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Abstract 

Background:  Triple-negative breast cancer (TNBC) constitutes 10–20% of breast cancers and is challenging to treat 
due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition 
when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective 
mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence 
the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 
and GSK2801.

Methods:  RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the 
differentially expressed genes in single and combined treatments. The topmost downregulated genes were charac-
terized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose 
concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory 
activity of the drugs was further characterized by molecular modelling studies.

Results:  Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when 
JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., 
systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with 
upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq 
identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and 
upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 
when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of 
JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 
and GSK2801 could elicit changes in metabolism and proliferation.

Conclusion:  JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides sug-
gesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse 
into potential mechanisms of action for this combination therapy approach.
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Introduction
Breast cancer is the most common cancer in women 
worldwide, aside from skin cancer, accounting for over 
1.4 million cases annually [1–4]. From 1975 to 2010, the 
mortality rate of breast cancer declined by 34%, from 32 
per 100,000 per year in 1975 to 21 per 100,000 per year in 
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2010. However, the incidence of localized breast cancers 
increased by 30% in the same time frame with no com-
mensurate decline in the number of regional breast can-
cers [5]. After 2010, mortality rates continued to decline 
by 1.2%-2.2% per year in women aged 40–79  years, but 
increased by 2.8% per year in women aged 20–29  years 
and 0.3% per year in women aged 30–39  years [6, 7]. 
Existing therapies for breast cancer exhibit several dif-
ferent mechanisms of action, including damaging DNA 
(Cisplatin, Etoposide and Bleomycin), targeting overex-
pression of receptors (Tamoxifen, Trastuzimab, Cetuxi-
mab, Gefitinib and Imatinib) and inhibiting intracellular 
signal transduction (Rapamycin). While such therapeu-
tic and intervention procedures have reduced mortality, 
overall survival rates suggest that more aggressive treat-
ments and/or interventions may be needed [8].

Among breast cancers, Triple-Negative Breast Cancer 
(TNBC) represents a high-risk breast cancer because 
of its poor response to specific therapies [9]. TNBC 
accounts for a non-negligible proportion of breast can-
cers, accounting for 10–20% of all breast cancers [10]. 
TNBC is typically managed with standard, non-targeted 
treatment procedures [11, 12]; however, such treat-
ments tend to be associated with high rates of relapse [10, 
11]. The reason for the lack of success of current treat-
ments is due to a poor understanding of the molecular 
mechanisms underlying TNBC. TNBC is devoid of the 
three major receptors: estrogen receptor (ER), proges-
terone receptor (PR), and human epidermal growth fac-
tor receptor 2 (HER2) [13]. These three receptors are 
the main targets for several breast cancer therapeutics 
[14] and absence of the aforementioned receptors leads 
to development of drug resistance [15, 16]. Furthermore, 
TNBC is often considered more aggressive, more likely 
to recur, has a worse prognosis, and disproportionally 
affects younger women compared to other breast cancer 
subtypes [17]. The standard of care for TNBC is cytotoxic 
chemotherapy; unfortunately, the development of drug 
resistance is common [15, 16]. The complex molecular 
heterogeneity of TNBC [18] means that a range of tar-
geted therapies will likely be needed to continue to make 
progress in treating this disease. Therefore, it is critical to 
continue the search for novel therapeutic strategies and 
identify their targets so that appropriate biomarkers can 
be used to make personalized treatment decisions and 
ultimately, improve the prognosis associated with TNBC.

While still in the early stages of investigation, small 
molecule bromodomain inhibitors (BDI) that reduce the 
pathogenicity of TNBC are a promising approach for 
treating TNBC. Bromodomains (BD) are 110 amino acid 
protein domains that recognize acetylated lysine residues 
on the N-terminal tails of histones [19, 20]. BD repre-
sent “readers of lysine acetylation” and are responsible 

for signal transduction via acetylated lysines. Since lysine 
acetylation is prerequisite for histone association and 
chromatin remodeling, BDI represent a promising 
and emerging agent for treating TNBC. In recent years 
there is an increasing popularity of BDI for their effec-
tive anti-cancer activity and have emerged as a promis-
ing class of anti-cancer drugs. CDK4/6 inhibitors and 
paclitaxel have higher synergies with bromodomain-
extra-terminal domain (BET) inhibitors against TNBC 
[21]. A novel ATAD2 BDI, AM879, which was discovered 
by Dahong et  al., presents potential inhibitory activity 
in breast cancer cells [22]. Guan-Jun et  al. discovered a 
BDI which showed potential anticancer activity in NF-
kappa B-active MDA-MB-231 TNBC cells [23]. Minjin 
et al. discovered five potential BRD4 based BDI with high 
binding affinity and their co-crystal structures experi-
mentally demonstrated impressive inhibitory activity and 
mode of action for the treatment of cancers [24]. TRIM24 
BD is a therapeutic target for several cancers includ-
ing breast cancer for which Qingqing et  al. developed 
potential BDI based on N-benzyl-3,6-dimethylbenzo[d]
isoxazol-5-amine derivatives [25]. CREB (cyclic-AMP 
response element binding protein) binding protein (CBP) 
bromodomain is related to several human malignancies 
for which a potential BDI, DC-CPin734 was discovered 
by Xiaoyang et  al. [26]. Such findings suggest that BDI 
have distinct clinical efficacies in cancer treatments and 
further suggest that combinations of BDI may also exert 
unique effects.

Among BD-containing proteins, members of the BET 
domain [27], Bromo adjacent to zinc finger 2A (BAZ2A) 
[28] and Bromo adjacent to zinc finger 2B (BAZ2B) [29] 
domains play important roles in transcriptional regu-
lation. These BD family members are potential targets 
in several cancer types [30]. JQ1, a BET domain inhibi-
tor [31], and GSK2801, BAZ2A/B domain inhibitor [32], 
were recently tested on MDA-MB-231, HCC-1806, and 
SUM-159 TNBC cell line models [32]. Preclinical models 
were sensitive to BET-dependent TNBC inhibition [33]; 
however, clinical trials testing BD-based inhibition by 
means of BDI such as JQ1 plus GSK2801 are ongoing.

The functional distinctions in the mechanisms by 
which BET and BAZ2A/B domains regulate transcription 
machinery remain poorly defined. In order to gain insight 
into this question, Bevill et  al. (2019) performed dose-
dependent drug synergy screen targeting several BD 
families [32]. They found little or no growth inhibition as 
single agents. In contrast, combined treatments resulted 
in strong growth inhibition of TNBC. While promis-
ing, expression of specific gene elements identified via 
whole transcriptome profiling under different treatment 
conditions were not validated nor did they examine spe-
cific target candidates. While interesting, their study was 
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limited by the use of a single concentration which did 
not assess cytotoxic effects on each cell line. Since cells 
undergoing apoptosis or other mechanisms of cell death 
have inherently different expression profiles, interpreta-
tion of drug-induced expression changes is limited.

To address these gaps and limitations, we expanded 
the work of Bevill et al. (2019). Specifically, we sought to 
shed light on the specific metabolic networks involved 
in TNBC inhibition, both in single and combined agent 
treatments which would be the novel strategy of the cur-
rent work. We further wanted to explore the synergistic 
action of JQ1 and GSK2801 at different dose concentra-
tions beyond the studies by Bevill et  al. to optimize the 
lethal dose concentrations both as single and combined 
agents against multiple cancer cell types. Investigat-
ing the expression of specific genes associated with the 
synergic effect would provide more probable molecular 
mechanism associated with synergistic action and the 
enhanced cytotoxic effect. Further, adding molecular 
modelling studies will help to elucidate the intermolecu-
lar interactions of the drugs and provide strong evidence 
of their inhibitory actions.

We adopted Next-Generation Sequencing tech-
nology (NGS)-based bioinformatics approaches to 
identify differentially expressed genes (DEGs) across 
different treatment conditions using publicly available 
RNASeq data collected on TNBC cell lines treated with 
JQ1 + GSK2801, and subsequently validated differentially 
expressed genes through RT-qPCR. Our analyses reveal 
common upregulated and downregulated genes across all 
treatments that could be treated as therapeutic targets. 
Molecular modelling studies were employed to predict 
the drug binding interactions with the identified target 
proteins. Our investigations shed light on the synergy 
between JQ1 and GSK2801 in TNBC cell lines. Further-
more, our studies support the distinct functional mecha-
nism of JQ1 and GSK2801 through BD inhibition, along 
with revealing unique adaptive mechanisms of BDI that 
are amenable to co-inhibition of BDs to induce TNBC 
inhibition across the three cell line models.

Materials and methods
A general overview of the analytical strategy (e.g., tools 
and methods) is given in Fig. 1-A. Further description of 
the bioinformatics and statistical methods used in our 
analyses are explained as follows.

Data sources
RNASeq expression data collected on MDA-MB-231, 
HCC-1806, and SUM-159 TNBC cell lines treated with 
JQ1 and GSK2801 alone and in combination for 72  h 
[34] were retrieved from Gene Expression Omnibus 
(GEO) database (GEO series ID: GSE116907). RNASeq 

data were prepared on Illumina NextSeq 500 using high-
throughput sequencing technology and included 12 short 
read archive (SRA) experimental datasets. Characteris-
tics of the experimental design are represented in supple-
mentary material (S1 File-Table S1).

Data processing and generation of gene counts
The quality of the sequencing reads was assessed using 
FastQC (https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​
proje​cts/​fastqc/). Low quality reads with poor base 
sequence quality and adaptors were removed using the 
Trimmomatic tool [35]. After removing poor quality 
reads and trimming adaptors, the remaining reads were 
subjected to further analysis. All the processed datasets 
were quantified using the RSEM tool [36]. The human 
hg38 reference genome was used and the genome indi-
ces were constructed using Bowtie2 [37]. The gene count 
result files generated from RSEM analysis were used for 
downstream differential expression analyses.

Identification of differentially expressed genes (DEGs)
We aimed to derive the drug induced response in each 
TNBC cell line model and hence, treatment wise differ-
ential expression analysis was carried out. For each cell 
line there was one control and three treated samples 
(JQ1, GSK2801 and JQ1 + GSK2801) making a total of 
12 biological replicates across three TNBC cell lines. 
Differentially expressed genes were identified compar-
ing control vs JQ1, control vs GSK2801 and control vs 
JQ1 + GSK2801. The quantified gene counts matrix was 
used to derive the differential expression patterns in the 
R-environment using the edgeR package [38] in Biocon-
ductor. Genes with zero counts in all the samples were 
excluded prior to analysis. The data were normalized 
using the trimmed mean of M-values (TMM) method 
both within and between samples. Inter-sample rela-
tionships were examined by producing a plot based 
on multidimensional scaling. The primary parameters 
such as log2 fold change (logFC), log counts per mil-
lion (logCPM), and p-value were derived for each gene 
and for each of the four comparisons of interest. Genes 
with log2 fold change > 1 or < -1 and p-values < 0.05 were 
considered as significantly differentially expressed genes 
(DEGs) and formed the basis for downstream analyses.

