essential for successful encoding of task-related cues

(Spellman et al., 2015).

Furthermore, the studies described above have shown in patients

with mTBI abnormal activity patterns involving the precuneus (supe-

rior parietal lobule) in the execution of both the working memory (N-

back) and spatial navigation tasks. These results are consistent with

indications that the precuneus is associated with executive aspects of

working memory (Koenigs, Barbey, Postle, & Grafman, 2009) as well

as with working memory capacity (activation increases with an increase

in task load; Vogel & Machizawa, 2004). Interestingly, patients with

right parietal cortex lesions show a decline in spatial working memory

(Koenigs et al., 2009).

Even though behavioral performance in most of the studies have

not discerned between mTBI patients and HCs, some did show a cor-

relation between brain activation and task performance. In an fMRI

study using the spatial navigation task with pediatric mTBI patients,

Holmes et al. (2019) revealed a difference in task performance between

low-symptom and high-symptom groups and HCs: only performance of

the low-symptom group was different from HCs with higher total trial

times, while there was no difference between HCs and the high-

symptom group. Concurrently, brain activation in the high-symptom

group had greater elevation in frontal and occipital cortices compared

with the low-symptom group, with additional activity in the cerebellum.

These results led to the suggestion by the authors that unique
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TABLE 1 Summary of mTBI studies using task-based fMRI

Author Participants Task Major findings (activity alterations in mTBI patients)

Saluja et al. (2015) 15 mTBI pediatric

patients, up to 3 months

postinjury

Spatial navigation task Diminished activation in the retrosplenial, thalamic, and

parahippocampal areas bilaterally, along with the right

dorsolateral prefrontal cortex and left precuneus; increased

activation in the left hippocampus and right middle temporal

gyrus.

Astafiev et al. (2015) 45 mTBI patients,

3 months to 5 years

postinjury

Visual tracking tasks Decrease in the right anterior internal capsule and right superior

longitudinal fasciculus.

Hsu et al. (2015) 30 mTBI patients

1. Within 1 month

postinjury

2. 6 weeks after (1)

The N-back Increased activation of the bilateral frontal and parietal regions:

In mTBI patients, decreased activation in 2-back, 1-back

conditions were observed in female patients compared with

female control subjects at the initial imaging study; increased

activation in 2-back, 1-back conditions was observed in male

patients compared with male control subjects.

At the 6-week follow-up study, female patients showed

persistent hypoactivation, male patients showed a regression

of hyperactivation to the level of activation similar to control

subjects.

Wylie et al. (2015) 27 mTBI patients

1. <72 hr post-injury

2. 1 week later

The N-back task Changes from time 1 to time 2 showed an increase in posterior

cingulate activation; activation was increased greater in those

mTBI subjects without cognitive recovery; in increased

workload, activation increased in cortical regions in the right

hemisphere.

Mayer et al. (2015) 46 mTBI patients within

3 weeks of injury;

follow-up examination

4 months postinjury

Multisensory

(audiovisual)

cognitive control

task

Abnormal activation within different regions of visual cortex

that depended on whether attention was focused on auditory

or visual information streams: Increased activation within

bilateral inferior parietal lobules during higher cognitive/

perceptual loads. Functional abnormalities within the visual

cortex and inferior parietal lobules were only partially

resolved at 4 months postinjury.

Westfall et al. (2015) 19 adolescents with mTBI,

3–12 months postinjury

Auditory–verbal
N-back task

Increased activation during the most difficult part of the task

was observed in cluster 1 (left sublobar insula, left middle

temporal gyrus, and left superior temporal gyrus), cluster 2

(left precentral gyrus and left sublobar insula), and cluster 3

(right frontal lobe subgyral region and right medial frontal

gyrus).

Van der Horn

et al. (2016)

55 mTBI patients, 4 weeks

postinjury

The N-back task Reduced activation within the medial prefrontal cortex;

postconcussive complaints (PCC)-absent patients showed

stronger deactivation of the DMN compared with PCC-

present patients and HCs, especially during difficult task

conditions; functional connectivity between the DMN and

FEN was lower in PCC-absent patients compared with PCC-

present patients.

Chen et al. (2016) 13 younger (21–30 years)

and 13 older (51–
68 years) mTBI patients

1. Within 1 month

postinjury

2. 6 weeks after

The N-back task Younger patients: Initial hyperactivation in the right precuneus

and right inferior parietal gyrus in 2-back > 1-back conditions

compared with younger HCs.

Older patients: Hypoactivation in the right precuneus and right

inferior frontal gyrus compared with older HCs.

Wang et al. (2017) 44 mTBI patients, within

2 weeks postinjury

Shifted-attention

emotion appraisal

task (SEAT)

Decreased activation in the response to fearful faces in clusters

in the left superior parietal gyrus and left medial orbitofrontal

gyrus, and bilaterally in the lateral orbitofrontal gyri.

Sullivan et al. (2018) 17 individuals with blast-

related mTBI

Flanker task Incongruent trials: Increased activation in the left superior

parietal lobe, left dorsal anterior cingulate cortex, right

supramarginal gyrus, and right lateral occipital cortex.

Error trials: Greater deactivation in the areas of the default

mode network including the left dorsomedial prefrontal

cortex (DLPFC) and left posterior cingulate cortex, precuneus.
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symptom-dependent patterns of altered task-related brain activity occur

in mTBI patients (Holmes et al., 2019). Consequently, it can be hypothe-

sized that there is an optimal level of activation that reflects an applica-

tion of compensatory strategies associated with better performance, at

least in the pediatric population. In fact, previous studies have demon-

strated different activation patterns in youth with mTBI. For example,

Keightley et al. (2014) showed lower task-related activity in adolescents

with mTBI due to an inability to involve compensatory strategies.

Overall, there is a great number of studies in mTBI patients that

use task-based fMRI with a broad variety of findings. The general idea

among all of them is the variability of the alterations in the BOLD sig-

nal during task performance throughout the recovery process. Thus,

elevation in activity postinjury can be perceived as an involvement of

compensatory mechanisms to overcome the functional deficit of

affected areas until they gradually return to normal.

