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The key characteristic of cardiovascular disease (CVD) is endothelial dysfunction, which is
likely the consequence of inflammation. It is well demonstrated that chemokines and their
receptors play a crucial role in regulating inflammatory responses, and recently, much
attention has been paid to chemokine receptor 5 (CCR5) and its ligands. For example,
CCR5 aggravates the inflammatory response in adipose tissue by regulating macrophage
recruitment and M1/M2 phenotype switch, thus causing insulin resistance and obesity.
Inhibition of CCR5 expression reduces the aggregation of pro-atherogenic cytokines to
the site of arterial injury. However, targeting CCR5 is not always effective, and emerging
evidence has shown that CCR5 facilitates progenitor cell recruitment and promotes
vascular endothelial cell repair. In this paper, we provide recent insights into the role of
CCR5 and its ligands in metabolic syndrome as related to cardiovascular disease and the
opportunities and roadblocks in targeting CCR5 and its ligands.
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INTRODUCTION

Metabolic syndrome (MetS), including obesity, hypertension, hyperglycemia, and dyslipidemia, has
detrimental effects on the endothelium, contributing to the development of cardiovascular diseases
(CVD) (Nikolopoulou and Kadoglou, 2014; Yao et al., 2014). One of the key common central
mechanisms linking all of these diseases is underpinned by an exaggerated inflammatory response
(Lumeng et al., 2007). In recent years, evidence has accumulated that chemokine receptor 5 (CCR5)
and its ligands play a critical role in regulating the inflammatory response. For example, CCR5
aggravates the inflammatory response in mouse adipose tissue by regulating macrophage recruitment
and M1/M2 phenotype switching, thus causing insulin resistance and obesity (Kitade et al., 2012).
Inhibition of CCR5 expression reduces the accumulation of pro-atherogenic cytokines and monocytes
to the site of arterial injury. However, therapies targeting CCR5 and its ligands have not performed
consistently with regard to preventing metabolic syndrome related diseases (Kennedy et al., 2013;
Slominski et al., 2017), indicating that CCR5 and its ligands might play a double-edged role in the
progression of these diseases. More importantly, emerging evidence shows that CCR5 is specifically
expressed in endothelial cells and endothelial progenitor cells (EPCs). CCR5 facilitates progenitor cell
in.org March 2020 | Volume 11 | Article 1461
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recruitment and promotes vascular endothelial repair in a mouse
model (Ishida et al., 2012; Suffee et al., 2012; Zhang et al., 2015b).
Although inhibiting CCR5 expression reduces the inflammatory
response, it also aggravates the endothelial damage, thus
significantly limiting the actual effectiveness of therapeutic
interventions. Therefore, studying the mechanisms of CCR5 and
its ligands that control these processes in the endothelial cells and
the inflammatory response will provide further understanding of
the pathophysiology of cardiovascular disease and may be used to
develop novel pharmacological strategies.
CCR5 AND ITS LIGANDS

CCR5, a member of the guanine nucleotide binding protein (G
protein) coupled receptors (GPCR), has been known as a key
player in HIV-1 entry into target cells from its discovery (Berger
et al., 1999). CCR5 binds and responds to chemokine ligand 3
(CCL3) (Table 1), chemokine ligand 4 (CCL4), and chemokine
ligand 5(CCL5). CCR5 is expressed in macrophages, activated T
cells, natural killer cells, endothelial cells, and EPCs. CCR5
participates in the regulation of proinflammatory response by
modulating the behavior, survival, and retention of immune cells
in tissues (Kohlmeier et al., 2011). In addition, CCR5 can be
expressed in non-immune system cells, notably in astrocytes,
microglia, and neurons, which are involved in neuronal survival
and differentiation (Sorce et al., 2011).