Gene functional enrichment analysis
Gene ontology functional annotations and pathways 
enriched with statistically significant DEGs were ana-
lyzed by ClueGO [39] using the Cytoscape software 
environment [40]. ClueGO V.2.5.7 plugin was installed 
on Cytoscape V.3.7.2 and the genes were queried 
against updated versions of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [41]. The biological terms 
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were derived for the large clusters of DEGs using func-
tional enrichment analysis and grouped into networks/
metabolic pathways for upregulated and downregulated 
genes separately. A two-sided (Enrichment/Depletion) 
test based on hypergeometric distribution was used for 
the gene ontology analysis. The Bonferroni step down 
method was used for correction with the threshold 
p-value of 0.05.

Molecular modelling studies
Homology modelling and protein processing
The protein sequences of the five downregulated pro-
teins PTPRC (NP_002829.3), MUC19 (NP_775871.2), 
KCNB1 (XP_006723847.1), TAGLN (NP_001001522.1) 
and KISS1 (NP_002247.3) were retrieved from National 
Center for Biotechnology Information (NCBI). 
Three dimensional models were constructed through 

Fig. 1  A. Schematic diagram of methods and tools. The steps/tools used to identify differentially expressed genes, along with their subsequent 
validation through computational and in vitro methods. B. Differential expression analysis of RNASeq data. Bar plots depicting the number of 
upregulated/downregulated DEGs in treated samples (JQ1, GSK2801 and JQ1&GSK2801) compared to control across different TNBC cell lines
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automated homology modelling using Modweb server 
where the structures were built based on the template 
homology (https://​modba​se.​compb​io.​ucsf.​edu/​mod-
web/). The stereo chemical quality of the homology 
models was validated by Ramachandran plots [42]. The 
validated models were further processed individually 
using the pre-process module of Schrödinger Maes-
tro 12.6 version [43]. Bond orders were assigned in the 
protein and hydrogens were added. Disulfide linkages 
were created at the possible locations. Missing side 
chains and missing loops were added. Water molecules 
which are beyond 5  Å were removed. All the proteins 
were prepared by restrained minimization using opti-
mized potentials for liquid simulations-3e (OPLS3e) 
force field [44].

Ligand preparation
The three-dimensional co-ordinates of JQ1 (49,871,818) 
and GSK2801 (73,010,930) were retrieved from the 
NCBI-PubChem database and optimized in the Maestro 
graphical environment. The structures were processed 
independently using the Ligprep module under OPLS3e 
force field. The ligands were subjected to ionization and 
possible states were generated at pH 7 ± 2 using Epik. 
Desalting was done and the tautomers were generated. 
The ligands were investigated for their hydrogen bond-
ing efficiency, hydrophobic surface area and electron 
density clouds around the molecules, to predict their 
efficiency of interaction with the target proteins at the 
binding sites.

Molecular docking
Individual docking reactions were carried out for each 
protein with JQ1 and GSK2801 ligands. The optimized 
conformations of the proteins were loaded into Maes-
tro workspace and the protein receptor grids were 
generated using the glide tool. Grid centers were deter-
mined from the active residues of the receptor proteins. 
Glide’s ligand docking module was used to dock JQ1 
and GSK2801 into the specified binding grids of the 
PTPRC, MUC19, KCNB1, TAGLN, and KISS1 proteins 
[45]. The standard precision (SP) docking mode was 
used for the flexible ligand sampling without smearing 
any constraint. The binding efficiency and ligand affini-
ties were assessed as docking scores and the docked 
ligand poses were analyzed and visualized by Maestro 
interface.

The docking score was calculated as follows:

a & b = co-efficient constant for vdW and Coul 
respectively.

vdW = van der Waals energy

Docking score = a × vdW × Coul + Hbond + Lip + BuryP + RotB + Site

Coul = Coulomb energy
Hbond = Hydrogen bonding with receptor
Metal = Binding with metal
Lipo = Constant term for lipophilic
BuryP = Buried polar group penalty
RotB = Rotatable bond penalty
Site = active site polar interaction

In vitro studies
Cells and cell cultures
MDA-MB-231, HCC-1806 and SUM-159 are widely used 
TNBC cell line models [46]. MDA-MB-231 cells were 
maintained in a 1:1 mixture of Dulbecco’s MEM and 
Ham’s F12 media containing 5% FBS and 1X-non-essen-
tial amino acids in the absence of antibiotics. HCC-1806 
cells were maintained in RPMI-1640 media with 10%-
FBS and PenStrep. SUM-159 cells were maintained in 
Ham’s F12 media with 5% FBS, Insulin (5 ug/ml), Hydro-
cortisone (1 ug/ml), Gentamycin (5 ug/ml), fungizone 
and PenStrep. The cultures were maintained at 37  °C in 
a humidified CO2-controlled (5%) incubator. Prior to 
performing in  vitro investigations, all cell cultures were 
tested using PCR assay for Mycoplasma spp and found to 
be uninfected.

Determination of cytotoxic effects of JQ1 and GSK2801 
by MTT assay
Cells were seeded in 96 well plates (MDA-MB-231 cells, 
5000 cells/well; HCC-1806 and SUM-159 cells, 8000 
cells/well) in triplicate with 200  µl of media per well 
and allowed to adhere for 24  h [47]. JQ1 (SML1524) 
and GSK2801 (SML0768) were purchased from Sigma- 
Aldrich and dissolved in DMSO to make stock solutions 
(JQ1-20 mg/mL; GSK2801-10 mg/mL) and further dilu-
tions were made with culture media immediately prior to 
each experiment. JQ1 and GSK2801 stock solutions were 
stored at 4 oC and -20 oC, respectively for no longer than 
30 days. The spent medium was aspirated and the fresh 
medium containing drug concentrations ranging from 
0.125 µM – 20 µM were used to treat the cells along with 
DMSO control. The combined treatments were carried 
out with JQ1 (25 nM, 50 nM, 125 nM, 250 nM, 500 nM, 
1000 nM) combined with 10 µM and 20 µM of GSK2801 
to assess the possible synergistic effects. After 72 h, spent 
media was aspirated; MTT was added and incubated for 
3 h at 37 °C. MTT was removed, DMSO was added, and 
the plate was kept on shaker for 30 min at 60 RPM to dis-
solve crystals completely. The plate was read at 540  nm 
and OD recorded. Percent viability was calculated 
(OD treated ÷ ODControl) × 100 and the viabilities 
were plotted [48]. The combination index (CI) for each 
treatment combination was determined by the Chou-
Talalay method [49] using CompuSyn software [50].

https://modbase.compbio.ucsf.edu/modweb/
https://modbase.compbio.ucsf.edu/modweb/
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RT‑qPCR Expression studies
RT-qPCR was used to validate the expression of PTPRC, 
MUC19, KCNB1, TAGLN and KISS1 genes follow-
ing treatment. The treatment strategic plan to evaluate 
the expression of these genes is summarized in Table 1. 
The TNBC cells were seeded in six well plates (MDA-
MB-231, 150,000 cells/well; HCC-1806 or SUM-159, 
240,000 cells/well) and allowed to adhere for 24 h. Spent 
media was aspirated and fresh media containing drugs 
was added and incubated for 72 h.

The total RNA was isolated using Quick-RNA Mini-
prep Kit (Zymo research, USA-R1054) according to 
manufacturer instructions. Purity and concentrations of 
the isolated RNA were determined by NanoDrop 2000 
spectrophotometer (Thermo Scientific, USA). cDNA was 
synthesized by reverse transcription using iScript cDNA 
Synthesis Kit (Bio-Rad #1,708,891). cDNA synthesis was 
performed with 1 µg of total RNA, 5 µl of 5X iScript reac-
tion mix and 1 µl of iScript reverse transcriptase in a final 
volume of 20 µl.

Quantitative RT-PCR was performed using the SYBR™ 
select master mix (Applied Biosystems-4472908). The 
reaction was set up with 5  µl of SYBR master mix 2X, 
300 nM of each primer and 100 ng of cDNA template in 
a total reaction volume of 10 µl. Primers were designed 
using Primer3 [51] online software and are shown in 
supplementary material (S1 File-Table S2). 18S rRNA 
gene was used as a standard reference to normalize the 
expression levels. Gene expression levels were calculated 
by the comparative ΔΔCt. The Ct values were obtained 
for the standard reference gene (18S rRNA) and the five 
target genes (PTPRC, MUC19, KCNB1, TAGLN and 
KISS1). Delta Ct (ΔCt) values of the samples were cal-
culated by subtracting the reference gene Ct values from 
the Ct value of the samples. ΔCt values of the DMSO 
control sample were averaged to obtain an average ΔCt 
value. The ΔCt values of all the samples including DMSO 

control were then subtracted from the average ΔCt value 
of the DMSO control to obtain the ΔΔCt value. The rela-
tive gene expression fold was calculated by 2−ΔΔCt for-
mula for DMSO control and treated samples. The values 
of each sample group were then averaged and presented 
as relative fold gene expression [52].

Statistical analysis
All the results are displayed as mean ± SD, calculated 
from three independent experiments. Statistical signifi-
cance between experimental conditions was determined 
using two-tailed, two-sample Student’s t-tests and a non-
parametric Wilcoxon rank sum test. A significance level 
of p-value < 0.05 was considered statistically significant.

Results
Differential expression analysis using publicly available 
RNASeq data sets
To explore the molecular mechanisms by which JQ1 and 
GSK2801 exert anti-proliferative activity in TNBC cell 
lines, we first performed a differential expression analy-
sis using the RNASeq data obtained from the Bevill et al. 
(2019) study [32]. Expression profiles were determined 
via RNASeq analysis of MDA-MB-231, HCC-1806 and 
SUM-159 cell lines treated with JQ1 and GSK2801 indi-
vidually, and in combination. The gene count matrix 
generated from the RSEM analysis of the RNASeq data 
is provided as supplementary material (S2 File). After 
normalization, data were visualized using boxplots (S1 
File-Fig. S1-A & B), heatmaps (S1 File-Fig. S1-C & D) and 
Multidimensional Scaling (MDS) plots (S1 File-Fig. S2) 
to understand the sources of variation across samples. 
Common and tagwise dispersions were estimated, exact 
tests were performed and differences in gene expression 
between treated and control were determined in each 
cell line model and across all treatment conditions. The 
overall differential expression in each cell line model was 
determined in terms of number of DEGs and summa-
rized in Fig. 1-B.

A list of DEGs for each treatment/treatment com-
bination and within each TNBC cell line are provided 
as supplementary material S3 File. The corresponding 
smear and volcano plots representing the DEGs are 
also provided in the supplementary material (S1 File-
Tables S3-S5).