The fMRI has proven to be an effective tool in the diagnosis of

concussion, although it has its limitations. Task-based fMRI is still more

commonly in research than in clinical practice due to its complex proce-

dures and time-consuming factors such as task development, personnel

required to teach the task to the patient, time inside the scanner, and

cost as well as additional equipment (screen, joy-stick, etc.). All the

above have encouraged researchers to develop more accessible and

simple diagnostic neuroimaging method for the mTBI population.

2.2 | Resting state fMRI

Another type of functional MRI which is broadly used in mTBI research

is resting state fMRI (rs-fMRI). In recent years, studies using rs-fMRI in

mTBI subjects are exceeding task-based fMRI studies, and is one of the

most perspective methods for use in the diagnosis of concussion.

Compared with task-based fMRI, rs-fMRI does not require special assis-

tance during scanning, that is, a subject does not perform any tasks

which they should learn prior to the procedure and no additional equip-

ment is needed. However, significant drawback of this method for clini-

cal use is a complexity of data processing following the scan.

Similarly to task-based fMRI, rs-fMRI is based on measuring of

BOLD signal fluctuations. The rs-fMRI examines synchronous activa-

tions between spatially distinct regions to identify resting state net-

works (RSNs). In contrast to task-based fMRI, this method is focused

on activations which are occurring in the absence of a task or stimulus

(Lee, Smyser & Shimony, 2013).

A great majority of studies elucidated alterations in RSNs follow-

ing concussion (Table 2). One of the main RSNs investigated in mTBI

research is the default mode network (DMN). DMN is potentially

associated with the consolidation of memory, working memory,

processing of emotionally salient stimuli, and the interplay between

emotional processing and cognitive functions (Mohan et al., 2016).

Most of the recent studies showed an increase in DMN connectivity

in concussed patients (Churchill, Hutchison, Graham, &

Schweizer, 2018; Madhavan et al., 2019; Meier et al., 2020; Van der

Horn et al., 2017), although a decreased connectivity was also noted

by several authors (D'Souza et al., 2020; Iyer et al., 2019).

Additionally, task-related network (TRN), related to attention acti-

vation throughout the task performance, is studied in parallel with

DMN, as one of the consequences following mTBI appears to be a

disruption between DMN and TRN (Mayer, Mannell, Ling, Gas-

parovic, & Yeo, 2011). Alterations in the interaction between DMN

and TRN may result in poor long-term memory consolidation

(Lefebvre & D'Angiulli, 2019).

Similarly, it was demonstrated that the salience network

(SN) which plays a role in mediation of the balance between DMN

TABLE 1 (Continued)

Author Participants Task Major findings (activity alterations in mTBI patients)

Sours, Kinnison,

Padmala, Gullapalli,

and Pessoa (2018)

30 mTBI patients during

chronic phase

The N-back task Decreased segregation between the DMN and task-positive

networks, elevation in functional connectivity within the

DMN regions.

Holmes et al. (2019) 27 mTBI pediatric

patients, high-symptom

and low-symptom

groups

Spatial navigation task Low-symptom group had an elevated activity in the frontal and

occipital cortices; high-symptom group had broader increased

activity in the frontal region and in the cerebellum.

Khetani, Rohr, Sojoudi,

Bray, and

Barlow (2019)

60 individuals with PPCS

and 30 recovered after

mTBI, �14 years old,

38 days after mTBI

Visuospatial N-back

task

Children with persistent postconcussive symptoms (PPCS) had

decreased activation relative to the children with typical

recovery in the posterior cingulate and precuneus during the

one-back working memory condition, despite similar task

performance.

Ramage, Tate, New,

Lewis, and

Robin (2019)

60 individuals, 3–
24 months

postconcussion

Constant effort task

(CE)

Hyper-connectivity increased with an effort level but

diminished quickly when maintaining the effort; connectivity

between the left anterior insula, rostral anterior cingulate

cortex, and right-sided inferior frontal regions, correlated with

effort-level and state fatigue in mTBI participants.

Cook et al. (2020) Meta-analysis of 7 studies:

174 patients, acute to

subacute phase

Memory and attention

tasks

Reduced activation within the right middle frontal gyrus (MFG).

LUNKOVA ET AL. 5481



and the executive network, may be damaged as a result of concussion

(Sharp et al., 2014; Sours et al., 2018). The impairment of SN leading

to functional imbalances within the network appear to affect cognitive

control, and particularly may diminish self-regulation of cognition,

behavior and emotion (Peters, Dunlop, & Downar, 2016). Alterations

in salience and fronto-parietal networks connectivity in mTBI patients

were highlighted in a study by Shafi et al. (2020).

Together with this, alterations in the following other RS networks

came to the attention of mTBI researchers: motor, visual, and auditory

networks (D'Souza et al., 2020; Hou et al., 2019; Madhavan

et al., 2019). Changes in these networks also were considered to be

associated with such PCS as sensitivity to light and noise (visual and

auditory networks, respectively) (Madhavan et al., 2019). In addition,

it is noteworthy that most of the recent mTBI studies using rs-fMRI

showed positive correlations between connectivity alterations and

various PCS, including cognitive and emotional symptoms. Moreover,

deviations in connectivity in the acute stage postinjury were consid-

ered as a predictive indicator of subsequent difficulties in cognitive

performance (Churchill et al., 2018; Iyer et al., 2019; Li et al., 2019; Lu

et al., 2019; Palacios et al., 2017).

TABLE 2 Summary of mTBI studies using rs-fMRI

Author Participants, time after injury Major findings

Meier et al. (2020) 93 concussed athletes, within 24 hr

postinjury

Acute increase in local connectivity was observed in a region in

the right middle and superior frontal gyri (DMN).

Shafi et al. (2020) 80 individuals with postconcussion

syndrome, at least 1 month postinjury

Distinct subnetwork components with hyperconnected frontal

nodes and hypoconnected posterior nodes across both the

salience and fronto-parietal networks were observed.

Palacios et al. (2017) 75 adult mTBI patients within 24 hr

postinjury

Alterations in the connectivity of the most representative RSNs

that are associated with cognitive performance at 6 months

after injury.

