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Genome-wide association studies (GWAS) have identified hundreds of genetic variants
associated with autoimmune diseases and provided unique mechanistic insights and
informed novel treatments. These individual genetic variants on their own typically confer a
small effect of disease risk with limited predictive power; however, when aggregated (e.g.,
via polygenic risk score method), they could provide meaningful risk predictions for a
myriad of diseases. In this review, we describe the recent advances in GWAS for
autoimmune diseases and the practical application of this knowledge to predict an
individual’s susceptibility/severity for autoimmune diseases such as systemic lupus
erythematosus (SLE) via the polygenic risk score method. We provide an overview of
methods for deriving different polygenic risk scores and discuss the strategies to integrate
additional information from correlated traits and diverse ancestries. We further advocate
for the need to integrate clinical features (e.g., anti-nuclear antibody status) with genetic
profiling to better identify patients at high risk of disease susceptibility/severity even before
clinical signs or symptoms develop. We conclude by discussing future challenges and
opportunities of applying polygenic risk score methods in clinical care.

Keywords: autoimmune diseases, genome wide association studies (GWAS), multi-ancestry genetic study, polygenic
risk score (PRS), electronic health record (EHR)
INTRODUCTION

There are nearly 100 autoimmune diseases, many of which are rare with prevalence of less than 5
per 100,000 individuals (1, 2). Yet, the prevalence of autoimmune diseases is increasing in recent
years. The National Institutes of Health estimates that 14.7-23.5 million people (around 4-7% of the
population) are affected in the United States overall (3).

Autoimmune diseases arise from a combination of genetic predispositions and environmental
factors that result in the loss of self-tolerance and may cause the immune system to mount a
response against the body’s own healthy cells and tissues (4). Genetic effects can alter both the
innate and adaptive immune systems (5). Likewise, altered immune responses can be triggered by
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environmental factors like microbial antigens or environmental
toxins, although triggers in many of these disorders,
remain unclear. This often leads to the production of
autoantibodies and activation of cell-mediated autoimmunity.
Some autoimmune diseases target specific cell types (e.g.,
pancreatic ß-cells in type-1 diabetes or thyroid-stimulating
hormone (TSH) receptor in Hashimoto thyroiditis), while
others can target a common antigen present in a wide range
of cell types (e.g., nuclear antigens in systemic lupus
erythematous or systemic sclerosis) (6).

The clinical presentation and severity of most autoimmune
diseases are heterogenous due to their complex etiology (7).
Moreover, symptoms of different disorders can overlap. As a
result, autoimmune disease diagnosis remains challenging.
Misdiagnoses of autoimmune diseases are common (8–10) and a
correct diagnosis can take several years and multiple physician visits
(e.g., rheumatology, endocrinology, hematology, etc.). Delayed
diagnoses and treatment can allow disease to progress to
advanced stages, affecting multiple organ systems, and even
leading to fatality. As a result, early diagnosis and proper
treatment management of autoimmune diseases is a
clinical necessity.

In this review, we discuss the current states of genome wide
association studies for a number of autoimmune diseases and
how we can leverage those results to develop polygenic risk
scores (PRS) for disease risk prediction based on one’s genetic
information. We discuss various methods and strategies used to
derive PRS models. Finally, in the era of precision using
electronic health records, we discuss the clinical utility of
combining conventional lab tests with genetic data to improve
risk prediction.
GWAS OF AUTOIMMUNE DISEASES
REVEALS GENETIC ARCHITECTURE

Genome wide association studies (GWAS) have significantly
changed our understanding of the genetic landscape
underpinning autoimmune diseases. In this review, we look into
16 autoimmune diseases or traits: ankylosing spondylitis (AS), celiac
disease (CEL), Crohn’s disease (CD), Grave’s disease (GD),
Hashimoto thyroiditis (HT), multiple sclerosis (MS), primary
biliary cirrhosis (PBC), psoriasis vulgaris (PSO), psoriatic arthritis
(PSOAR), rheumatoid arthritis (RA), Sjögren’s syndrome (SS),
systemic lupus erythematous (SLE), systemic sclerosis (SSC), type
1 diabetes (T1D), ulcerative colitis (UC), and vitiligo (VIT). At the
time of this review, there are 179 published GWAS studies that have
identified over 350 loci across these 17 autoimmune traits (11).