MDA-MB-231: A total of 730 DEGs were observed in 
cells treated with JQ1, among which 442 were upregu-
lated and 288 were downregulated. In contrast, 40 DEGs 
in cells treated with GSK2801, among which 16 were 
upregulated and 24 were downregulated. A total of 1915 
DEGs were observed in cells treated with both JQ1 and 
GSK2801 (combined treatment), of which 981 were 
upregulated 934 were downregulated.

Table 1  Experimental setup for the gene expression studies

Samples and treatment conditions of JQ1 and GSK2801 drugs used for the 
evaluation of gene expression in the three TNBC cell lines.

Sample No Treatment 
(JQ1 / 
GSK2801)

1 DMSO Ctrl

2 50 nM / 0 µM

3 125 nM / 0 µM

4 250 nM / 0 µM

5 0 nM / 10 µM

6 50 nM / 10 µM

7 125 nM / 10 µM

8 250 nM / 10 µM
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HCC-1806: There were 1197 DEGs were observed in 
cells treated with JQ1, of which 547 were upregulated and 
650 downregulated. GSK2801 treated cells showed 33 
DEGs, among which 17 upregulated and 16 were down-
regulated in treated versus control cells. Treatment with 
both JQ1 and GSK2801 resulted in 1668 DEGs, among 
which 807 were upregulated 861 were downregulated.

SUM-159: A total of 695 DEGs were identified when 
comparing JQ1 treated and control SUM-159 cells, 
among which 172 were upregulated and 523 were down-
regulated in JQ1 treated cells. GSK2801 treated SUM-159 
cells showed 65 DEGs, among which 41 upregulated and 
24 were downregulated in treated versus control cells. 
Treatment with both JQ1 and GSK2801 resulted in 1248 
DEGs, among which 474 were upregulated 774 were 
downregulated.

Across all three TNBC cell line models, we observed 
a greater number of DEGs in the combined treatment 
as compared to the single agent treatments. To identify 
the key elements responsible for the anti-cancer activity 
of JQ1 and GSK2801, the DEGs were further analyzed by 
constructing network maps. DEGs that were commonly 
and uniquely upregulated and downregulated by the 
three treatment conditions were visualized using these 
network maps (supplementary material S4 File). MDA-
MB-231 cell line models showed upregulation of MSH5-
SAPCD1 and SENP3-EIF4A1 genes and downregulation 
of RMRP, KISS1 and TAGLN across all three treatment 
conditions. HCC-1806 cell lines showed CTAGE4 and 
RNASEK-C17orf49 genes as commonly upregulated, 
however zero genes were observed to be commonly 
downregulated across all the three treatment conditions. 
SUM-159 cell lines showed upregulation of GPR146, 
SCARA5, HIST2H4A, CDRT4 and AQP3 and downregu-
lation of PTPRC, MUC19, RNA5-8S5 and KCNB1 across 
all three treatment conditions. Prioritizing genes that 
were consistently downregulated, our in  vitro investiga-
tions focused on PTPRC, MUC19, KCNB1, TAGLN and 
KISS1 and the proteins that they encode (RNA5-8S5 and 
RMRP are not protein coding genes).

Gene functional enrichment analysis
The functional association of the identified DEGs follow-
ing different treatments was determined by enrichment 
analysis and the associated metabolic pathways were 
determined. The analysis of DEGs revealed several inter-
esting findings regarding the potential synergistic action 
of JQ1 and GSK2801 across the three different cancer cell 
lines.

MDA-MB-231: A total of 22 metabolic pathways 
were observed to be significantly enriched with genes 
found to be upregulated based on treatment with JQ1 

(e.g., PI3K-Akt signaling pathway, Transcriptional mis-
regulation in cancer and ECM-receptor interaction). In 
contrast, there were no metabolic pathways that were 
found to be significantly enriched with genes found to 
be upregulated based on treatment with GSK2801. For 
the combined treatment, we identified 156 pathways that 
were significantly enriched with upregulated genes (e.g., 
MAPK, Ras, Rap1 and calcium signaling pathways), and 
included among those 156 pathways were the 22 path-
ways identified from treatment with JQ1 alone. Similarly, 
32 pathways (e.g., cytokine-cytokine receptor interac-
tions, TNF, JAK-STAT and IL-17 signaling pathways) 
were significantly enriched with downregulated genes 
based on treatment with JQ1 alone, while there were no 
pathways found to be significantly enriched with down-
regulated genes based on treatment with GSK2801 alone. 
Finally, for the combined treatment we identified 138 
metabolic pathways (e.g., cellular senescence, microRNA 
in cancer, NOD-like receptor signaling and AGE-RAGE 
signaling pathways) that were significantly enriched with 
the downregulated genes based on the combined treat-
ment and which contained all 32 pathways identified 
when JQ1 was given alone (Fig. 2).

HCC-1806: A total of 68 pathways were significantly 
enriched with genes upregulated following treatment 
with JQ1 (e.g., IL-17, sphingolipid signaling and circadian 
entrainment pathways); GSK2801 none. For the com-
bined treatment, we identified 150 pathways that were 
significantly enriched with upregulated genes (e.g., AGE-
RAGE, mTOR, B-cell receptor, VEGF signaling path-
ways), and included among those 150 pathways were the 
66 pathways identified from treatment with JQ1 alone. 
Similarly, 108 pathways (e.g., TNF, MAPK, PI3-Akt and 
calcium signaling pathways) were significantly enriched 
with downregulated genes based on treatment with 
JQ1 alone, while there were no pathways significantly 
enriched with downregulated genes based on treatment 
with GSK2801 alone. Finally, for the combined treatment 
we identified 133 pathways (e.g., NF-kappa B, cAMP, 
Rap1 and Ras signaling pathways) that were significantly 
enriched with the downregulated genes based on the 
combined treatment and which contained 98 of the 108 
pathways identified when JQ1 was given alone (Fig. 3).

SUM-159: A total of 5 pathways were significantly 
enriched with genes found to be upregulated based 
on treatment with JQ1 in SUM-159 cells (e.g., systemic 
lupus erythematosus, Transcription misregulation in 
cancer and mineral absorption). For GSK2801, we iden-
tified a single pathway (PPAR signaling pathway) that 
was significantly enriched with upregulated DEGs when 
GSK2801 was administered alone. For the combined 
treatment, we identified 41 pathways that were signifi-
cantly enriched with upregulated genes (e.g., TGF-beta 
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signaling, aldosterone synthesis and regulation of lipoly-
sis in adipocytes), which included the five pathways 
identified when JQ1 was administered alone, along with 
the PPAR signaling pathway that was identified when 
GSK2801 was administered alone. A total of 91 pathways 
(e.g., AGE-RAGE, IL-7, TGF-beta signaling pathways) 
were significantly enriched with downregulated genes 
based on treatment with JQ1 alone, while there were 
no pathways significantly enriched with downregulated 
genes based on treatment with GSK2801 alone. Finally, 
for the combined treatment we identified 131 pathways 
(e.g., ECM-receptor interaction, PPAR, TNF, cGMP-PKG 
signaling pathways) that were significantly enriched with 
the downregulated genes based on the combined treat-
ment and which contained 85 of the 91 pathways identi-
fied when JQ1 was given alone (Fig. 4).

The nodes representing more than four genes are 
shown in each metabolic network map and the complete 
list of metabolic pathways enriched with upregulated and 
downregulated genes identified for each treatment condi-
tion and cell line are provided as supplementary material 
S5 File. To identify shared and unique numbers of path-
ways across different treatments and cell lines, pathways 
were represented as Venn diagrams (Fig. S3). Based on 
combined treatment, we found 31 pathways enriched 

with upregulated genes and 66 pathways enriched with 
downregulated genes that were common across all three 
cell line models (Table 2).

Molecular modelling studies
We next sought to explore the impact of JQ1 and 
GSK2801 on downregulated DEGs at the protein func-
tional level. Our molecular modelling studies supported 
the inhibitory effect of JQ1 and GSK2801 drugs against 
TNBC though specific targets. Protein models of PTPRC, 
MUC19, KCNB1, KISS1 and TAGLN were constructed 
with validated stereochemical quality explaining their 
suitability for docking studies (Fig. 5-A). Ramachandran 
plots are provided in the supplementary material S1 File-
Table S6. The optimized conformations of the ligands 
showed the possibility of hydrogen bonding due to pos-
session of H-bond acceptor atoms. JQ1 and GSK2801 
have a hydrophobic surface area of 709.62 Å2 and 613.66 
Å2, respectively, which helps form strong hydrophobic 
interactions favored by ring structures. Both structures 
have electronic density clouds on their surface that favor 
electrostatic interactions with the receptor molecules 
(Fig. S4).

The molecular docking of JQ1 and GSK2801 provided 
information regarding the efficiency of their binding 

Fig. 2  Functional enrichment analysis of DEGs identified in MDA-MB-231 cells. Metabolic pathways enriched with (A) upregulated (B) 
downregulated genes in JQ1 treatment. Metabolic pathways enriched with (C) upregulated (D) downregulated genes from JQ1 + GSK2801 
combined treatment
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and inhibitory action on these target proteins. Both 
ligands showed the best docking scores, which explains 
the strong binding affinity with receptor proteins 
(Table 3). The highest negative score indicates the high-
est affinity of the ligand. The highest affinity of JQ1 and 
GSK2801 was found with KISS1, with docking scores of 
-2.60 and -3.01  kcal/mol, respectively. All the docking 
scores are between -0.95 to -3.01, which substantiates 
the stable binding of ligands. The ligands were observed 
to fit within the binding pockets of the receptor pro-
teins making hydrogen bonds and non-bonded inter-
actions. The ring structures of both ligands favored 
formation of hydrophobic interactions, which makes 
the complexes more stable (Fig. 5-B).