Churchill et al. (2018) 35 athletes with acute concussion (<7 days

postinjury)

A network of frontal, temporal and insular regions: Connectivity

was negatively correlated with symptom severity.

A network with anticorrelated elements of the default-mode

network and sensorimotor system: Connectivity was

positively correlated with symptom severity.

Madhavan et al. (2019) 91 adult mTBI patients (with first scanning

at >3 days postinjury)

Functional connectivity was correlated with symptom severity

in several regions of specific networks, including the dorsal

attention, default mode, executive control, motor, visual, and

salience networks. Motor, visual networks, and DMN were

found to be associated strongly with symptom severity.

D'Souza et al. (2020) 65 mTBI patients within 7 days postinjury Reduced functional connectivity in the anterior default mode

network, central executive network, somato-motor and

auditory network; a negative correlation between network

connectivity and severity of post-concussive symptoms was

observed.

Lu et al. (2019) 58 mTBI patients, >10 days postinjury Reduced left substantia nigra (SN)-based functional connectivity

with right insula and caudate and increased left SN-based

functional connectivity with left precuneus and left middle

occipital gyrus, and reduced right SN-based functional

connectivity with left insula; abnormal functional connectivity

significantly correlated with cognitive function.

Hou et al., 2019 47 mTBI patients, within 10 days postinjury Alterations in the auditory and visual sub-networks in patients

with PCS.

Iyer et al. (2019) 110 pediatric mTBI patients, 4-weeks

postinjury

Decrease in connectivity within DMN, visual, and

somatosensory networks, correlated with cognitive and

emotional problems; increased connectivity within the limbic

network, correlated with poorer sleep quality and higher

fatigue.

Li et al. (2019) 55 mTBI patients within 7 days postinjury Significantly decreased network centrality in the left middle

frontal gyrus (MFG); decreased inflows from the left MFG to

bilateral middle temporal gyrus, left medial superior frontal

gyrus, and left anterior cingulate cortex; changes in network

centrality and causal connectivity were associated with

deficits in cognitive performance.

Van der Horn et al. (2017) 30 mTBI patients, 2 weeks postinjury Minor longitudinal changes in functional connectivity within the

precuneus component of DMN.
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Thus, rs-fMRI shows promising results in mTBI research, demon-

strating functional changes in the brain following concussion, and hav-

ing a potential for a predictive ability of later cognitive decline.

Nevertheless, the complex postprocessing procedure and contradic-

tions in findings is a major factor for this sequence not to be yet

included in the clinical practice. Together with this, another significant

limitation of the method which should be addressed, is an insufficient

level of specificity of results the rsMRI presents. It is highly sensitive

tool to detect functional alterations following concussion, however,

those alterations are unspecific for mTBI. It also should be taken in

consideration that studies using rsfMRI and task-based fMRI both are

primarily showing the results at the group level as opposed to the

individual. Even though there is a popular suggestion to use these

techniques as a biomarker of concussion it is not used at the individ-

ual level and for a potential development in this direction it requires

larger scope of normative data.

2.3 | Perfusion MRI

Perfusion MRI or PWI is performed by other types of MRI methods:

dynamic susceptibility contrast (DSC), dynamic contrast-enhanced

imaging (DCE), and arterial spin-labeling (ASL). DSC and DCE are inva-

sive, and a gadolinium-based contrast is used in these sequences.

However, in this review we only consider ASL, a noninvasive perfu-

sion MRI sequence which has been used to measure cerebral blood

flow (CBF) in mTBI patients and to demonstrate significant alterations

related to symptoms in the acute phase (Wang et al., 2016).

One of the major features of ASL is the possibility of broader use

given its safety and noninvasive nature. The main mechanism of ASL is

magnetic labeling of the arterial blood water protons with the purpose

of exploiting it as an endogenous tracer. Cerebral blood flow (CBF) is

the variable most typically evaluated in ASL (De Havenon et al., 2017).

CBF alterations during the acute and subacute phases of mTBI were

detected in numerous studies using SPECT (Gowda et al., 2006) and per-

fusion computed tomography (PCT) (Metting, Spikman, Rödiger, & van

der Naalt, 2014). Nevertheless, the main benefit of ASL in comparison to

SPECT to PCT is the absence of ionizing radiation and the possibility it

offers for repeating scanning and tapping recovery.

ASL measurements can be divided into two groups of resulting

values: absolute (aCBF) and relative CBF (rCBF). The aCBF values cor-

respond to the perfusion level of the region of interest (ROI) indepen-

dently of other regions, while rCBF values show the changes in the

ROI relative to other brain regions. Consequently, rCBF is more sensi-

tive to focal CBF abnormalities whereas aCBF values address the

brain as a whole (Aracki-Trenkic et al., 2020).

Several studies (Table 3) showed contentious results regarding

alterations of CBF in mTBI, questioned CBF as a valid biomarker in

concussions and called for further investigation. Most of the studies

using ASL demonstrated a decrease in blood flow up to 1 month after

concussion (Lin et al., 2016; Meier et al., 2015; Peng et al., 2016;

Wang et al., 2015) with a global decrease in aCBF particularly in the

bilateral frontal and left occipital cortices (Lin et al., 2016) and in

the bilateral frontotemporal lobes (Wang et al., 2015). Decrease in

rCBF was demonstrated in the right insular and superior temporal cor-

tex (Meier et al., 2015) and in the bilateral thalami (Bartnik-Olson

et al., 2014). Hamer et al. (2020) also showed diminished CBF bilater-

ally in temporal areas only in males with chronic mTBI (Hamer

et al., 2020). The earlier study by Ge et al. (2009) showed decreased

CBF within the thalamus in mTBI patients (Ge et al., 2009). The most

recent article on the effect of multiple mTBIs using ASL showed that

history of more than three concussions causes a decrease in aCBF

throughout a life span and can lead to an increased risk factor for

Alzheimer's disease (Clark et al., 2020).