Due to linkage disequilibrium, significantly associated
variants may be correlated and dependent. To properly count
GWAS discoveries, we define loci iteratively using the following
algorithm. For a given trait, we first rank variants with p-values <
5 × 10-8 from the GWAS catalog based on their p-values, from
small to large. We define the first locus as a 1 million basepair
window surrounding the most significant variant. We then
Frontiers in Immunology | www.frontiersin.org 2
remove all variants in the locus from the list of significant
variants and repeat the above procedure to define the next
locus until we exhaust all significant variants for the trait. SLE
and MS have the most loci identified (159 and 155 loci
respectively), while PSOAR and SS have the least (9 and 10
loci respectively) (Figure 1A). This disparity could be due to the
number of reported studies, sample sizes of each study,
heritability of the disorder. It also depends on the effect sizes
of causative genetic variants. Some variants involved in certain
disorders may have large effect sizes. Individuals carrying the
variants will almost surely develop disease. Most other variants
have moderate effect sizes, and only slightly increase the
disease risk.

GWAS have found pervasively shared genetic basis among
autoimmune traits (12, 13). This finding has led to great interest
in jointly analyzing GWAS results from different autoimmune traits.
For example, Acosta-Herrera et al. conducted the first cross-disease
meta-analysis of seropositive rheumatic diseases (SSC, SLE, RA, and
idiopathic inflammatory myopathies) (14). This joint analysis
enabled identification of five shared immune-related loci that had
not been previously associated with these individual diseases. As
another example, Márquez et al. performed meta-analysis on data
from CEL, RA, SSC, and T1D. This not only allowed them to
identify novel genome-wide associations, but also to propose new
candidate treatments through drug repositioning analysis (15).

GWAS has also helped reveal the genetic etiology of disease
subtypes, which is important given the extensive clinical
heterogeneity. For example, Chung et al. performed a GWAS
to identify risk loci associated with anti-dsDNA autoantibody
production in SLE patients (16). They observed that previously
identified SLE susceptibility loci are associated with higher
autoantibody production in anti-dsDNA positive SLE patients
compared to anti-dsDNA negative SLE patients. This study also
importantly underscores the need to identify genetic loci and
non-genetic factors in autoantibody-negative SLE patients.

Despite the success of GWAS in characterizing autoimmune
diseases, there are areas for further improvement. For example, it is
important to identify sex-specific variants, particularly as many
autoimmune diseases have a sex bias that are not fully explained by
hormonal differences between males and females. For example, the
incidence of SS, SLE, HT, GD, scleroderma, myasthenia gravis,
PBC, and RA are female biased (17), while T1D and AS are male
biased (18). There are also disorders that are not sex biased, such as
UC and CD (19). Currently, most studies still pool both sexes
together, with little effort to identify whether there is heterogeneity
in disease susceptibility variants between female and male (20).
Very few studies include chromosome X in their analysis, which is
an important omission that needs to be further studied
(Figure 1B). Inclusion and in-depth analysis of chromosome X
and its relation to autoimmune diseases are especially important
for sex-biased diseases, e.g., most of SLE and SS cases are females.

In addition, current GWAS studies primarily focused on
samples of European ancestry, and thus lack ancestral diversity
(Figure 1C). This is a rather unfortunate omission, as many
autoimmune diseases are more prevalent in non-European
populations (21). The lack of diversity hinders our understanding
June 2022 | Volume 13 | Article 889296
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of the etiology of autoimmune diseases. Multi-ancestry genetic
studies are in great need for further discovery and refinement of
disease-associated loci (22). There have been limited multi-ancestry
meta-analysis efforts for SLE, RA, CEL, SSC, and T1D. These studies
have helped identify novel risk loci (15, 23–32) and improve our
understanding of these autoimmune diseases (23, 26, 30, 33).
STATISTICAL METHODS FOR GENETIC
RISK PREDICTION

Advances in GWAS of autoimmune diseases have helped reveal
biological mechanisms underlying autoimmunity. Another
application for GWAS results is to predict whether an
individual is at a risk of developing a disease using his/her
Frontiers in Immunology | www.frontiersin.org 3
genotype. A polygenic risk score (PRS) aggregates many risk
variants identified from GWAS to formulate a score that predicts
an individual’s risk for a certain disease. If the score is high in
comparison to the population of healthy individuals, the patient
has a high probability of developing the disease. Identifying
individuals at risk can influence clinical decisions, including
frequent monitoring, early detection and/or early intervention
before the disease fully develops.