Cytotoxicity assays
The independent and additive/synergistic effects of JQ1 
and GSK2801 on three different cell lines were deter-
mined by MTT assay after 72  h of treatment using 
varying doses of JQ1 and GSK2801 as explained in the 
methods section. Dose–response curves of independ-
ent and combined treatment were performed, and the 
viability values were plotted. Administering JQ1 alone 

showed efficient anti-proliferative activity in all three 
TNBC cell lines, while GSK2801 alone was ineffec-
tive at inducing cytotoxicity at the doses utilized. JQ1 
started showing an effect at a concentration of 125 nM 
and GSK2801 showed a mild effect at a concentration of 
20 µM on MDA-MB-231 and HCC-1806 cell lines, but 
no effect on SUM-159 cells (Fig. 6-A). To examine the 
potential synergistic effect of JQ1 + GSK2801 combined 
treatment, the assays were repeated with JQ1 doses of 
25 nM, 50 nM, 125 nM, 250 nM, 500 nM and 1000 nM 
combined with 10  µM or 20  µM of GSK2801. Admin-
istering the combined treatment at the previously 
mentioned doses greatly enhanced the cytotoxic effect 
within each of the three cell lines. When combined 
with 10  µM of GSK2801, JQ1 enhanced the cytotoxic 
effect far more than treatments of JQ1 alone. Using 
20  µM of GSK2801 was even more effective at induc-
ing cytotoxicity as compared to 10  µM of GSK2801 
when administered in combination with JQ1 (Fig. 6-B). 
After treatment, microscopic images were captured by 
EVOS-fl digital inverted microscope under 10X objec-
tive and quantified as percent of well of covered using 
ImageJ software [53]. Variation in cell densities were 

Fig. 3  Functional enrichment analysis of DEGs identified in HCC-1806 cells. Metabolic pathways enriched with (A) upregulated (B) downregulated 
genes from JQ1 treatment. Metabolic pathways enriched with (C) upregulated (D) downregulated genes from JQ1 + GSK2801 combined treatment
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observed in the treated samples. The cell densities were 
observed to decrease as the concentration of the drugs 
increased. Further, the cell densities were reduced to 
lesser extent in the combined treatment than single 
agent treatments, which indicates an increase in cancer 
cell death (Fig. 7). These data show the cytotoxic effects 
of JQ1 are enhanced by GSK2801, suggesting a poten-
tial synergy between these two agents. This synergistic 
action was further investigated by deriving the CI val-
ues for the combined treatment doses (Table  4). The 
CI values of < 1, = 1, and > 1 indicate synergism, addi-
tive effect, and antagonism of drugs, respectively. As 
shown in Table 4, we found that all the combined doses 
of JQ1 and GSK2801 showed strong synergistic effect 
on MDA-MB-231 cells with CI values less than 1. The 
JQ1/GSK2801 doses at 25  nM/10  µM, 25  nM/20  µM, 
50  nM/20  µM showed antagonistic effect on HCC-
1806 with CI values > 1, and there appeared to be an 

additive effect at a dose of 50  nM/10  µM with a CI 
value of 1. In case of SUM-159 cell lines, most of the 
lower doses of JQ1 with GSK2801 showed antagonis-
tic effects, whereas the higher doses showed synergis-
tic effect. From the CI indices, it can be observed that 
JQ1 at lower doses acts antagonistically with GSK2801; 
however as the concentration of JQ1 increases, so too 
does its synergistic effect with GSK2801. From the CI 
index analyses, it appears that JQ1 concentration from 
250 nM onwards with 10 and 20 µM of GSK2801 exhib-
its the strongest synergistic effects, irrespective of the 
cancer cell line.

Gene expression analysis
Since anti-cancer activity is generally achieved by the 
downregulation of cancer-associated genes [54, 55], 
downregulation of selected genes was assessed by per-
forming RT-qPCR studies. Our analyses of the RNASeq 

Fig. 4  Functional enrichment analysis of DEGs from identified from SUM-159 cells. Metabolic pathways enriched with (A) upregulated (B) 
downregulated genes from JQ1 treatment. Metabolic pathways enriched with (C) upregulated genes from GSK2801 treatment. (D) upregulated and 
(E) downregulated genes from JQ1 + GSK2801 combined treatment
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data collected by Bevill et  al., (2019) revelated that 
MDA-MB-231 cells showed downregulation of TAGLN 
and KISS1 genes (treated with JQ1-100  nM, GSK2801-
10 µM, JQ1/GSK2801-100 nM/10 µM) and SUM159 cells 
showed downregulation of PTPRC, MUC19 and KCNB1 
genes (treated with JQ1-300 nM, GSK2801-10 µM, JQ1/
GSK2801-300 nM/10 µM). These results were consistent 
in our RT-qPCR investigations.

MDA-MB-231: We observed downregulation of 
TAGLN and KISS1 genes in these cells across all the 

doses of the single and combined treatments we exam-
ined (Fig. 8-A).

SUM-159: We observed the downregulation of MUC19 
and KCNB1 genes, however we found no expression 
of PTPRC gene in these cells. MUC19 was upregulated 
at the lower (50 nM) and higher doses (250 nM) of JQ1 
and downregulated at 125  nM. There was a negligible 
change in the expression of MUC19 following GSK2801 
treatment. Higher doses of combined JQ1/GSK2801 
at 125  nM/10  µM showed downregulation and the 

Table 2  Metabolic pathway enrichment

Metabolic pathways enriched with upregulated (first column) and downregulated (columns 2 and 3) DEGs in all three TNBC cell lines based on combined treatment. 
The regulation of these metabolic pathways is associated with the inhibition of cell proliferation in the three cell line models

Upregulated Downregulated

Transcriptional misregulation in cancer Cytokine-cytokine receptor interaction Tuberculosis

ABC transporters NOD-like receptor signaling pathway Axon guidance

Alcoholism Lipid and atherosclerosis Calcium signaling pathway

Axon guidance Amoebiasis Phospholipase D signaling pathway

Viral carcinogenesis TNF signaling pathway Cholinergic synapse

Cell adhesion molecules Influenza A Wnt signaling pathway

Rap1 signaling pathway JAK-STAT signaling pathway cGMP-PKG signaling pathway

Neutrophil extracellular trap formation Rheumatoid arthritis Leishmaniasis

Fluid shear stress and atherosclerosis Hematopoietic cell lineage Complement and coagulation cascades

Necroptosis IL-17 signaling pathway Toxoplasmosis

Systemic lupus erythematosus AGE-RAGE signaling pathway in diabetic compli-
cations

ECM-receptor interaction

Glycerolipid metabolism Pertussis Morphine addiction

Platelet activation Inflammatory bowel disease Inflammatory mediator regulation of TRP 
channels

Parathyroid hormone synthesis, secretion and 
action

C-type lectin receptor signaling pathway Melanogenesis

Ferroptosis Legionellosis HIF-1 signaling pathway

Aldosterone synthesis and secretion NF-kappa B signaling pathway Relaxin signaling pathway

PPAR signaling pathway Toll-like receptor signaling pathway Natural killer cell mediated cytotoxicity

TGF-beta signaling pathway Chagas disease Vascular smooth muscle contraction

Osteoclast differentiation Gastric acid secretion Fluid shear stress and atherosclerosis

Estrogen signaling pathway Viral protein interaction with cytokine and 
cytokine receptor

RIG-I-like receptor signaling pathway

Inflammatory mediator regulation of TRP channels Cytosolic DNA-sensing pathway Leukocyte transendothelial migration

Steroid hormone biosynthesis African trypanosomiasis Bladder cancer

Circadian entrainment Malaria Arachidonic acid metabolism

Cholinergic synapse Melanoma Basal cell carcinoma

Amphetamine addiction Pathways in cancer Drug metabolism

Ovarian steroidogenesis PI3K-Akt signaling pathway Insulin secretion

Prostate cancer MAPK signaling pathway Staphylococcus aureus infection

Regulation of lipolysis in adipocytes Human cytomegalovirus infection Aldosterone synthesis and secretion

Cortisol synthesis and secretion Human papillomavirus infection Regulation of lipolysis in adipocytes

Retinol metabolism Coronavirus disease Glycerolipid metabolism

Adherens junction Human immunodeficiency virus 1 infection Long-term potentiation

Hepatitis B Renin secretion

Rap1 signaling pathway Glioma
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expression is undetermined with 250 nM/10 µM of JQ1/
GSK2801. KCNB1 was observed to be downregulated 
across all the treatment conditions, where lower doses 
of combined treatment 50  nM/10  µM of JQ1/GSK2801 
demonstrated the most significant downregulation of this 
gene (Fig. 8-B).

HCC-1806: We observed no expression of PTPRC 
and TAGLN genes in these cells. MUC19 was down-
regulated by JQ1 and combined treatments but was 
observed to be upregulated when GSK2801 was given 
alone. KCNB1 was downregulated by JQ1 and GSK2801 
and lower doses of the combined treatment. As the JQ1 
concentration increased in the combined treatment, so 
did the expression of KCNB1. The results are promising 

Table 3  Molecular docking of JQ1 and GSK2801 against 
downregulated proteins

Glide docking scores of docking complexes of JQ1 and GSK2801 with 
downregulated proteins in TNBC. These docking scores predict the binding 
efficiency of drugs.

Protein Glide Score

JQ1 GSK2801

PTPRC -1.76 -2.32

MUC19 -1.04 -1.60

KCNB1 -0.95 -2.08

TAGLN -1.60 -1.69

KISS1 -2.60 -3.01

Fig. 5  A. Homology modelling of PTPRC, MUC19, KCNB1, TAGLN and KISS1 protein. The optimized conformations of five downregulated protein 
structures represented as cartoon models. The reactive binding domains were constructed for MUC19 and KISS1 proteins due to the lack of 
template availability. B. Molecular docking of JQ1 and GSK2801 against PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins. Binding mode orientation 
of JQ1 (Pink) and GSK2801 (Cyan) with downregulated proteins in TNBC. The ligands are shown in the binding site cavities of target proteins
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for KISS1, where all of the treatments resulted in its 
downregulation; The combined treatment effect was 
most prominent with 125 nM/10 µM of JQ1/GSK2801 
(Fig.  8-C). These observations suggest that lower 
doses of JQ1 with 10  µM GSK2801 is the best syner-
gistic dose to treat the HCC-1806 cell lines among the 
doses we tested. Collectively, these results indicate BD 

treatments altered gene expression consistent with our 
RNASeq analysis.

Discussion
BET and BAZ2A/B domain inhibitors are currently being 
evaluated at different stages of clinical trials for treat-
ing a variety of different cancer types (https://​clini​caltr​
ials.​gov/; Identifiers: NCT05111561, NCT05053971, 

Fig. 6  A. Cytotoxicity assays of JQ1 and GSK2801 against three TNBC cell lines. A. Viability curves explaining the cytotoxic effect of JQ1 and 
GSK2801 when treated alone on MDA-MB-231, HCC-1806 and SUM-159 TNBC cell lines. B. Viability curves explaining the cytotoxic effect of 
combined treatments of JQ1 and GSK2801 on MDA-MB-231, HCC-1806 and SUM-159 cell lines demonstrating the synergistic effect. Values are 
given as mean of three independent experiments ± SD. B. Quantification of the cell density. Bar plots showing the cell densities measured after 
the treatment. There is a progressive decrease in the cell density with increasing drug concertation. The cell densities are lower in the combined 
treatment when compared to single agent treatment

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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A

B

Fig. 7  Microscopic images demonstrating the decrease in cell density. With increase in the concentration of drugs (left to right) there is a 
progressive decrease in density of the cells which indicated a steady death of cancer cells. The cell density is lesser in the combined treatments 
when compared to the single agent treatment
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NCT05301972, NCT04910152, NCT04471974). Despite 
modest toxicities, the administration of different BET 
and BAZ2A/B inhibitors in patients suggest that their 
co-administration may be more effective than their indi-
vidual administration [56]. Previous reports on the syn-
ergistic combination of BET and BAZ2A/B inhibitors 
in TNBC preclinical models suggest that they might 
affect transcriptional regulation via epigenetic mecha-
nisms[57]. This observation has led to the development 
of targeted inhibitors such as lapatinib and trametinib, 
which are more effective in tumor inhibition both in vitro 
and in  vivo [58, 59]. Trametinib and Selumetinib are 
FDA-approved kinase inhibitors. There are also several 
other kinase inhibitors in various phases of clinical trials, 
administered alone and in diverse combinations, for tar-
geted therapeutics and chemotherapies (https://​clini​caltr​
ials.​gov/). The synergistic effects of BET and BAZ2A/B 
domain inhibitors highlighted here and elsewhere [32] 
underscore the need for trials of these agents given in 
combination, similar to what is presently happening with 
kinase inhibitors.