In addition, various studies showed a correlation between CBF

alterations and cognitive decline. Bai et al. (2019) demonstrated that

concussed males had a decrease in aCBF in the subacute phase of

mTBI compared with healthy males; at the same time, lower aCBF in

the posterior parietal cortex was associated with worse cognitive per-

formance (Bai et al., 2019). Also, a decrease in CBF correlated with

lower cognitive assessment scores in athletes with sport-related con-

cussion (SRC) 24–48 hr postinjury (Wang et al., 2019).

In contrast, other findings showed an increase in CBF in mTBI

(Doshi et al., 2015; Liu et al., 2016; Stephens, Liu, Lu, &

Suskauer, 2018) as well as an absence of alterations (Militana et al.,

2016). Doshi et al. (2015) revealed an increase in rCBF up to 10 days

after mTBI in the frontal lobes, occipital lobes, and left striatum, in

contradiction with the studies described above. The study by Ste-

phens et al. (2018) examined teenage athletes 2–6 weeks postinjury.

Compared with controls, rCBF was increased after 2 weeks in the left

dorsal anterior cingulate cortex (ACC) and left insula than controls.

After 6 weeks, higher rCBF persisted only in the left dorsal ACC. Ele-

vation of rCBF in the left dorsal ACC was higher in athletes with phys-

ical symptoms 6 weeks postinjury compared with asymptomatic

athletes and HCs (Stephens et al., 2018). Interestingly, Stephens

et al. (2018) and Brooks et al. (2019) showed elevation of rCBF in the

cingulate cortex in concussed youths. It was suggested that an

increase in CBF in mTBI patients can represent “a neuroprotective

response in an effort to meet the metabolic demands of the tissue

during a time of injury” (Williams & Danan, 2016).

In addition, an ASL-fMRI study of mental fatigue during perfor-

mance of a psychomotor vigilance test by patients in the acute and

chronic phases of mTBI showed that those in the acute phase (within

2 weeks after injury) showed greater CBF in “bottom-up” and “top-
down” attention areas (PFC, right inferior parietal lobe, anterior cingu-

late cortex, bilateral basal ganglia, and thalamus) than the HCs, even

though the behavioral performances did not differ significantly; at the

same time, there was lower CBF in the DMN. A comparison of

the acute and chronic phases showed that patients in the chronic

phase (12 months postinjury) had higher CBF in the anterior cingulate,

middle frontal gyrus, and inferior frontal gyrus, and lower CBF in the

precuneus, extending to PCC, paracentral lobule, and inferior parietal

lobule, a result consistent with partial recovery (Liu et al., 2016).

Interesting recent findings were presented by Churchill,

Hutchison, Graham, and Schweizer (2017) and Barlow et al. (2017). In

the first study, increased aCBF was initially seen in the first 3 days
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TABLE 3 Summary of mTBI studies using perfusion MRI (ASL)

Author
Method of CBF
detection

Time after injury (acute vs.
subacute vs. chronic phase)

Type of

alterations
in CBF Major findings (CBF alterations in mTBI patients)

Ge et al. (2009) ASL-MRI 3T Chronic (�24 months) Decrease Reduced CBF in the bilateral thalami.

Bartnik-Olson

et al. (2014)

PWI 3–12 monthsa Decrease Reduced rCBF in the bilateral thalami.

Doshi et al. (2015) ASL 3 hr to 10 days Increase Increase in the left striatum, frontal, and occipital

lobes.

Meier et al. (2015) ASL-MRI 1 day, 1 week, and 1 month Decrease Decrease in the right insula and superior temporal

cortex resolved by 1 month, decrease in the dorsal

midinsular cortex persisted at 1 month

postconcussion.

Liu et al. (2016) ASL-fMRI Subacute (within 2 weeks)

and chronic (>12 months)

Increase/

decrease

Acute phase: Increase in the right middle frontal

gyrus and inferior frontal cortex, right inferior

parietal lobe, anterior cingulate cortex, left

superior frontal gyrus, bilateral basal ganglia, and

thalamus.

Chronic phase: Increase in the anterior cingulate,

middle frontal gyrus, and inferior frontal gyrus, and

lower CBF in precuneus, extending to PCC,

paracentral lobule, and inferior parietal lobule;

decrease in DMN in both phases.

Wang et al. (2016) ASL-MRI Acute (within 24 hr)/

subacute(after 8 days)

Decrease Decrease in the bilateral frontal and temporal area

within 24 hr and greater decrease after 8 days.

Lin et al. (2016) 3D pulse

continuous

ASL-MRI

Within 1 month Increase/

decrease

Decrease in the bilateral frontal and left occipital

cortex, in more severe symptoms—higher CBF in

the bilateral frontal and left occipital lobes.

Barlow et al. (2017) Pseudo

continuous

ASL-MRI

40 days Increase/

decrease

Global CBF was higher in the bilateral inferior frontal

and occipital regions in the symptomatic group

and lower in the inferior temporal and parietal

regions asymptomatic group compared with

controls.

Churchill et al. (2017) 2D pulsed ASL-

MRI

7 days Increase/

decrease

Greater total symptom severity—elevated posterior

cortical CBF; greater cognitive symptoms—lower

frontal and subcortical CBF.

Stephens et al. (2018) Pseudo-

continuous

ASL

2 and 6 weeksa Increase 2 weeks: Increased rCBF in the left dorsal anterior

cingulate cortex (ACC) and left insula than

controls.

6 weeks: Higher rCBF persisted in the left dorsal

ACC. Elevation of rCBF in the left dorsal ACC was

higher in athletes with physical symptoms 6 weeks

postinjury compared with asymptomatic athletes

and HCs.

Bai et al. (2019) 3-D ASL-MRI >1 month Increase Increased CBF in the posterior parietal cortex, only

in males.

Hamer et al. (2020) 2D pulsed ASL-

MRI

Chronic (and multiple) Decrease Lower CBF bilaterally in temporal area, only in males.

Wang et al. (2019) ASL-MRI Within 24–48 hr Decrease Decrease in the left inferior parietal lobule (IPL), right

supramarginal gyrus (SMG), right middle frontal

gyrus (MFG), posterior cingulate cortex, left

occipital gyrus, and thalamus.