Several methods and strategies existed for creating PRS
models (Figure 2 and Table 1). In general, a base GWAS
summary statistic and ancestry-matched linkage disequilibrium
(LD) reference panel are necessary to develop the ancestry-
specific PRS model. When LD information is not available for
the individuals analyzed in the GWAS, a LD reference panel
from major public genomic resources [e.g. 1000 Genomes
Project (61), Haplotype Reference Consortium (62)] can be
A

C

B

FIGURE 1 | Number of risk loci identified by GWAS for 16 autoimmune traits and ancestry composition per year since 2007. We count the cumulative number of
reported loci in GWAS catalog. Each locus is defined as a 1 million basepair window surrounding a genome-wide association signal (p < 5×10-8). All significant variants
within a 1 million basepair window are attributed to a single locus. The cumulative number of unique loci that were identified in a year were calculated for the (A) whole
genome and (B) chromosome X. Given that the X chromosome represents approximately 5% of the genome, the paucity of X GWAS loci for most autoimmune disorders
makes it clear that the X chromosome is understudied. (C) Cumulative assessment of GWAS participants by ancestry over time, according to GWAS catalog. A majority
of current GWAS studies are from European ancestry. As people of European ancestry only account for 16% of the population, the non-European population remain
under-represented.
June 2022 | Volume 13 | Article 889296

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Khunsriraksakul et al. Polygenic Risk Score Calculation and Application
used as a proxy. Some PRS methods require estimating tuning
parameters, thus need an additional validation dataset (Table 1).

For the remaining of the section, we will review some
methodological advances and challenges of the calculation of
PRS for interested readers. Readers who are more interested in
applications can safely ignore them and advance to the
next section.

The most basic PRS method is pruning and thresholding,
also known as clumping and thresholding, which involves two
filtering steps. Specifically, the algorithm iteratively: 1) removes
variants that are correlated with the top variant within the locus
[pruning (37)] and 2) removes variants with a P-value larger
than a certain threshold [thresholding (38)]. More
sophisticated methods, such as LDpred (46), LDpred2 (47),
BayesR (43), and PRS-CS (49) also perform shrinkage
estimation by fitting the model using Bayesian methods and
using a prior to model the effect size distribution of SNPs in the
genome, which allows borrowing strength across different
variants. More recently, AnnoPred (42) and LDpred-funct
(48) methods further allow incorporation of functional priors
to prioritize SNPs located within functionally-annotated
regions. Another important class of methods uses penalized
Frontiers in Immunology | www.frontiersin.org 4
regression to build prediction models [e.g. LASSO regression in
LASSOSUM (50)], which can be computationally more efficient
than Bayesian methods.

Due to the pervasive genetic sharing between different
autoimmune diseases, incorporating GWAS datasets from
genetically correlated traits may improve the accuracy of
genetic effect estimates, which will in turn improve the
prediction accuracy of the PRS model. This is particularly
appealing for autoimmune diseases with low prevalence. As it
is often difficult to collect enough number of cases for less
prevalent disorders, borrowing strength from other genetically-
correlated autoimmune diseases is beneficial. For example, SLE is
a rare autoimmune disease that is clinically and genetically
known to overlap with RA and SSC (63, 64). Multi-trait PRS
analysis can be performed at two different stages. First, multi-
trait association methods [e.g., MTAG (34), wMT-GWAS (35),
Genomic SEM (36)] can be used to improve marginal effect
estimates, which we can use with other prediction methods to
improve prediction accuracy (Figure 2B). Alternatively,
“stacking” based methods create a weighted combination of
PRS for different traits to enhance prediction accuracy, e.g.,
MPS (57), wMT-SBLUP (35). Stacking-based methods require
A CB

D FE

FIGURE 2 | Overview of strategies for polygenic risk score model development. (A) Single-trait and single-ancestry framework. (B) Multi-trait (at GWAS level) and single-ancestry
framework. (C) Multi-trait (at PRS model level) and single-ancestry framework. (D) Single-trait and multi-ancestry (at GWAS level) framework. (E) Single-trait and multi-
ancestry (at PRS model level) framework. (F) Single-trait and multi-ancestry (at both levels) framework. *Pruning and Thresholding, PRSice, Pruning and Thresholding
with functionally-informed LASSO shrinkage, AnnoPred, BayesR, GBLUP, JAMPRED, LDpred/LDpred2, LDpred-funct, PRS-CS, LASSOSUM. †PUMAS, GCTA/SBLUP,
GCTB/SBayesR, LDpred-inf, LDpred-funct-inf, PRS-CS-auto, LASSOSUM-pseudovalidation. ‡MTAG, wMT-GWAS, Genomic SEM. X MPS, wMT-SBLUP. Y MultiPRS,
PolyPred+. Z PRS-CSx. ⊕ represents the “stacking” method to combine different risk scores.
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a validation dataset to estimate weights to combine different
PRS (Figure 2C).