Among the BD containing proteins, BET and BAZ2A/B 
domains are the most promising and novel targets for the 

synergistic action of diverse inhibitors to induce cytotox-
icity, as assessed in multiple TNBC cell line models [56, 
60–62]. The synergistic action observed with JQ1 and 
GSK2801 proteins makes a unique combination treat-
ment for TNBC models. Their action may be regulated 
by transcriptional mechanisms associated with BD con-
taining proteins [33, 63–65]. Our results support a syn-
ergistic mechanism of JQ1 and GSK2801 and showed 
more effective anti-proliferative activity in  vitro when 
these two treatments were given in combination. The 
probable molecular mechanism for the observed synergy 
was investigated initially through a computational analy-
sis wherein we identified upregulated and downregulated 
genes and their associated metabolic pathways.

Several important metabolic pathways associated 
with cancer were enriched with both upregulated and 
downregulated genes. Several of these are discussed 
to illustrate the effectiveness of JQ1 and GSK2801 on 
the regulation of metabolic pathways resulting in inhi-
bition in TNBC cell lines. Major cancer related path-
ways enriched with upregulated genes include ABC 
transporters [66], Rap1 signaling [67], necroptosis [68], 
ferroptosis [69], PPAR signaling [70] and TGF-beta 
signaling. Rap1 acts as a switch in the cellular signaling 
transduction process and Rap1 signaling can regulate 
cell invasion and metastasis in different cancers. Ferrop-
tosis is a distinct type of regulated cell death where its 
metabolism and expression of specific genes is associ-
ated with the cell inhibition in breast cancer. Activation 
of genes in the PPAR signaling pathways inhibit tumor 
progression [71]. Activation of TGF-beta signaling in 
breast cancer is involved in the suppression of tumor 
growth [72]. The upregulated pathways in the MDA-
MB-231 cell lines were predominantly enriched by the 
genes such as RRAS, SHC2, TRADD, CAMK2D, GNG7, 
MAP2K6, PLD1, ITGB3, CCND1, CDKN1A, GNAI1, 
ITPR1 and PRKACB. These genes are most importantly 
associated with cancer associated signaling pathways 
such as cAMP signaling, kinase signaling, NF-kappaB 
apoptotic signaling, calcium signaling and p38 MAP 
kinase mediated signal transduction. The upregulated 
pathways in HCC-1806 were observed to be majorly 
enriched with the genes such as FOS, GNG7, SHC2, 
CDKN1A, ITPR1, PLCG2, ITPR2, PRKACB, PRKCB 

Table 4  Combination index calculation using Chou and Talalay 
method in three TNBC cell lines

Combination index values calculated for the combined does of JQ1 and GSK2801 
on three TNBC cell lines (CI values < 1-synergistic; = 1-additive; > 1-antoagonistic)

JQ1
(nM)

GSK2801
(µM)

Combination Index

MDA-MB-231 HCC-1806 SUM-159

25 10 0.2 1.2 2.9

50 10 0.2 1.0 3.6

125 10 0.0 0.7 3.6

250 10 0.0 0.4 1.3

500 10 0.0 0.2 0.4

1000 10 0.0 0.1 0.0

25 20 0.2 1.1 1.7

50 20 0.1 1.1 2.1

125 20 0.0 0.7 1.4

250 20 0.0 0.3 0.5

500 20 0.0 0.2 0.1

1000 20 0.0 0.1 0.0

Fig. 8  Validation of gene expression in three TNBC cell lines. A. Effect of JQ1 and GSK2801 on TAGLN and KISS1 genes in the MDA-MB-231 cells 
showing the downregulation in the expression both in the single and combined treatments. B. Effect of JQ1 and GSK2801 on MUC19 and KCNB1 
genes in SUM-159 cells showing the downregulation in the expression. MUC19 was found to be upregulated with a higher concentration of JQ1 
(250 nM). C. Effect of JQ1 and GSK2801 on MUC19, KCNB1 and KISS1 genes in HCC-1806 cells lines. MUC19 was upregulated by GSK2801 (10 µM). 
The increase in the JQ1 concentration in the combined treatments increased the expression of KCNB1. KISS1 was observed to be downregulated in 
all the single and combined treatments. Values are given as mean of three independent experiments ± SD. Statistical significance were defined at 
*p < 0.05 compared to DMSO control. DMSO: control, J: JQ1, G: GSK2801. JQ1 doses are in nM and GSK2801 in µM

(See figure on next page.)

https://clinicaltrials.gov/
https://clinicaltrials.gov/


Page 16 of 21Yellapu et al. BMC Cancer          (2022) 22:627 

Fig. 8  (See legend on previous page.)
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and PIK3R3. These gene are associated with the several 
important pathways such as growth signaling, B cell 
activation, apoptosis induction, endothelial cell prolif-
eration, Inositol triphosphate receptor-mediated sign-
aling, transmembrane receptor protein tyrosine kinase 
signaling and G protein-coupled receptor signaling 
pathways. SUM-159 cells exhibit enriched expression of 
CALM1, FOS, CREB3L3, ADCY1 and PIK3R3, associ-
ated with growth signaling, regulation of cell prolifera-
tion, differentiation, and transformation and calmodulin 
signaling pathways.

The cancer related pathways enriched with down-
regulated genes include TNF signaling [73], JAK-STAT 
signaling [74], IL-17 signaling [75] and NF-kappa B 
signaling [76] pathways. TNF-α is involved in the epi-
thelial-to-mesenchymal transition and metastasis of 
breast cancer cells and represents an important tar-
get [73]. JAK-STAT signaling represents an important 
focus as it is a potential therapeutic target to overcome 
drug resistance [74]. There exists a direct association 
between IL-17 and breast cancer invasion since IL-17 
promotes invasion in some breast cancer cell lines [75]. 
The NF-kappa B signaling plays a major role by con-
tributing to the aggressiveness of breast cancer and the 
genes from this pathway represent novel therapeutic 
targets [76]. The downregulated pathways in the MDA-
MB-231 cell lines were predominantly enriched by the 
genes such as IL1A, PLA2G4A, VEGFA, E2F2, PTGS2, 
IL12A, NFATC1, NFATC2, EGF, TRAF2, CXCL8, 
ADCY7, IL1B, IL6, PLCB4 and MAPK13. These genes 
were observed to be majorly associated with the can-
cer associated pathways such as MAP kinase, cytokine 
mediated inflammation, proinflammatory signaling 
cascade, TNF-induced apoptosis, T cell receptor stim-
ulation and mitogenic pathways. The downregulated 
pathways of HCC-186 were majorly enriched by the 
genes such as IKBKE, PDGFB, IL12A, IL1A, IRAK1, 
ITGB2, MYC, CALML4, ADCY7, TLR4, CALML5 and 
IL1B. These genes are associated with the several impor-
tant pathways such as cytokine mediated inflammation, 
calmodulin, Toll-like receptor, cell cycle progression, 
apoptosis and cellular transformation, IL1-induced 
upregulation of NF-kappa B and oncanonical I-kappa-
B pathways. Finally, the downregulated pathways of 
SUM-159 cell lines were predominantly enriched with 
the genes such as ITGB2, PDGFB, PDGFRA, PDGFRB, 
TLR2, RAC3, TGFB2, ADCY7, PLCB1 and MAPK3. 
These genes are associated with the metabolic activities 
such as MAP kinase signaling, TGF-beta signaling and 
Toll-like receptor signaling pathways. Collectively, these 
signaling, and metabolic pathways all contribute to cell 
proliferation and aggressive properties in TNBC. It is 
noticed that no metabolic pathways were enriched with 

upregulated and downregulated genes from GSK2801 
single agent treatment in MDA-MB-231 and HCC-1806 
cell lines whereas only one pathway i.e., PPAR signaling 
was enriched with the upregulated genes of GSK2801. 
Such findings most likely reflect heterogeneity between 
tumor cell lines.

PTPRC, which belongs to protein tyrosine phosphatase 
(PTP) family involves in the regulation of variety of cel-
lular processes including: cell growth, differentiation, 
mitosis, and oncogenic transformation making it useful 
as a prognostic or predictive biomarkers and/or direct 
target [77]. PTPRC acts as essential regulator of T-and 
-B-cell antigen receptor signaling and associated with 
lymphocyte-specific immune recruitment thereby plays a 
major role in patient survival [78, 79]. MUC19 reportedly 
modulates proliferation, invasion and metastatic poten-
tial of breast cancer [80]. MUC19 expression was notably 
observed to increase in TNBC and found to be targeted 
by miR-593 [81]. KCNB1 is a complex class of voltage-
gated ion channels and its overexpression was  reported 
as biomarker in breast cancer [82]. TAGLN is a poten-
tially useful diagnostic marker differentially expressed 
in TNBC and a potential target for treatment strategies 
[83]. TAGLN was reported to be frequently downregu-
lated by DNA hypermethylation and its promotor meth-
ylation profiles also serves as diagnostic markers with a 
possible clinical impact in the TNBC [84, 85]. KISS1 is of 
tremendous utility in controlling metastasis in a thera-
peutic context [86]. KISS1 is known as a downstream 
target of the canonical TGFβ/Smad2 pathway and has 
been identified as a putative human metastasis suppres-
sor gene in in TNBC [87, 88]. JQ1 and GSK2801 were 
able to modulate their expression triggering their down-
regulation and inducing the cytotoxicity in TNBC cell 
lines models. The results from the MTT assay and RT-
qPCR studies support the inhibitory activity of JQ1 and 
GSK2801. We further sought to predict their inhibitory 
action at the protein structural level through molecular 
modelling methods to theoretically support their inhibi-
tory action by means of deriving their binding energies 
and intermolecular interactions with the target proteins. 
The comprehensive binding analysis of JQ1 and GSK2801 
suggest their use as combinatorial drugs because of their 
similar binding interactions at the defined binding sites 
of the target proteins.