CCL3, also known as macrophage inflammatory protein-a
(MIP-a), is released from activated platelets, mast cells, and
Frontiers in Pharmacology | www.frontiersin.org 2
neutrophils (Weber, 2005; Montecucco et al., 2008). Previous
studies indicated that CCL3 activates neutrophils via the
mediation of firm adherence and the (subsequent)
transmigration of neutrophils as a result of lipid mediator
production. CCL4 is also called macrophage inflammatory
protein-b (MIP-b) and was first isolated from culture medium
containing lipopolysaccharide-activated macrophages. CCL4 can
induce the chemotaxis of different cell types, including natural
killer cells, monocytes/macrophages, and coronary endothelial
cells (Mirabelli-Badenier et al., 2011). The chemotactic activity of
CCL5, initially considered to be a T cell-specific protein that is
stored in and released from various cells, including endothelial
cells, EPCs, monocytes/macrophages and fibroblasts, recruits
activated T cells, NK cells, and basophils to the site of an
inflammatory response (Appay and Rowland-Jones, 2001).
CCR5 AND ITS LIGANDS IN RELATION TO
ENDOTHELIAL FUNCTION

Endothelial cells line the interior surface of all blood vessels and
are involved not only in delivering blood to all vital organs but
also in maintaining the homeostasis of the vasculature. A large
body of evidence has shown that diabetes, ischemia, and
atherosclerosis (Suffee et al., 2012; Zhang et al., 2015b; Ali and
Woodman, 2019) have adverse effects on the endothelium, which
contributes to the development of CVD. One of the key common
central mechanisms linking all of these diseases is based on
exaggerated inflammation. In all cases, the interaction between
TABLE 1 | Summary of data of CCR5 and its ligands, primary source, main effects, and main references.

Gene
name

Expressed by/primary
source

Main effects References

Pro-inflammation Endothelium repair and
angiogenesis

CCL3 Monocytes/macrophages,
T cells, vascular smooth
muscle cells, eosinophils,
coronary endothelial cells,
and platelets.

Mediates the recruitment of
macrophages into the injured site by
binding with its receptor, CCR5.

CCL3 induces the infiltration of
macrophages into the damaged
retina and produces vascular
endothelial growth factor (VEGF) by
binding to CCR5, and eventually
promotes corneal
neovascularization.

Ridiandries et al., 2016; Menten et al., 2002;
DiPietro et al., 1998; Lu et al., 2008.

CCL4 Monocyte, T cells, B
lymphocytes, NK cells,
dendritic cells, vascular
smooth muscle cells, and
neutrophils.

Chemoattractants for immature
dendritic cells and macrophages/
monocytes, attracts macrophages to
destroy islet cells.

Increases VEGF-C expression and
promotes lymph angiogenesis in
oral cancer cells.

Ridiandries et al., 2016; Menten et al., 2002;
Chang and Chen, 2016; Lien et al., 2018.

CCL5 T-cells, epithelial cells and
activated platelets

Mediates the macrophage recruitment
and M1/M2 phenotype switching,
recruits leukocytes and certain natural-
killer cells, promotes smooth muscle
cells phenotypic switching from the
contractile to synthetic phenotype.

CCL5 is pro-angiogenic in the
ischemic tissues and subcutaneous
model, promotes the
revascularization and muscle
regeneration by binding to its
receptor, CCR5.

Suffee et al., 2012; Liu et al., 2014; Zhang et al.,
2015b; Ridiandries et al., 2016; Lin et al., 2018.

CCR5 Monocytes/macrophages,
activated T cells,
endothelial cells,
endothelial progenitor cells
(EPCs), natural killer cells,
astrocytes, microglia, and
neurons.

Promotes infiltration of monocytes/
macrophages to the injured site,
aggravates hepatic steatosis and insulin
resistance, and increases triglyceride
synthesis.

Accelerates the homing of EPCs to
damaged endothelial cells,
promoting endothelial repair or the
formation of neovascularization.

Suffee et al., 2017; Bjerregaard et al., 2019;
Rookmaaker et al., 2007; Potteaux et al., 2006;
Berres et al., 2010; Ishida et al., 2012; Kitade
et al., 2012; Shen et al., 2013; Liu et al., 2014;
Zhang et al., 2015b; Ridiandries et al., 2016;
Perez-Martinez et al., 2018; Yan et al., 2019.
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the endothelium and inflammatory cells plays a key role in the
initiation of the pathological condition.