Another important aspect of the PRS model i s
the transferability of the model across all populations.
Currently, ~79% of all GWAS participants are of European
descent (Figure 1C), which only make up for 16% of the global
population. The PRS models developed for individuals of
European ancestry often have reduced accuracy for prediction
in non-European ancestries (65). Poor PRS transferability may
be due to linkage disequilibrium differences, allele frequency
differences, causal effect-size differences, and heritability
differences between ancestries (59). There is great interest to
develop transferable PRS integrating multi-ancestry genetic
studies. There are several approaches to integrate multi-
ancestry datasets for PRS prediction.

First, multi-ancestry meta-analysis of GWAS can improve
marginal genetic effect estimates, which is used for a prediction
model to improve prediction accuracy (Figure 2D). A second
possible approach also uses “stacking” methods to combine
PRS models [e.g., MultiPRS (58), PolyPred+ (59)] similar to
multi-phenotype analysis (Figure 2E). Finally, multi-ancestry
meta-analysis and stacking methods can both be applied [e.g.,
PRS-CSx (60)] (Figure 2F). The transferability of PRS depends
Frontiers in Immunology | www.frontiersin.org 5
on the target population and can be improved by prioritizing
functional variants (66). For example, Ishigaki et al.
demonstrated that the PRS performance for rheumatoid
arthritis is comparable between European and East Asian
populations when incorporating functional information to
prioritize causal variants (67). Importantly, it still remains an
open question how to best combine multi-ancestry genetic data
to create a better and more transferable PRS model. Despite the
advances brought by these methodologies, it is essential to
enlarge non-European GWAS sample sizes. For further
discussion on development, evaluation, and application of
PRS, readers may refer to more thorough reviews on this
topic, e.g., Chatterjee et al. (68) and Choi et al. (69).
AVAILABILITY, ACCURACY AND UTILITY
OF POLYGENIC RISK SCORE MODELS

At the time of this review, 48 PRS models have been deposited
in Polygenic Score (PGS) Catalog for risk prediction for 16
autoimmune traits (Figure 3) (70). CEL, T1D, and SLE have
the most PRS models, while to date ATD has no PRS models
yet (Figure 3A). The most commonly used method for
building the PRS model across these studies is penalized
regression (50, 71–73), followed by weighted sum of the
variants from established genes (e.g., from variants that
reach genome-wide significance, candidate genes, etc., in
contrast to scores constructed based on all variants from
GWAS) (Figure 3B). The least used methods were pruning
and thresholding (37, 38) (Figure 3B). Lastly, depending on
the method, the number of SNPs used in the PRS model
varied. LDpred2, a method assuming polygenicity, retained
the most SNPs, ranging from 22,026 to as many as 566,637,
while other variable selection methods used less than 2,000
SNPs in the PRS. The number of retained SNPs also critically
depends on the genetic architecture of the disease. PRS of
highly polygenic traits tend to contain many SNPs, while the
traits that are more similar to a monogenic disorder use fewer
SNPs in the PRS (Figure 4). Using GWAS data from UK
biobank (74) along with LASSOSUM method (50), we
demonstrated that the Spearman’s correlations between
number of loci and number of genetic variants in polygenic
risk score models are significantly and positively correlated for
both quantitative/ordinal traits (Figure 4A; Spearman’s
correlation = 0.74, p<2.2×10-16) and binary/categorical traits
(Figure 4B; Spearman’s correlation = 0.29, p=4.8×10-10).
Interestingly, a few outlier traits have many SNPs in the
PRS model but relatively few GWAS loci. They are often the
ones that were not extensively studied, and the sample sizes
are relatively smaller. Thus, the number of known loci were
relatively modest.

The most common PRS model performance metric reported
is classification accuracy, as measured by the area under the
curve of receiver-operating characteristic curve (ROC-AUC).
Other studies report risk prediction performance as odds ratio
or fold change of the proportion of cases to control in the top
TABLE 1 | A list of polygenic risk score and other relevant methods.