So far, the most tractable inhibitor for BET is JQ1 [31] 
and for BAZ2A/B is GSK2801 [32]. Inhibition of such 
domains noticeably contributed to the cytotoxicity of 
the JQ1 + GSK2801 combinatorial treatments. Use of 
this combination enabled us to induce anti-proliferative 
activity more efficiently in the three TNBC cell line mod-
els along with the plausible identification of the target 
genes and the mechanisms.
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TNBC has not previously been associated with signif-
icant mutations or copy number alterations in the BET 
or BAZ2A/B domains. This paves the way to develop 
inhibitors against BD as therapeutics and represents an 
ideal choice to target TNBC. The distinct functional roles 
of BET and BAZ2A/B domains in TNBC suggests inhi-
bition of their BD may result in selective tumor toxici-
ties. Our findings explain how co-inhibition of BET and 
BAZ2A/B BD represent an effective approach to regulate 
transcription of TAGLN, KISS1, PTPRC, MUC19 and 
KCNB1 genes thereby inducing anti-proliferative activity. 
BD are likely to mediate several important cancer path-
ways that suppress oncogenic pathologies. It is important 
to identify the strategies to improve the clinical utilities 
of BDI following the conclusions of their phase I stud-
ies to examine their safety. Overall, the BDI represent 
promising combinatorial agents and further studies into 
their mechanisms of action would enable us to identify 
the most effective combinations to fast-track their use as 
therapeutic drugs.

In the current study, the expression of five down-
regulated genes were characterized through molecular 
modelling and RT-qPCR, anticipating that the downreg-
ulation is associated with cancer inhibition. Additionally, 
the alteration of metabolic pathways requires additional 
investigation. Finally, the effective concentrations of JQ1 
and GSK2801 require in vivo evaluation.

Overall, the current study advances our understand-
ing of the potential targets of JQ1/GSK2801 and under-
scores the combinatorial use of BDI against TNBC. 
Effective doses of JQ1/GSK2801 were determined for 
the three different TNBC cell lines, which provides 
motivation for future in  vivo studies. The five down-
regulated genes characterized in the current study may 
serve as biomarkers of BDI sensitivity in TNBC. Our 
studies present coinhibition of JQ1 and GSK2801 in 
combination as an effective strategy to induce cytotoxic-
ity and arrest the progression of TNBC. While our stud-
ies support the synergistic role of JQ1 and GSK2801, 
the functional analysis of the candidate genes in BET/
BEZ inhibition along with additional in vivo evaluations 
is the important next step of the current study. These 
investigations will help to advance the present study to 
determine the possible molecular mechanism involved 
in cell inhibition and also to conclude the synergistic 
activity of the drugs beyond the validation of candidate 
gene expressions.

Conclusions
The combined cytotoxic effect of JQ1 and GSK2801 on 
MDA-MB-231, HCC-1806 and SUM-159 cells has been 
documented through MTT assays. Our findings provide 

experimental support for the hypothesis that combined 
JQ1-GSK2801 shows synergistic growth inhibitory activ-
ity on TNBC cell line models. Further, we observed 
downregulated expression of cancer associated genes 
such as PTPRC, MUC19, KCNB1, TAGLN and KISS1, 
validated through RT-qPCR studies, with additional sup-
port from molecular modelling studies. These results 
from the current study suggest the combination of JQ1 
and GSK2801 may be effective in the treatment of TNBC. 
Further in  vivo investigations through mouse xenograft 
models would help to standardize the accurate synergis-
tic doses to move towards clinical trials. The results from 
the current study may warrant further investigation as a 
potential treatment for TNBC.

Abbreviations
TNBC: Triple-Negative Breast Cancer; ER: Estrogen Receptor; PR: Progesterone 
Receptor; HER2: Human Epidermal Growth Factor Receptor 2; BDI: Bromo-
domain Inhibitors; BD: Bromodomains; BET: Bromodomain-Extra-Rerminal 
domain; CREB: Cyclic-AMP Response Element Binding protein; CBP: CREB 
Binding Protein; BAZ2A: Bromo Adjacent to Zinc Finger 2A; BAZ2B: Bromo 
Adjacent to Zinc Finger 2B; DEG: Differentially Expressed Genes; GEO: Gene 
Expression Omnibus; SRA: Short Read Archive; TMM: Trimmed Mean of M-val-
ues; logFC: Log2 Fold Change; logCPM: Log Counts Per Million; KEGG: Kyoto 
Encyclopedia of Genes and Genomes; NCBI: National Center for Biotechnol-
ogy Information; OPLS: Optimized Potentials for Liquid Simulations; FBS: Fetal 
Bovine Serum; PTP: Protein Tyrosine Phosphatase; MTT: (3-(4,5-Dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide; DMSO: Dimethyl Sulfoxide; OD: 
Optical Density; nm: Nano meters; nM: Nano moles; µM: Micro moles; MDS: 
Multidimensional Scaling.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​022-​09690-2.

Additional file 1: S1 file. This file contains thefigures and tables gener-
ated during the data analysis and is available at https://​doi.​org/​10.​7910/​
DVN/​BEW3OR. Fig.S1. Analysis of gene counts. Boxplot (A) before and (B) 
after normalization explaining the distribution of genecounts; (C) Heat 
map of samples (D) Heat map of gene counts among the samples. Fig. 
S2. Multidimensional analysis of samples. Multidimensional scalingplots 
before (left) and after (right) normalization explaining the distributionof 
control and treated samples among three different breast cancer cell lines. 
Fig.S3. Number of upregulated anddownregulated metabolic pathways. 
The number of upregulated anddownregulated pathways in the threedif-
ferent treatment conditions (JQ1, GSK2801 and JQ1 +GSK2801) across 
threedifferent TNBC cell lines. The unique and shared number of pathways 
amongdifferent treatment conditions are represented. Fig. S4. Optimized 
conformation of JQ1 and GSK2801. The structures are represented in 
stickmodel with the hydrogen bond donor (blue) and acceptor (red) 
surface areas. Theelectron density clouds are represented in green dots. 
Table S1. Table. RNASeq data sets. RNASeq expression data retrieved from 
GEOdatabase. Three different TNBC cell lines were treated with JQ1 and 
GSK2801alone and in combination for 72 hours. DMSO was used as a 
vehicle and served asan internal control. Table S2.The genes and primers. 
Primers usedfor the evaluation of gene expression in the breast cancer cell 
lines underdifferent treatment conditions. Table S3-S5. Smear plots and 
volcano plots. DEGs observed inMDA-MB-231, HCC-1806 and SUM-159 
cell lines among different treatmentconditions. Green dots represent 
downregulated and red dots upregulated genes. Table S6. Ramachan-
dran plots. The stereochemicalvalidations were done by generating the 
Ramachandran plots for the homologymodels of five downregulated 
proteins.

https://doi.org/10.1186/s12885-022-09690-2
https://doi.org/10.1186/s12885-022-09690-2
https://doi.org/10.7910/DVN/GMSXLN
https://doi.org/10.7910/DVN/GMSXLN


Page 19 of 21Yellapu et al. BMC Cancer          (2022) 22:627 	

Additional file 2: S2 file. The Gene count matrix. The gene counts gener-
ated from the RSEM analysis showing a list of 44,567genes corresponds 
all the three different TNBC (MDA-MB-231, HCC-1806 andSUM-159) cell 
lines treated with three treatment conditions (JQ1, GSK2801 andJQ1 
+GSK2801). Available at https://​doi.​org/​10.​7910/​DVN/​GMSXLN. 

Additionalfile 3: S3 file. Differentially expressed genes (DEGs). DEGs 
observed from three TNBC cell lines. The DEGSare separated as upregu-
lated and downregulated genes based on the log2 foldchange and 
p-values. Available at https://​doi.​org/​10.​7910/​DVN/​0SI5AB.

Additionalfile 4: S4 file. Grouping of DEGs.The upregulated and down-
regulated genes from three different TNBC cell lines aregrouped based on 
the three treatment conditions to find out the common andunique genes 
among the treatments. Available at https://​doi.​org/​10.​7910/​DVN/​BJFDD8.

Additionalfile 5: S5 file. Gene enrichment analysis. Metabolic pathways 
enriched with upregulated anddownregulated genes in three different 
TNBC cell lines and three differenttreatment conditions. Available at 
https://​doi.​org/​10.​7910/​DVN/​KWVOJV.

Acknowledgements
Human breast cancer cell lines, MDA-MB-231 were obtained from Dr. Janet 
Price, U.T. M.D. Anderson Cancer Center; HCC-1806 were obtained from Dr. 
Shane Stecklein, University of Kansas Medical Center; and SUM-159 cells were 
obtained from Dr. Sofia D Merajver, University of Michigan. We would also 
like to extend our gratitude to: Lisa Neums, Shachi Patel, Shelby Bell-Glenn, 
Whitney Shae, Bo Zhang, Samuel Boyd, Emily Nissen, Jonah Amponsah, Dr. 
Prabhakar Chalise, Dr. Jinxiang Hu, for their constructive feedback on this 
manuscript.

Authors’ contributions
NKY: designed the project, provided expertise to the bioinformatics and 
laboratory concepts, and wrote the paper. TL: Assisted with the cytotoxicity 
assays and RT-qPCR studies. MS: Assisted with the interpretation of gene 
network maps and edited the manuscript. DP: Assisted with the compu-
tational analysis of RNASeq data, interpretation of the study findings and 
edited the manuscript. DRW: Supervised the laboratory studies, interpre-
tation of results and edited the manuscript. JAT: supervised the analysis, 
participated in the interpretation of the study findings and edited the manu-
script. DCK: supervised the analysis, participated in the interpretation of the 
study findings and edited the manuscript. The author(s) read and approved 
the final manuscript.

Funding
Research reported was primarily supported by the National Cancer Institute 
(NCI) Cancer Center Support Grant P30 CA168524 and the Kansas Institute 
for Precision Medicine COBRE (Supported by the National Institute of General 
Medical Science award P20 GM130423) and the Kansas IDEA Network Of Bio-
medical Research Excellence (P20-GM103418). Additional funding provided by 
METAvivor Research and Support, Inc. and the National Foundation for Cancer 
Research.

Availability of data and materials
The RNASeq datasets analyzed in the current study are from Bevil et al., 2019 
and are available in the NCBI-GEO repository https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​query/​acc.​cgi?​acc=​GSE11​6907
The research data generated during the analysis in the current study are avail-
able from the Harvard Datavserse repository. The description of each file and 
their repository links are provided as follows.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors have no competing interest to disclose.

Author details
1 Department of Biostatistics & Data Science, University of Kansas, Medical 
Center, KS, Kansas City, USA. 2 The University of Kansas Cancer Center, Kansas 
City, KS, USA. 3 Department of Cancer Biology, University of Kansas, Medical 
Center, KS, Kansas City, USA. 4 Departments of Molecular & Integrative Physiol-
ogy and Internal Medicine, University of Kansas, Medical Center, KS, Kansas 
City, USA. 

Received: 14 January 2022   Accepted: 23 May 2022

References
	1.	 Boyle P, Levin B: World cancer report 2008: IARC Press, International 

Agency for Research on Cancer; 2008. https://​www.​cabdi​rect.​org/​cabdi​
rect/​abstr​act/​20103​010665.