Brooks et al. (2019) 3D pseudo-

continuous

ASL

Chronic (>6 months)a Increase/

decrease

Increase in anterior frontal/temporal regions,

decrease in posterior and inferior regions.

aYouth and pediatric groups.
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posttrauma followed by a decrease on days 5–7 (Churchill

et al., 2017). The second study showed higher aCBF in symptomatic

concussed children and lower aCBF in asymptomatic concussed chil-

dren (scanning of both groups was made about a month after concus-

sion; Barlow et al., 2017). A mixed pattern of alterations in rCBF was

also demonstrated in the study by Brooks et al. (2019) in concussed

youths. The study showed elevation in the anterior frontal and tempo-

ral regions, whereas the posterior and inferior regions had diminished

rCBF (Brooks et al., 2019).

Even though the findings are conflicting, and no consensus is

reached so far, study involving another method of perfusion MRI,

such as dynamic susceptibility contrast-enhanced perfusion-weighted

imaging (DSC PWI), showed the results in favor of the decrease in

CBF following concussion (Liu et al., 2013). Additionally, a review on

various perfusion imaging methods (CT perfusion, MR perfusion, and

SPECT) concluded that blood flow and blood volume postconcussion

tend to be reduced, mostly in frontal and temporal lobes (Yuh,

Hawryluk, & Manley, 2014).

Overall, the application of ASL has been growing for the past

years yielding encouraging results, but its drawbacks remain: lower

signal difference (compared, e.g., to BOLD) (Detre & Wang, 2002),

poor temporal resolution (Liu & Brown, 2007), and necessity of the

complex subtraction procedure (Golay, Hendrikse, & Lim, 2004). Still,

these disadvantages can be partially resolved using parallel imaging

(Deshmane et al., 2012) and pseudocontinuous labeling (Dai, Garcia,

De Bazelaire, & Alsop, 2008; Haller et al., 2016). The ASL method

offers advantages such as stability over time and less variability across

subjects (compared with BOLD), making it particularly useful for longi-

tudinal studies in mTBI and other neurological disorders (Brown,

Clark, & Liu, 2007). Considering the numerous mTBI studies with per-

fusion MRI, ASL used together with other MRI modalities, carries a

high potential and may be part of novel methods of diagnosing con-

cussion in the clinical setting.

2.4 | Susceptibility weighted imaging

Along with ASL, SWI is getting increasingly recognized in the diagno-

sis of mTBI. SWI, being a fully flow-compensated three-dimensional

(3D) gradient echo (GRE) sequence, is particularly sensitive to micro-

hemorrhages, venous blood and iron levels. Currently, SWI is consid-

ered the most promising technique for microbleeds identification,

showing up to five times more precise results than such methods as

GRE or echo-planar imaging (EPI) (Benedictus et al., 2013; Sepehry,

Lang, Hsiung, & Rauscher, 2016). Thus, SWI may be useful in showing

cerebral microbleeds following concussion.

The SWI sequence is especially focused on the detection of the

intravascular venous deoxygenated blood and extravascular blood

products (Haacke, Mittal, Wu, Neelavalli, & Cheng, 2009; Reichenbach,

Venkatesan, Schillinger, Kido, & Haacke, 1997). The main principle of

this technique is an exploitation of the magnetic property of iron, par-

ticularly within different states of hemoglobin, which causes magnetic

field distortion affecting both T2* relaxation times and phase data

(Toth, 2015). Both magnitude and phase information are necessary to

generate proper tissue characterization, and they are merged together

to create an SWI image (Haacke, Xu, Cheng, & Reichenbach, 2004).

Hemorrhages are detected by dephasing of the signal caused by para-

magnetic blood products, for example, deoxyhemoglobin in acute

hematomas has a strong paramagnetic effect and leads to a significant

signal loss on SWI (Kirov, Whitlow, & Zamora, 2018).

Despite being less effective for delineating anatomical structures

because of its low contrast (Toth, 2015), SWI appears to be the most

precise for detection of hemorrhages among other MRI modalities (CT,

etc.). However, there are posttrauma time limitations for SWI diagnosis

to be accurate. Hyperacute hemorrhages (<12 hr after the incident)

cannot be spotted by SWI as at this time period the oxyhemoglobin

lacks unpaired electrons, which yields to weak diamagnetic characteris-

tics which results in unaffected SWI dephasing. Nonetheless, in the

acute phase, the oxyhemoglobin is transformed into deoxyhemoglobin

when oxygen molecules are released from blood particles, thus causing

the paramagnetic effect that affects signal loss (Ong & Stuckey, 2010).

Together with this, SWI is used for quantitative susceptibility

mapping (QSM). QSM is an MRI technique for quantifying the spatial

distribution of magnetic susceptibility within biological tissues (Liu,

Ghimire, Pang, Wu, & Shi, 2015). Specifically, QSM is used to measure

cerebral SVO2 (mixed venous oxygen saturation) (Doshi et al. (2015)),

as well as to assess deep gray matter iron (Koch et al., 2021) and the

role of myelin in white matter after mTBI (Weber et al., 2018). In

study by Chai et al. (2017), the decreased susceptibility of the straight

sinus appeared to correlate with PCS, and with a recovery to normal

levels of oxygenation over time. Moreover, increased global white-

matter susceptibility and decreased in global subcortical gray matter

susceptibility were observed in mTBI patients (Koch et al., 2021). In

addition, prognostic ability of QSM method was underlined by several

authors (Koch et al., 2021; Weber et al., 2018).

We are considering SWI in this review as it proved to be a valid

method for detecting one of the signs of mTBI—microhemorrhages, in

keeping with reports from multiple studies (Beauchamp &

Anderson, 2013; Steenerson & Starling, 2017). Detection of micro-

hemorrhages in the early stages of mTBI can contribute to outcome

prediction in the presence of PCS (Beauchamp et al., 2011; Geurts,

Andriessen, Goraj, & Vos, 2012). Furthermore, SWI can be performed

on conventional scanners, which makes this method highly applicable

within the clinical setting.