Multi-trait GWAS methods
- MTAG (34)
- wMT-GWAS (35)
- Genomic SEM (36)

Single-ancestry PRS methods

PRS methods requiring validation dataset PRS methods not requiring
validation dataset

Pruning and Thresholding
- Pruning (37) + Thresholding (38)
- PRSice (39, 40)
- Pruning + Thresholding with functionally-
informed LASSO shrinkage (41)
Bayesian Framework
- AnnoPred (42)
- BayesR (43)
- GBLUP (44)
- JAMPred (45)
- LDpred (46)/LDpred2 (47)
- LDpred-funct (48)
- PRS-CS (49)
Others
- LASSOSUM (50)

Pruning and Thresholding
- PUMAS (51)

Bayesian Framework
- GCTA (52)/SBLUP (53)
- GCTB (54)/SBayesR (55)
- LDpred-inf (46)
- LDpred-funct-inf (48)
- PRS-CS-auto (49)
- SDPR (56)

Others
- LASSOSUM-
pseudovalidation (50)

Multi-trait PRS methods

- MPS (57)
- wMT-SBLUP (35)

Multi-ancestry PRS methods

Linear combination
- MultiPRS (58)
- PolyPred+ (59)
Bayesian Framework
- PRS-CSx (60)
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Xth percentile (e.g., top 20th percentile) of the PRS distribution
and compare it with the middle or bottom Xth percentile of the
PRS distribution. Odds ratio or fold change are hard to
compare between studies, as different studies use different
percentile thresholds. We will only discuss PRS model
performance for the studies that reported ROC-AUC.
Frontiers in Immunology | www.frontiersin.org 6
The PRS models for T1D and CEL showed the best
performance when compared to other diseases, which can be
attributable to their relatively simple genetic architectures. Every
PRS model of T1D had a ROC-AUC greater than 0.75, and some
models had a ROC-AUC value greater than 0.9. PRS models for
other autoimmune traits had moderate performance, with ROC-
A B

FIGURE 4 | Comparison of the trait polygenicity and the PRS model size. (A) Quantitative/ordinal traits. (B) Binary/categorical traits. We apply LASSOSUM across GWAS
analysis of the UK biobank data (round 2) from http://www.nealelab.is/uk-biobank/. We exclude traits that have no significant variant (p < 5×10-8). For
binary/categorical traits, we further excluded traits with number of cases ≤5000. In total, we created polygenic risk score models for 338 quantitative/ordinal traits
and 454 binary/categorical traits. We used number of loci identified in UK Biobank as a proxy for the degree of trait polygenicity.
A B

FIGURE 3 | Availability of autoimmune PRS models from Polygenic Score Catalog. (A) Number of available PRS models by trait. (B) Number of available PRS models by
PRS method. Penalized regression: LASSOSUM, snpnet, L1-penalized support vector machine. Weighted sum (susceptibility loci): GWAS significant variants, HLA-specific
significant variants, GWAS fine-mapped variants, and SNPs curated from literatures. LDpred: LDpred and LDpred2.
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AUC that were greater than 0.6 but usually below 0.75. Almost
all PRS models included age, sex, array type (when available),
and genetic principal components as covariates in their models.

In addition to utilizing PRS for predicting disease incidence,
there is also great interest in investigating the association between a
high PRS and disease severity. Reid et al. observed that a high PRS
for SLE was associated with earlier disease onset, increased risk of
organ damage, renal dysfunction, and all-cause mortality (75). Chen
et al. also observed that a high PRS for SLE correlates with poorer
prognostic factors like earlier age-of-onset and lupus nephritis (76).
Oram et al. observed the PRS for T1D predicted progression to
insulin deficiency in diabetic young adults (77). These studies
validate the clinical utility of PRS to identify individuals with high
risk and susceptible to poor outcomes.