	2.	 Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, Zeng H, Zhou J, Wei W. 
Global patterns of breast cancer incidence and mortality: A population-
based cancer registry data analysis from 2000 to 2020. Cancer Commun. 
2021;41(11):1183–94.

	3.	 Lima SM, Kehm RD, Terry MB. Global breast cancer incidence and mortal-
ity trends by region, age-groups, and fertility patterns. EClinicalMedicine. 
2021;38:100985.

	4.	 Carioli G, Bertuccio P, Malvezzi M, Rodriguez T, Levi F, Boffetta P, La Vecchia 
C, Negri E. Cancer mortality predictions for 2019 in Latin America. Int J 
Cancer. 2020;147(3):619–32.

	5.	 Narod SA, Iqbal J, Miller AB. Why have breast cancer mortality rates 
declined? J Cancer Policy. 2015;5:8–17.

	6.	 Hendrick RE, Helvie MA, Monticciolo DL. Breast cancer mortality rates 
have stopped declining in US women younger than 40 years. Radiology. 
2021;299(1):143–9.

	7.	 Hendrick RE, Baker JA, Helvie MA. Breast cancer deaths averted over 3 
decades. Cancer. 2019;125(9):1482–8.

	8.	 Reddy K. Triple-negative breast cancers: an updated review on treatment 
options. Curr Oncol. 2011;18(4): e173.

	9.	 Collignon J, Lousberg L, Schroeder H, Jerusalem G. Triple-negative breast 
cancer: treatment challenges and solutions. Breast Cancer: Targets and 
Therapy. 2016;8:93.

	10.	 Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley 
LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical 
features and patterns of recurrence. Clin Cancer Res. 2007;13(15):4429–34.

	11.	 Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeu-
tic options. Lancet Oncol. 2007;8(3):235–44.

	12.	 Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch 
Gynecol Obstet. 2016;293(2):247–69.

	13.	 Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical 
need. Oncologist. 2011;16(Suppl 1):1–11.

	14.	 Finn RS, Press MF, Dering J, Arbushites M, Koehler M, Oliva C, Williams LS, 
Di Leo A. Estrogen receptor, progesterone receptor, human epidermal 
growth factor receptor 2 (HER2), and epidermal growth factor receptor 
expression and benefit from lapatinib in a randomized trial of paclitaxel 
with lapatinib or placebo as first-line treatment in HER2-negative or 
unknown metastatic breast cancer. J Clin Oncol. 2009;27(24):3908.

	15.	 Florea A-M, Büsselberg D. Breast cancer and possible mechanisms 
of therapy resistance. Journal of Local and Global Health Science. 
2013;2013(1):2.

	16.	 Tang Y, Wang Y, Kiani MF, Wang B. Classification, treatment strategy, 
and associated drug resistance in breast cancer. Clin Breast Cancer. 
2016;16(5):335–43.

	17.	 Chalakur-Ramireddy NK, Pakala SB. Combined drug therapeutic strategies 
for the effective treatment of Triple Negative Breast Cancer. Biosci Rep. 
2018;38(1):BSR20171357.

	18.	 Irshad S, Ellis P, Tutt A. Molecular heterogeneity of triple-negative breast 
cancer and its clinical implications. Curr Opin Oncol. 2011;23(6):566–77.

	19.	 Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, 
Filetici P, Travers AA. The structural basis for the recognition of acetylated 
histone H4 by the bromodomain of histone acetyltransferase gcn5p. 
EMBO J. 2000;19(22):6141–9.

	20.	 Zeng L, Zhou M-M. Bromodomain: an acetyl-lysine binding domain. FEBS 
Lett. 2002;513(1):124–8.

https://doi.org/10.7910/DVN/GMSXLN
https://doi.org/10.7910/DVN/0SI5AB
https://doi.org/10.7910/DVN/BJFDD8
https://doi.org/10.7910/DVN/KWVOJV
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116907
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116907
https://www.cabdirect.org/cabdirect/abstract/20103010665
https://www.cabdirect.org/cabdirect/abstract/20103010665


Page 20 of 21Yellapu et al. BMC Cancer          (2022) 22:627 

	21.	 Shu S, Wu H-J, Jennifer YG, Zeid R, Harris IS, Jovanović B, Murphy K, Wang 
B, Qiu X, Endress JE. Synthetic lethal and resistance interactions with BET 
bromodomain inhibitors in triple-negative breast cancer. Molecular cell. 
2020;78(6):1096–113 (e1098).

	22.	 Yao D, Zhang J, Wang J, Pan D, He Z. Discovery of novel ATAD2 bro-
modomain inhibitors that trigger apoptosis and autophagy in breast 
cells by structure-based virtual screening. J Enzyme Inhib Med Chem. 
2020;35(1):713–25.

	23.	 Yang G-J, Song Y-Q, Wang W, Han Q-B, Ma D-L, Leung C-H. An optimized 
BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast 
cancer cells. Bioorg Chem. 2021;114:105158.

	24.	 Yoo M, Park TH, Yoo M, Kim Y, Lee J-Y, Lee KM, Ryu SE, Lee BI, Jung K-Y, 
Park CH. Synthesis and Structure-Activity Relationships of Aristoyago-
nine Derivatives as Brd4 Bromodomain Inhibitors with X-ray Co-Crystal 
Research. Molecules. 2021;26(6):1686.

	25.	 Hu Q, Wang C, Xiang Q, Wang R, Zhang C, Zhang M, Xue X, Luo G, Liu X, 
Wu X. Discovery and optimization of novel N-benzyl-3, 6-dimethylbenzo 
[d] isoxazol-5-amine derivatives as potent and selective TRIM24 bromo-
domain inhibitors with potential anti-cancer activities. Bioorg Chem. 
2020;94:103424.

	26.	 Bi X, Chen Y, Sun Z, Lu W, Xu P, Lu T, Ding H, Zhang N, Jiang H, Chen K. 
Structure-based drug optimization and biological evaluation of tet-
rahydroquinolin derivatives as selective and potent CBP bromodomain 
inhibitors. Bioorg Med Chem Lett. 2020;30(22):127480.

	27.	 Taniguchi Y. The bromodomain and extra-terminal domain (BET) 
family: functional anatomy of BET paralogous proteins. Int J Mol Sci. 
2016;17(11):1849.

	28.	 Poot RA, Dellaire G, Hülsmann BB, Grimaldi MA, Corona DF, Becker PB, 
Bickmore WA, Varga-Weisz PD. HuCHRAC, a human ISWI chromatin 
remodelling complex contains hACF1 and two novel histone-fold pro-
teins. EMBO J. 2000;19(13):3377–87.

	29.	 Jones MH, Hamana N, Nezu J-i, Shimane M. A novel family of bromodo-
main genes. Genomics. 2000;63(1):40–5.

	30.	 Jung M, Gelato KA, Fernández-Montalván A, Siegel S, Haendler B. 
Targeting BET bromodomains for cancer treatment. Epigenomics. 
2015;7(3):487–501.

	31.	 da Motta LL, Ledaki I, Purshouse K, Haider S, De Bastiani MA, Baban D, 
Morotti M, Steers G, Wigfield S, Bridges E. The BET inhibitor JQ1 selectively 
impairs tumour response to hypoxia and downregulates CA9 and angio-
genesis in triple negative breast cancer. Oncogene. 2017;36(1):122–32.

	32.	 Bevill SM, Olivares-Quintero JF, Sciaky N, Golitz BT, Singh D, Beltran AS, 
Rashid NU, Stuhlmiller TJ, Hale A, Moorman NJ. Gsk2801, a baz2/brd9 bro-
modomain inhibitor, synergizes with bet inhibitors to induce apoptosis in 
triple-negative breast cancer. Mol Cancer Res. 2019;17(7):1503–18.

	33.	 Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM, Janiszewska 
M, Huh SJ, Liang Y, Ryan J. Response and resistance to BET bromodomain 
inhibitors in triple-negative breast cancer. Nature. 2016;529(7586):413–7.

	34.	 Clough E, Barrett T. The gene expression omnibus database. In: Statistical 
Genomics. edn.: Springer. 2016. pp. 93–110. https://​www.​nature.​com/​
artic​les/​natur​e16508.

	35.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illu-
mina sequence data. Bioinformatics. 2014;30(15):2114–20.

	36.	 Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-
Seq data with or without a reference genome. BMC Bioinformatics. 
2011;12(1):323.

	37.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9(4):357.

	38.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package 
for differential expression analysis of digital gene expression data. Bioin-
formatics. 2010;26(1):139–40.

	39.	 Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Frid-
man W-H, Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to 
decipher functionally grouped gene ontology and pathway annotation 
networks. Bioinformatics. 2009;25(8):1091–3.

	40.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin 
N, Schwikowski B, Ideker T. Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome Res. 
2003;13(11):2498–504.

	41.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30.

	42.	 Hooft RW, Sander C, Vriend G. Objectively judging the quality of a protein 
structure from a Ramachandran plot. Bioinformatics. 1997;13(4):425–30.

	43.	 Maestro: Schrödinger Release 2021–2: Maestro, Schrödinger, LLC, New 
York, NY. 2021. https://​www.​schro​dinger.​com/​citat​ions.

	44.	 Lim VT, Hahn DF, Tresadern G, Bayly CI, Mobley DL. Benchmark assess-
ment of molecular geometries and energies from small molecule force 
fields. F1000Research. 2020;9(1390):1390.

	45.	 Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, 
Banks JL. Glide: a new approach for rapid, accurate docking and scor-
ing. 2. Enrichment factors in database screening. J Medicinal Chem. 
2004;47(7):1750–9.

	46.	 Grigoriadis A, Mackay A, Noel E, Wu PJ, Natrajan R, Frankum J, Reis-Filho 
JS, Tutt A. Molecular characterisation of cell line models for triple-nega-
tive breast cancers. BMC Genomics. 2012;13(1):619.

	47.	 Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. 
Cold Spring Harbor Protocols. 2018;2018(6):pdb (prot095505).

	48.	 Nga N, Ngoc T, Trinh N, Thuoc T, Thao D. Optimization and application 
of MTT assay in determining density of suspension cells. Anal Biochem. 
2020;610:113937.

	49.	 Chou T-C. Drug combination studies and their synergy quantification 
using the Chou-Talalay method. Can Res. 2010;70(2):440–6.

	50.	 Chou T, Martin N. CompuSyn for drug combinations: PC software and 
user’s guide: a computer program for quantitation of synergism and 
antagonism in drug combinations, and the determination of IC50 and 
ED50 and LD50 values. ComboSyn, Paramus, NJ; 2005. https://​www.​
combo​syn.​com/.

	51.	 Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, 
Rozen SG. Primer3—new capabilities and interfaces. Nucleic Acids Res. 
2012;40(15):e115–e115.

	52.	 Chakravarthi VP, Khristi V, Ghosh S, Yerrathota S, Dai E, Roby KF, Wolfe MW, 
Rumi MK. ESR2 is essential for gonadotropin-induced Kiss1 expression in 
granulosa cells. Endocrinology. 2018;159(11):3860–73.