Previous studies have demonstrated that chemokines can directly
regulate the migration and recruitment of cells to injury sites via
inflammation. All CC-chemokines contain nuclear factor-kappa B
(NF-kB) binding motifs, and their expression is significantly
upregulated under inflammatory conditions (Werts et al., 2007;
Ridiandries et al., 2016). CCL3, CCL4, and CCL5 are upregulated
when induced by an inflammatory stimulus (Laurence, 2006; Zhang
et al., 2015a; Ridiandries et al., 2016). Increased expression of CCL3/
CCL4/CCL5 mediates the arrest and transmigration of monocytes/
macrophages into the damaged endothelium by binding with its
receptor CCR5 (Zhang et al., 2015b; Ridiandries et al., 2016), which is
involved in the inflammatory response to endothelial injury. Blocking
CCR5 alleviated myocardial ischemia–reperfusion injury in rats by
regulating the cardiac inflammatory response (Shen et al., 2013).
CCR5 deficiency could reduce macrophage aggregation into
atherosclerotic plaques in a hypercholesterolemic mouse model
(Potteaux et al., 2006).

In addition to their roles in mediating inflammation, CCL5
has also been shown to play a role in the process of ischemia-
mediated physiological angiogenesis (Suffee et al., 2017;
Bjerregaard et al., 2019) and endothelial repair (Maarten B.
et al., 2007; Zhang et al., 2015b; Yan et al., 2019). CCL5/CCR5
is specifically expressed in endothelial cells and EPCs, and
endothelial cell specific CCR5 is involved in the regulation of
vascular regeneration in ischemic tissues (Suffee et al., 2017).
Administration of CCL5-loaded microparticles could improve
the clinical score of mice after limb injury as well as promote the
revascularization and the muscle regeneration. Yan et al. (2019)
verified that CCR5 expression was upregulated in vascular
endothelial growth factor (VEGF) modified macrophage in
vitro after treatment with VEGF-modified macrophages
therapy accelerated reendothelialization and attenuated
neointima formation in the wire-induced carotid artery injury
mouse model. CCL5 is pro-angiogenic in a rat model of
subcutaneous injury. One in vitro study found that the effects
of CCL5-mediated angiogenesis are at least partially dependent
on VEGF secretion by endothelial cells, as the effects are weaker
when endothelial cells are incubated with anti-VEGF receptor
antibodies (Suffee et al., 2012). According to the leucocyte subset
chemokine expression, patients with age-related macular
degeneration (AMD) of neovascularization have different
responses to anti-VEGF receptor antibody treatment, with
good responders to the anti-VEGF loading dose having higher
CCR1 expression on monocytes and lower CCR5 expression on
CD14+ T cells, indicating that CCR5 may be an effective way to
provide individualized treatment for neovascular AMD
(Bjerregaard et al., 2019).

EPCs, as a kind of precursor cell derived from bone marrow
that can differentiate into endothelial cells, play an important
role in neovascularization during tissue repair (Zhang et al.,
2015b). In a mouse skin injury model, deletion of the CCR5 gene
reduced the accumulation of vascular EPCs and the formation of
neovascularization, and it eventually delayed the healing of
damaged skin. When EPCs carrying the CCR5 gene are
Frontiers in Pharmacology | www.frontiersin.org 3
transferred into CCR5-/- mice, EPCs accumulated at the site of
injury and restored normal neovascularization (Ishida et al.,
2012). CCL5 is involved in the homing of bone marrow-
derived EPCs in glomerular endothelial repair. In a mouse
model of reversible glomerulonephritis, administration of a
CCR5 inhibitor (METRANTES) reduced the participation of
EPCs in glomerular vascular repair (Rookmaaker et al., 2007). In
a hypercholesterolemic ApoE-/- mouse model, overexpression of
CCR5 contributes to the homing of EPCs to damaged endothelial
cells, promoting endothelial repair, improving endothelial
dysfunction, and ultimately stabilizing atherosclerotic plaques
(Zhang et al., 2015b).

CCR5 and its ligands play an important role in regulating tissue
angiogenesis, but the exact mechanism is still unclear. A study (Liu
et al., 2014) on human chondrosarcoma cells revealed that
pretreatment with a phosphatidylinositol 3-kinase (PI3K)
inhibitor repressed the VEGF production and angiogenesis
induced by CCL5/CCR5, suggesting that the PI3K-dependent
pathway plays a crucial role in CCL5/CCR5-mediated angiogenesis.