Microbleeds are a marker of a traumatic axonal injury (TAI), a spe-

cific sign of mTBI. TAI has been demonstrated in mTBI patients in

postmortem autopsies (Bigler, 2004), and its extent is an important

prognostic factor in the development of cognitive decline and neuro-

psychiatric disability (Medana & Esiri, 2003). Einarsen et al. (2019) also

showed that signs of TAI lesions remain on SWI scans at 3 and

12 months postinjury (Einarsen et al., 2019).

In one recent trauma study, microbleeds in brain tissue detected

by SWI in the acute phase predicted worse cognitive decline and per-

sistent PCS in concussed patients (Studerus-Germann et al., 2018). The

same study compared efficacy of SWI and DTI in prediction ability of

worse outcome. It showed that exploitation of the SWI technique in
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the acute phase of mTBI is more effective while, in contrast, DTI would

be more practical in later phases (considering that DTI did not reveal

any alterations in structural integrity 1 week after injury, but demon-

strated significant changes after 1 year). Another study (Liu et al., 2015)

investigated residual iron deposition as a marker of prior microbleeds;

patients with persistent PCS showed a higher rate of micro-

hemorrhages than mTBI patients who completely recovered.

Various articles on SWI in mTBI (Table 4) demonstrated that sev-

eral brain areas typically affected by microbleeds are associated with

a negative outcome. Wang et al. showed that microhemorrhages in

frontal, parietal and temporal lobes predicted the presence of depres-

sion 12 months after the trauma (Wang et al., 2014). De Haan et al.

also revealed in their study of the chronic phase of mTBI the presence

of microbleeds in frontal and temporal areas. However, the unfavor-

able functional outcome was correlated with the presence and extent

of the microhemorrhages only in temporal cortical areas. The study

also showed that no microhemorrhages were found in the thalamus

and internal capsule (De Haan et al., 2017). The earlier study showed

that microbleeds in mTBI were more frequently found in white matter

than in deep nuclei (Park et al., 2009). Together with this, it was

emphasized that traumatic cerebral microbleeds in general were asso-

ciated with lower scores on the GCS (1 day after injury) and Glasgow

Outcome Scale (GOS) (1 year after injury) (Park et al., 2009).

In contrast, the mTBI study in the chronic phase by Lu et al.

showed alterations in angle radian values (which could indicate

excessive iron deposition to some extent) predominantly in gray

matter (Lu et al., 2015). Higher angle radian values were found in the

head of the caudate nucleus, the lenticular nucleus, the hippocam-

pus, the thalamus, the right substantia nigra, the red nucleus, and the

splenium of the corpus callosum in patients with mTBI. Additionally,

performance on the Mini-Mental State Examination (MMSE) by

mTBI patients correlated negatively with the angle radian values in

the right substantia nigra, suggesting that this area is related to per-

sistent cognitive decline in patients with chronic mTBI (Lu

et al., 2015).

SWI is an appealing method in mTBI research and it has a great

number of benefits (some of them are mentioned above). Additionally,

SWI is so far the only MRI method which has diagnostic potential,

whereas the other techniques have so far only provided results at the

group level. However, there is only a limited number of studies on

the topic and findings have raised various questions with contradic-

tory findings. Trifan et al. showed that SWI is not effective with mild

TBI, although it shows increased sensitivity for moderate and severe

TBI (Trifan et al., 2017). Study by Jarrett et al. (2016) also did not

show presence of microhemorrhages in mTBI patients. In addition,

SWI is not effective in the hyperacute phase of mTBI (Ong &

Stuckey, 2010). Nevertheless, the studies mentioned above still dem-

onstrate promising results. Thus, further investigation using SWI is

required to reach a consensus and to identify the best way to apply

this technique for diagnosing mTBI in the clinical setting.

TABLE 4 Summary of mTBI studies using SWI

Author Participants, acute vs. chronic phase Major findings

Park et al. (2009) 21 mTBI patients without any parenchymal

hemorrhage on conventional MRI, within a week

after admission

Microbleeds were located more frequently in white matter

than in deep nucleus. Lesions were observed in the

frontal lobe, occipital lobe, and brain stem.

Hasiloglu et al. (2011) 21 amateur boxers Microhemorrhages were detected only in 2 of 10 patients.

Wang et al. (2014) 200 mTBI patients, 2 hr to 3 days postinjury, with

follow-up testing (on presence of depressive

symptoms) 1 year after

Depressive group had greater the number and volume of

microbleeds than nondepressive group, particularly in the

frontal, parietal, and temporal lobes.

Liu et al. (2013) 63 MTBI patients at least 3 days after injury, and

follow-up testing on PCS after 7–15 months

Significant correlation was found between PCS and number

of intracranial microbleeds.

Lu et al. (2015) 39 patients with mTBI, 6 months after injury Significantly higher angle radian values were observed in the

head of the caudate nucleus, the lenticular nucleus, the

hippocampus, the thalamus, the right substantia nigra, the

red nucleus, and the splenium of the CC.

De Haan, de Groot, Jacobs,

and van der Naalt (2017)

127 individuals with mTBI (63 with MRI

abnormalities and 64 without), chronic phase

Microhemorrhages were predominantly present in the

frontal and temporal lobes. Worse outcome was

demonstrated in 67% of the group with MRI abnormalities

with a significant association of the total number of

microhemorrhages in the temporal cortical area.

Trifan, Gattu, Haacke, Kou,

and Benson (2017)

180 subjects with persistent neurobehavioral

symptoms following head trauma (83% classified

as mTBI), chronic phase (�29 months postinjury)

28% of the 180 TBI cases revealed hemorrhages.

Studerus-Germann

et al. (2018)

30 mTBI patients tested at the baseline and

12 months postinjury

Amount of microbleeds in the acute phase correlates

positively with cognitive symptoms such as slowing,

difficulty in memory and concentration.