	53.	 Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(S1):S25–30.
	54.	 Jurkovicova D, Smolkova B, Magyerkova M, Sestakova Z, Kajabova 

VH, Kulcsar L, Zmetakova I, Kalinkova L, Krivulcik T, Karaba M. Down-
regulation of traditional oncomiRs in plasma of breast cancer patients. 
Oncotarget. 2017;8(44):77369.

	55.	 Weber G, Shen F, Prajda N, Yeh Y, Yang H, Herenyiova M, Look KY. 
Increased signal transduction activity and down-regulation in human 
cancer cells. Anticancer Res. 1996;16(6A):3271–82.

	56.	 Pérez-Salvia M, Esteller M. Bromodomain inhibitors and cancer therapy: 
From structures to applications. Epigenetics. 2017;12(5):323–39.

	57.	 de Andrés M, Madhusudan N, Bountra C, Oppermann U, Oreffo R. 
Bromodomain inhibitors are potent epigenetic regulators of catabolic 
gene expression in human osteoarthritic chondrocytes. Osteoarthritis 
Cartilage. 2018;26:S154.

	58.	 Zawistowski JS, Bevill SM, Goulet DR, Stuhlmiller TJ, Beltran AS, Olivares-
Quintero JF, Singh D, Sciaky N, Parker JS, Rashid NU. Enhancer remodeling 
during adaptive bypass to MEK inhibition is attenuated by pharmaco-
logic targeting of the P-TEFb complex. Cancer Discov. 2017;7(3):302–21.

	59.	 Stuhlmiller TJ, Miller SM, Zawistowski JS, Nakamura K, Beltran AS, Duncan 
JS, Angus SP, Collins KA, Granger DA, Reuther RA. Inhibition of lapatinib-
induced kinome reprogramming in ERBB2-positive breast cancer by 
targeting BET family bromodomains. Cell Rep. 2015;11(3):390–404.

	60.	 Smith SG, Zhou M-M. The bromodomain: a new target in emerging 
epigenetic medicine. ACS Chem Biol. 2016;11(3):598–608.

	61.	 Andrikopoulou A, Liontos M, Koutsoukos K, Dimopoulos M-A, Zagouri 
F. The emerging role of BET inhibitors in breast cancer. The Breast. 
2020;53:152–63.

	62.	 Bevill SM. Transcriptional Adaptation to Targeted Inhibitors via BET 
Bromodomain Proteins in Triple-negative Breast Cancer. The University of 
North Carolina at Chapel Hill; 2018. https://​www.​proqu​est.​com/​pagep​df/​
21706​97151?​accou​ntid=​28920.

	63.	 Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: going beyond 
transcriptional regulation. Mol Cancer. 2018;17(1):1–13.

	64.	 Shu S, Polyak K. BET bromodomain proteins as cancer therapeutic targets. 
In: Cold Spring Harbor symposia on quantitative biology: 2016. Cold 
Spring Harbor Laboratory Press; 2016. pp. 123–9. https://​schol​ar.​archi​ve.​
org/​work/​f7vez​ev6sr​ejjjs​rdb4p​beypqa/​access/​wayba​ck/​http://​sympo​
sium.​cshlp.​org/​conte​nt/​81/​123.​full.​pdf.

https://www.nature.com/articles/nature16508
https://www.nature.com/articles/nature16508
https://www.schrodinger.com/citations
https://www.combosyn.com/
https://www.combosyn.com/
https://www.proquest.com/pagepdf/2170697151?accountid=28920
https://www.proquest.com/pagepdf/2170697151?accountid=28920
https://www.scholar.archive.org/work/f7vezev6srejjjsrdb4pbeypqa/access/wayback/http://symposium.cshlp.org/content/81/123.full.pdf
https://www.scholar.archive.org/work/f7vezev6srejjjsrdb4pbeypqa/access/wayback/http://symposium.cshlp.org/content/81/123.full.pdf
https://www.scholar.archive.org/work/f7vezev6srejjjsrdb4pbeypqa/access/wayback/http://symposium.cshlp.org/content/81/123.full.pdf


Page 21 of 21Yellapu et al. BMC Cancer          (2022) 22:627 	

	65.	 Sahni JM, Keri RA. Targeting bromodomain and extraterminal proteins in 
breast cancer. Pharmacol Res. 2018;129:156–76.

	66.	 Domenichini A, Adamska A, Falasca M. ABC transporters as cancer drivers: 
Potential functions in cancer development. Biochimica et Biophysica 
Acta (BBA)-General Subjects. 2019;1863(1):52–60.

	67.	 Zhang Y-L, Wang R-C, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in 
tumor cell migration and invasion. Cancer Biol Med. 2017;14(1):90.

	68.	 Khorsandi L, Orazizadeh M, Niazvand F, Abbaspour M, Mansouri E, Khoda-
dadi A. Quercetin induces apoptosis and necroptosis in MCF-7 breast 
cancer cells. Bratislava Medical Journal. 2017;118(2):123–8.

	69.	 Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, 
Zhang X. Targeting ferroptosis in breast cancer. Biomarker Research. 
2020;8(1):1–27.

	70.	 Chen Y, Xue J, Chen C, Yang B, Xu Q, Wu F, Liu F, Ye X, Meng X, Liu G. 
PPAR signaling pathway may be an important predictor of breast cancer 
response to neoadjuvant chemotherapy. Cancer Chemother Pharmacol. 
2012;70(5):637–44.

	71.	 Fanale D, Amodeo V, Caruso S. The interplay between metabolism, PPAR 
signaling pathway, and cancer. In.: Hindawi; 2017. https://​www.​hinda​wi.​
com/​journ​als/​ppar/​2017/​18306​26/.

	72.	 Buck MB, Knabbe C. TGF-beta signaling in breast cancer. Ann N Y Acad 
Sci. 2006;1089(1):119–26.

	73.	 Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of 
tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights 
and therapeutic approaches. Cell Oncol. 2020;43(1):1–18.

	74.	 Tabassum S, Abbasi R, Ahmad N, Farooqi AA. Targeting of JAK-STAT signal-
ing in breast cancer: therapeutic strategies to overcome drug resistance. 
In: Breast Cancer Metastasis and Drug Resistance. 2019. p. 271–81.

	75.	 Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau C-S, Verste-
gen NJ, Ciampricotti M, Hawinkels LJ, Jonkers J. IL-17-producing γδ T cells 
and neutrophils conspire to promote breast cancer metastasis. Nature. 
2015;522(7556):345–8.

	76.	 Lerebours F, Vacher S, Andrieu C, Espie M, Marty M, Lidereau R, Bieche I. 
NF-kappa B genes have a major role in inflammatory breast cancer. BMC 
Cancer. 2008;8(1):1–11.

	77.	 Du Y, Grandis JR. Receptor-type protein tyrosine phosphatases in cancer. 
Chin J Cancer. 2015;34(2):61–9.

	78.	 Kim J-Y, Jung HH, Sohn I, Woo SY, Cho H, Cho EY, Lee JE, Kim SW, Nam 
SJ, Park YH. Prognostication of a 13-immune-related-gene signature in 
patients with early triple-negative breast cancer. Breast Cancer Res Treat. 
2020;184(2):325–34.

	79.	 Ma Y, Li Y, Guo P, Zhao J, Qin Q, Wang J, Liang Z, Wei D, Wang Z, Shen J. 
Endothelial Cells Potentially Participate in the Metastasis of Triple-Nega-
tive Breast Cancer. J Immunol Res. 2022;2022:5412007.

	80.	 Mukhopadhyay P, Chakraborty S, Ponnusamy MP, Lakshmanan I, Jain M, 
Batra SK. Mucins in the pathogenesis of breast cancer: implications in 
diagnosis, prognosis and therapy. Biochimica et Biophysica Acta (BBA)-
Reviews on Cancer. 2011;1815(2):224–40.

	81.	 Liu Y, Zhang Q, Wu J, Zhang H, Li X, Zheng Z, Luo M, Li L, Xiang Y, Yang 
F. Long non-coding RNA A2M-AS1 promotes breast cancer progres-
sion by sponging microRNA-146b to upregulate MUC19. Int J Gen Med. 
2020;13:1305.

	82.	 Qu C, Sun J, Liu Y, Wang X, Wang L, Han C, Chen Q, Guan T, Li H, Zhang 
Y. Caveolin-1 facilitated KCNA5 expression, promoting breast cancer 
viability. Oncol Lett. 2018;16(4):4829–38.

	83.	 Rao D, Kimler BF, Nothnick WB, Davis MK, Fan F, Tawfik O. Transgelin: 
A potentially useful diagnostic marker differentially expressed in 
triple-negative and non–triple-negative breast cancers. Hum Pathol. 
2015;46(6):876–83.

	84.	 Sayar N, Karahan G, Konu O, Bozkurt B, Bozdogan O, Yulug IG. Transgelin 
gene is frequently downregulated by promoter DNA hypermethylation in 
breast cancer. Clin Epigenetics. 2015;7(1):1–16.

	85.	 Yang L, Hong Q, Xu SG, Kuang XY, Di GH, Liu GY, Wu J, Shao ZM, Yu SJ. 
Downregulation of transgelin 2 promotes breast cancer metastasis by 
activating the reactive oxygen species/nuclear factor-κB signaling path-
way. Mol Med Rep. 2019;20(5):4045–258.

	86.	 Beck BH, Welch DR. The KISS1 metastasis suppressor: a good night kiss for 
disseminated cancer cells. Eur J Cancer. 2010;46(7):1283–9.

	87.	 Tian J, Al-Odaini AA, Wang Y, Korah J, Dai M, Xiao L, Ali S, Lebrun J-J. KiSS1 
gene as a novel mediator of TGFβ-mediated cell invasion in triple nega-
tive breast cancer. Cell Signal. 2018;42:1–10.

	88.	 Martin TA, Watkins G, Jiang WG. KiSS-1 expression in human breast can-
cer. Clin Exp Metas. 2005;22(6):503–11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.hindawi.com/journals/ppar/2017/1830626/
https://www.hindawi.com/journals/ppar/2017/1830626/

	Synergistic anti-proliferative activity of JQ1 and GSK2801 in triple-negative breast cancer
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Materials and methods
	Data sources
	Data processing and generation of gene counts
	Identification of differentially expressed genes (DEGs)
	Gene functional enrichment analysis
	Molecular modelling studies
	Homology modelling and protein processing
	Ligand preparation
	Molecular docking

	In vitro studies
	Cells and cell cultures
	Determination of cytotoxic effects of JQ1 and GSK2801 by MTT assay
	RT-qPCR Expression studies
	Statistical analysis


	Results
	Differential expression analysis using publicly available RNASeq data sets
	Gene functional enrichment analysis
	Molecular modelling studies
	Cytotoxicity assays
	Gene expression analysis

	Discussion
	Conclusions
	Acknowledgements
	References