In addition to CCL5, CCL3 and CCL4 are also involved in the
process of revascularization. In alkali-induced corneal
neovascularization of mouse models, CCL3 could induce the
infiltration of macrophages into the damaged retina and the
production VEGF by binding to CCR5, eventually promoting
corneal neovascularization (Lu et al., 2008). Anti-CCL3
antiserum has been shown to decrease angiogenic activity in a
murine wound repair model (DiPietro et al., 1998). CCL4 was
proven to increase VEGF-C expression and promote
lymphangiogenesis in oral cancer cells (Lien et al., 2018).
CCR5 AND ITS LIGANDS IN METABOLIC
SYNDROME

Obesity
Obesity is characterized as low-grade systemic or chronic
inflammation that is associated with an increased incidence of
metabolic syndrome, cardiovascular disease, and tumor (Despres
and Lemieux, 2006; Nikolopoulou and Kadoglou, 2014).
Excessive fat tissue expansion triggers the secretion of
cytokines and chemokines (Brownlee, 2005), which in turn
attract various leukocytes, leading to fatty tissue inflammation.

The exact role of CCR5 and its ligands in the pathogenesis of
obesity is still obscure, but there are several studies that have
continuously reported this finding (Yao et al., 2014). Gao et al.
(2015) noted that phosphatidyl-ethanol-amine-N-methyl
transferase-deficient mice were resistant to high fat diet-
induced obesity. This may result from decreased expression of
CCL5. Similarly, Pisano et al. (2017) found that weight gain in
patients on antipsychotics is associated with the extent of CCL5
expression. CCL5, as a neuroendocrine element, modulates food
intake and body temperature of C57BL/6 mice through
unidentified receptors in the hypothalamus (Chou et al., 2016),
thus affecting the body weight. In a high-fat diet-induced obese
mouse model (Kitade et al., 2012), CCR5 plays a critical role in
adipose tissue macrophage recruitment and polarization.
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Deletion of CCR5 reduces the transition of macrophages from
the pro-inflammatory M1 phenotype to the anti-inflammatory
M2 phenotype and ameliorated obesity-induced insulin
resistance. This observation is consistent with previous studies
that have indicated that CCR5 could directly induce the
transition of the M1/M2 phenotype by modulating the
alteration of Ly6C high and Ly6C low monocyte subsets
(Soehnlein et al., 2013; Huh et al., 2018); further studies are
required to clarify the details of this mechanism.

Hyperglycemia
CCR5 and its ligands have been shown to be associated with the
pathogenesis of both type 1 diabetes mellitus (T1DM) and type 2
diabetes mellitus (T2DM). As we know, the main pathological
mechanism of T1DM is the pancreatic islet b-cell death
(Ashcroft and Rorsman, 2012). CCL4 is upregulated in the islet
autoantibody-positive T1DM patients and relatives at high risk
of developing T1DM, and increased expression of CCL4
aggravates b-cell death and early islet graft loss by stimulating
the trafficking of macrophages into injured pancreatic islets
(Hanifi-Moghaddam et al., 2006). Moreover, the extracellular
regulated protein kinases and NF-kB pathway may be involved in
the process of CCL4 production by stimulating CD40-CD40L
interaction in human pancreatic islets (Barbe-Tuana et al., 2006).

In patients with diabetes, CCL5 and CCR5 are upregulated in
the peripheral blood (Slominski et al., 2019; Inayat et al., 2019).
Exogenous insulin supplementation may reduce concentrations
of CCL5 in patients with newly diagnosed type 2 diabetes
compared with the control subjects (Bogdanski et al., 2007).
Epidemiological studies have indicated that CCR5 promoter
function mutation (CCR5 59029 G to A alteration) could be a
susceptibility factor for type 2 diabetes and the CCR5 59029 A
positive genotype increased the risk for type 2 diabetes
(Kochetova et al., 2019). The exact mechanism of CCR5 gene
mutation and the pathogenesis of type 2 diabetes are still unclear.
Since the metabolic hallmark of type 2 diabetes is insulin
resistance, previous studies have shown that CCR5 gene
knockout in mice could prevent insulin resistance and diabetes
induced by a high-fat feeding. The beneficial effects of CCR5
deficiency were correlated with reduced recruitment and the M2-
dominant shift of macrophages in adipose tissues (Kitade et al.,
2012). However, this finding is contrary to Chou et al’ s studies,
which suggested that the CCR5 gene knockout in mice impairs
the regulation of energy metabolism in the hypothalamus (Chou
et al., 2016). Both in vitro tissue culture and ex vivo stimulation
studies indicated that the activation of PI3K-Akt pathways and
insulin signaling were impaired in the hypothalamus of CCR5
knockout mice. METRANTES, a CCR5 antagonist, abolished the
dephosphorylation of insulin receptor substrates-1 (IRS-1)S302