Einarsen et al. (2019) 194 mTBI patients, 72 hr, 3 months, and

12 months postinjury

TAI lesions in the lobar WM, CC, brainstem, basal ganglia,

and thalamus, in 19% of participants after 3 months and

in 16% after 12 months.
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2.5 | Diffusion MRI

In diffusion MRI (dMRI), the MRI signal is sensitized to the diffusion of

water molecules by using field gradients (Mori & Zhang, 2006). These

field gradients cause a signal loss from water molecules that travel

along the respective gradient direction. In unobstructed environments,

water molecules move around freely, resulting in strong signal loss in

the presence of such diffusion gradient, relative to a reference scan

that is acquired without a diffusion gradient. In tissue such as white

matter, the displacement of water is larger along the axon direction

than perpendicular to the axon. Therefore, the signal reduction is

stronger in the presence of a diffusion gradient that is applied along

the axon direction compared with a gradient perpendicular to the

axon (Beaulieu, 2002). Acquiring multiple scans with diffusion gradi-

ents along different directions can therefore be used to probe the

microstructure and overall architecture of biological tissues.

Once these measurements are obtained, the dMRI signal is

modeled. The best-known approach is to model water diffusion

through the use of a tensor. This approach, called diffusion tensor

imaging (DTI), models water diffusion as a 3D Gaussian, described by

three eigenvectors and their corresponding eigenvalues (Mori &

Zhang, 2006). These parameters can then be used to build measures

that describe water diffusion, such as fractional anisotropy (FA,

defined as the normalized variance of eigenvalues, measures how

elongated the tensor is), axial diffusivity (AD, defined as the largest

eigenvalue), radial diffusivity (RD, defined as the average of the sec-

ond and third eigenvalues), and mean diffusivity (MD, defined as the

average of all three eigenvalues) (Mori & Zhang, 2006). Investigations

using animal models have shown how certain microstructural alter-

ations can influence these tensor measures (Budde, Janes, Gold,

Turtzo, & Frank, 2011; Sun et al., 2006).

Given its relatively high accessibility and ease of use, DTI has been

extensively used to study white matter neuropathologies in individuals

with TBI (Hulkower, Poliak, Rosenbaum, Zimmerman, & Lipton, 2013;

Manning et al., 2017). A 2013 review of over 100 DTI studies of TBI

found that an overwhelming majority reported decreased FA in the cor-

pus callosum of participants with mTBI, demonstrating the high sensitiv-

ity of this measure for white matter damage (Hulkower et al., 2013).

However, FA, and DTI in general, have important limitations. The classi-

cal tensor-based measures rely on the mathematical assumption of DTI

that every voxel contains a single homogeneous orientation of water dif-

fusion, which often implies a single predominant fiber orientation

(Jeurissen, Leemans, Tournier, Jones, & Sijbers, 2013; Jones, Knösche, &

Turner, 2013). In contrast, recent work suggests that over 90% of voxels

in the white matter contain fibers that are heterogeneously oriented

(Jeurissen et al., 2013). Any form of microstructural heterogeneity,

whether it is from fiber configuration (e.g., crossing, kissing, fanning, or

converging fibers), myelination, or pathology (loss of axons, edema, and

microglial infiltration), will not be adequately discerned by a tensor. As a

result, whereas FA can readily detect white matter damage in the con-

text of mTBI (Hulkower et al., 2013), it cannot be used to discern

between different forms of white matter neuropathology because of

poor specificity (Dodd, Epstein, Ling, & Mayer, 2014; Guberman, Houde,

Ptito, Gagnon, & Descoteaux, 2020). In a more recent review of DTI

studies of mTBI, Dodd et al. (2014) focused on injuries in the subacute

period of recovery, when multiple different pathologies (each with differ-

ing, sometimes contradictory impacts on the dMRI signal) overlap. They

found that the trend of FA change was inconsistent, with an equal num-

ber of studies showing lower FA in participants with mTBI compared

with healthy controls as studies showing higher FA in patient groups.

In recent years, novel modeling techniques have addressed this

limitation. These techniques aim to bypass the assumptions of the

tensor model to account for microstructural heterogeneity

(Descoteaux, Deriche, Knosche, & Anwander, 2008; Tournier, Cal-

amante, & Connelly, 2007; Wedeen et al., 2008; Zhang, Schneider,

Wheeler-Kingshott, & Alexander, 2012). Of note, constrained spheri-

cal deconvolution (CSD) is particularly promising. This technique

assumes that the measured diffusion signal can be estimated from a

convolution between a true distribution of axonal fibers and a fiber

response function, that is, a description of how the diffusion signal

behaves in voxels containing homogeneous fibers. This fiber response

function can be estimated by fitting a tensor in voxels that are known

to contain homogeneous fibers, such as deep within the corpus cal-

losum. By performing the opposite computation, that is, deconvolving

the fiber response function from the measured diffusion signal, CSD

estimates the underlying fiber orientations, giving rise to a fiber orien-

tation distribution function (fODF). Compared with the tensor and

other alternatives, the fODF can discern multiple fiber orientations,

even at small angles of crossing (Descoteaux et al., 2008; Tournier

et al., 2007). In addition, by representing fibers instead of water diffu-

sion, the fODF gives rise to a measure called apparent fiber density

(AFD), which has been shown to be more specific to axonal density.

Further, because the fODF is orientation-specific, AFD can be com-

puted for a specific fiber orientation, giving rise to a sub-voxel scale

called the fiber element, or fixel (Raffelt et al., 2012). Raffelt

et al. (2012) studied patients with amyotrophic lateral sclerosis (ALS)

and found that FA in regions where the corticospinal tract crosses

with the corpus callosum appeared to paradoxically increase in

patients compared with healthy controls. Raffelt et al., however,

found that AFD along fixels defined by the corticospinal tract was

lower in ALS patients, more accurately reflecting their axonal loss

(Raffelt et al., 2012).