The performance of the PRS models should be interpreted
with caution. Most of the PRS models were developed and
evaluated using data from European ancestry populations. Due
to this bias, several studies have reported decreased predictive
performance when applying PRS models from European
ancestry to other ancestries. Wang et al. conducted a GWAS
for SLE using the Chinese population with a sample size that
matches the levels of European studies (78). They developed
Chinese and European specific PRS models, and these ancestry-
matched models significantly outperformed ancestry-
mismatched models by an average ROC-AUC of 0.14.
Similarly, a PRS for T1D developed using a European ancestry
population performed comparably in non-Hispanic European
and Hispanic ancestries (ROC-AUC 0.86 and 0.90 respectively),
but it did not perform as well in African Americans (ROC-AUC
0.75) (79). Following this observation, Onengut-Gumuscu et al.
conducted a GWAS for T1D on African-ancestry participants
and an African-specific PRS model improved prediction (ROC-
AUC 0.87) compared to a European-based PRS model (80).
Privé et al. investigated the portability of PRS models for 245
traits developed using individuals from Northwestern European
ancestry in 9 different ancestry groups (72). Their analysis
included several autoimmune traits: hypothyroidism, T1D,
MS, UC, CD, SLE, and PSO. They observed an overall
significant reduction in the accuracy of PRS models when
applied to individuals from other ancestries and the
performance systematically decreased as the ancestries became
genetically distant from the training data used to train PRS
models. Furthermore, some studies had a small number of cases
in the external validation dataset (less than 100 samples).
Performance metrics like ROC-AUC could be unreliable when
there is a substantial imbalance between cases and controls.
FUTURE DIRECTIONS

GWAStodatehave identifiednumerous loci associatedwithdifferent
autoimmune diseases, most of which have small effect sizes. PRS
enabled by large GWAS have provided an essential tool for early
diagnosis and risk prediction. However, PRS only accounts for a
portion of the genetic contribution, and does not fully capture other
demographic, lifestyle, environmental, and clinical risk factors that
may influence disease risk over time.
Frontiers in Immunology | www.frontiersin.org 7
Besides PRS, it is also important to incorporate other clinical
and demographic variables in the prediction models. For
example, many autoimmune diseases have different prevalence
between sexes, age group, and ancestries (81): CD and UC affect
men and women equally, while SS, SLE, GD, HT, RA, and MS
have a greater incidence in female (17). CD and UC have a high
incidence in Caucasians and Hispanics (82), while GD is more
frequent in the Asian population and less in Sub-Saharan
Africans (83). Lifestyle and environmental features also
modulate autoimmune disease risk. For instance, cigarette
smoking is associated with increased risk of developing GD
(84), SLE (85), RA (86), CD (87), and AS (88), but has shown
to be associated with reduced risk of SS (89), UC (90), and CEL
(91). Other factors like alcohol consumption and exercise habits
also play an important role in the risk of developing autoimmune
disorders (92). Some of these data are included in electronic
health records (EHRs) that are now being adopted worldwide.
EHRs are also a valuable source of patient history and clinical
data, especially measurements for biological features that are
associated with over disease onset. Physical measurements like
blood pressure or body mass index, or serological measurements
of antibodies or protein biomarkers provide a set of
complementary information that we can use to predict the risk
of disease development in addition to genetics. We believe
integration of these factors with PRS could provide further
improvement in estimation of disease risk.

Although limited, efforts are already underway to integrate
clinical risk factors with PRS. Knevel et al. developed genetic
probability tool (G-PROB) to calculate the genetic-probability
(G-probabilities) of multiple related inflammatory arthritis-
causing conditions (rheumatoid arthritis, systemic lupus
erythematosus, spondyloarthropathy, psoriatic arthritis, and
gout) in patients with unexplained joint swelling, as these
patients are often misdiagnosed (10). By jointly analyzing
probabilities from all diseases, their method was able to attain
a reasonable diagnostic accuracy with ROC-AUC of 0.84.
They further observed 35% of the patients were misclassified
at the initial visit. In comparison, in 53% of patients, the
disease with the highest G-probability corresponded to the
final diagnosis. In 77% of patients, the final diagnosis was
within the top two diseases with highest G-probabilities. This
demonstrated that integration of their method with clinical
information could significantly improve differential diagnosis.

Similarly, by combining a PRS of SSC with demographic and
immunological parameters, Castillo et al. increased model
performance by achieving ROC-AUC = 0.787 compared to ROC-
AUC = 0.673 with PRS alone (93). Abraham et al. developed a PRS
for CEL specific to high-risk individuals with HLA-DQ2.5 risk
haplotypes, a marker that is sensitive but not specific (94). The
targeted PRS model (ROC-AUC = 0.718) outperformed a PRS
model that had been constructed to distinguish all CEL patients
(ROC-AUC = 0.679). These studies demonstrate the utility of
integrating additional risk factors with PRS, as it allows
stratification of the population into different risk categories that
will allow better and personalized clinical decision making.

Finally, we have provided a list of routine clinical
biomarkers that are typically screened to help autoimmune
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disease diagnosis (Table 2). Systematic integration of PRS with
routine clinical biomarkers is an important next step for PRS
to become a useful clinical screening tool.
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