Studies are increasingly applying novel dMRI approaches to study

mTBIs. A prior study from our group applied CSD on a sample of con-

cussed youth in the subacute stage of recovery. We found patterns sug-

gestive of diverse neuropathologies in the concussed group, with one

thalamo-prefrontal tract displaying a pattern of change in diffusion mea-

sures suggestive of myelin structure alterations, and a cingulo-prefrontal

tract displaying a pattern of change in diffusion measures suggestive of

axonal density loss (Guberman et al., 2020). Another recent study used

neurite orientation dispersion and density imaging (NODDI), another

novel modeling approach, to investigate white matter microstructure early

after injury and later in recovery in a sample of concussed adults. They

found early increases in free water fraction, thought to be reflective of

edema, and later decreases in neurite density, thought to be reflective of

axonal loss (Palacios et al., 2020) and myelin density decrease (Jespersen
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et al., 2010). These studies reflect how novel dMRI techniques have the

potential to disambiguate between different concurrent white matter

neuropathologies.

3 | CONCLUSION

There are numerous neuroimaging methods in mTBI research which

have been progressively developed over the last decade. However,

these methods remain incomplete for application in the clinical envi-

ronment and they require further research and standardization of the

diagnostic procedure. With task-based fMRI, SWI, ASL, and dMRI,

prevalent patterns of the affected areas can be identified after the

trauma (see Table 5). Most of studies discuss white matter abnormali-

ties, especially in PFC (DLPFC in particular) and in the corpus collosum

while others also include changes in posterior cortical regions. At the

same time, a series of papers have demonstrated gray matter alter-

ations postconcussion, primarily in the thalami and hippocampi. From

TABLE 5 Summary of locations of detected neuropathological alterations in mTBI patients

Modality
Type of neuropathological alterations
detected in mTBI patients Location

Task-based fMRI Abnormal cortical activity (alterations of a

BOLD signal, which measures the

hemodynamic response of the brain in

relation to the neural activities)

Spatial navigation task: Right DL-PFC, left hippocampus, left

precuneus, retrosplenial, thalamic, and parahippocampal areas

bilaterally

Visual-tracking tasks: Right anterior internal capsule and right

superior longitudinal fasciculus (Astafiev et al., 2015)

Multi-sensory cognitive control task: Visual cortex and inferior

parietal lobules (Mayer et al., 2015)

N-back: Bilateral frontal and parietal regions, posterior cingulate

activation, medial prefrontal cortex, left sublobar insula, left

middle/superior temporal gyrus, and precuneus (Chen

et al., 2016; Khetani et al., 2019; Sours et al., 2018; Van der

Horn et al., 2016; Westfall et al., 2015; Wylie et al., 2015)

SEAT: Left superior parietal gyrus and left medial orbitofrontal

gyrus, and lateral orbitofrontal gyri bilaterally (Wang

et al., 2017)

Flanker task: Left superior parietal lobe, left dorsal anterior

cingulate cortex, right supramarginal gyrus, and right lateral

occipital cortex (Sullivan et al., 2018)

CE: Left anterior insula, rostral anterior cingulate cortex, and

right-sided inferior frontal regions (Ramage et al., 2019)

Resting-state fMRI Abnormal cortical activity (alterations of a

BOLD signal, which measures the

hemodynamic response of the brain in

relation to the neural activities)

DMN, SN, fronto-parietal (FPN) dorsal attention, executive

control, motor, visual, somato-motor, somatosensory, auditory,

and limbic networks (Churchill et al., 2018; D'Souza et al., 2020;

Hou et al., 2019; Iyer et al., 2019; Li et al., 2019; Lu et al., 2019;

Madhavan et al., 2019; Meier et al., 2020; Shafi et al., 2020)

ASL Alterations in CBF Frontal cortex, middle frontal gyrus, and inferior frontal gyri,

thalamus, inferior parietal lobule, anterior cingulate cortex,

temporal cortex bilaterally, and left occipital cortex (Bai

et al., 2019; Barlow et al., 2017; Bartnik-Olson et al., 2014;

Brooks et al., 2019; Churchill et al., 2017; Doshi et al., 2015;

Hamer et al., 2020; Lin et al., 2016; Liu et al., 2016; Meier

et al., 2015; Stephens et al., 2018; Wang et al., 2016; Wang

et al., 2019)

SWI Cerebral microbleeds Frontal lobe, temporal lobe, brain stem, the thalamus, CC,

occipital lobe, parietal lobe, head of the caudate nucleus, the

lenticular nucleus, the hippocampus, the right substantia

nigra, the red nucleus, and basal ganglia (De Haan et al., 2017;

Einarsen et al., 2019; Hasiloglu et al., 2011; Liu et al., 2013;

Lu et al., 2015; Park et al., 2009; Studerus-Germann

et al., 2018; Trifan et al., 2017; Wang et al., 2014)

DWI Damaged white matter pathways CC (Hulkower et al., 2013)

Myelin-specific imaging Alterations in myelin density and structure CC, right posterior thalamic radiation, left superior corona

radiata, left superior longitudinal fasciculus, and left posterior

limb of the internal capsule, bilateral basal ganglia, left

corticospinal tract, and left anterior and superior temporal

lobe(Spader et al., 2018; Wright et al., 2016)
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a cognitive perspective, mTBI is correlated with poorer executive

functions and difficulties with memory, attention, and learning, all of

which can be explained by the underlying functional decline in the

affected brain areas.

The benefits and drawbacks of the methods enumerated in this

review and the absence of a universal diagnostic neuroimaging

method suggests a need for the adoption of a multimodal approach

to the neuroimaging of mTBI. Multimodality does not only require

the use of various imaging techniques, but also the adoption of

more sophisticated statistical approaches, capable of combining

these different modalities and extracting the most relevant infor-

mation from them (Guberman et al., 2021; Manning et al., 2019).

FMRI is an effective method in the diagnosis of concussion but it is

expensive and time-consuming making it difficult for regular use in

everyday practice. The dMRI is primarily used for the detection of

white matter abnormalities, especially axonal injury, specific for

mTBI; myelin imaging is focused on changes in myelin density and

structure; SWI allows detection of microbleeds in the brain, and

ASL is an alternative to the BOLD method with its ability to track

cerebral blood flow alterations. Taken together, these methods

with their underlying functional and structural features can contrib-

ute to a deeper understanding of mTBI mechanisms from different

angles making a comprehensive diagnosis of mTBI feasible for the

clinician.
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