and insulin signal activation. In addition, intracerebroventricular
delivery of the CCR5 antagonist interrupted hypothalamic
insulin signaling and led to glucose intolerance. In summary,
CCR5 may be involved in the pathogenesis of type 2 diabetes
through mediating insulin resistance and hypothalamic insulin
signaling regulation. However, there are still many unanswered
questions about the exact effect of CCR5 in the pathogenesis of
Frontiers in Pharmacology | www.frontiersin.org 4
type 2 diabetes. Additional research is needed in the future to
confirm this conclusion.

Microvascular complications are the leading cause of death in
diabetic patients. The recruitment of leukocytes to kidney tissue
during T2DM is an early event in the pathogenesis of diabetic
kidney disease (DKD). CCR5 mRNA was faintly detected in
the normal tubulointerstitial compartment tissue (Mezzano et al.,
2003). After the high glucose treatment, CCR5 expression was
upregulated in the tubulointerstitial compartment during the
process of diabetes. Since CCL5/CCR5 participates in the
formation of inflammatory infiltrates during glomerulonephritis,
inhibition of CCR5 exerts renal protection during early
glomerulonephritis through its anti-inflammatory properties
(Turner et al., 2008). The correlation between the CCR5 gene and
the risk of DKD is conflicting and inconclusive. An oral CCR2/
CCR5 antagonist (PF-04634817) slightly reduced albuminuria in
adults with DKD (Gale et al., 2018). However, in ob/ob mice,
treatment with a dual CCR2/CCR5 antagonist (MK-0812) showed
no protective effect on DKD (O'Brien et al., 2017). Although adipose
tissue inflammation was decreased in this mouse model, the
improvement was insufficient to overcome the metabolic
imbalances of type 2 diabetes. The mutations in the CCR5 gene
promoter region (CCR5 59029 G to A alteration) and deletion of 32
nucleotides (CCR5-D32) lead to genetic inactivation of CCR5 (Nazir
et al., 2014). Previous studies have found that CCR5-59029 G/A was
an independent risk factor for DKD (Yahya et al., 2019). The CCR5
59029A-positive genotype was correlated with an increased risk for
albuminuria (Zhang et al., 2016). Mlynarski et al. (2005) showed
that the CCR5-D32 mutation increased the risk of kidney disease in
men with type 1 diabetes; however, this outcome is contrary to that
of Prasad et al. (2007) who found that CCR5-D32 was not related to
nephropathic type 2 diabetes patients. Skrzypkowska et al. (2019)
even indicated that 32 allele-bearing individuals exhibit more
beneficial values of kidney function parameters. Specifically, the
wt/Δ32 and Δ32/Δ32 carriers exhibited a higher number of
CD34+VEGFR2+ and CD34+VEGFR2+c-Kit+ cells than that in the
wild type counterparts.

In addition, CCR5-D32 gene mutation was associated with
retinopathy in patients with type 1 diabetes. Previous studies
indicated that tumor necrosis factor (TNF)-a, vascular cell
adhesion molecule (VCAM)-1, and intercellular cell adhesion
molecule (ICAM)-1 were upregulated in diabetic patients with
CCR5-D32 carriers (Joussen et al., 2002; Slominski et al., 2017).
TNF-a plays a major role in the degeneration of retinal
capillaries. Since ICAM-1 is the primary adhesion molecule
involved in the pathogenesis of diabetic retinopathy (DR), the
elevated level of ICAM-1 may facilitate the recruitment of
leukocytes into the damaged retina (McLeod et al., 1995).
Thus, the mutation of CCR5 gene (CCR5-D32) in the retina
may lead to upregulating expression of other cytokines that
exacerbate retinal damage.

Dyslipidemia
Diabetes is often accompanied by dyslipidemia as a result of
insulin resistance. Dyslipidemia has been demonstrated to be
detrimental to diabetes microvascular and macrovascular
March 2020 | Volume 11 | Article 146
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complicat ions (Cooper and Jandele i t -Dahm, 2005;
Margeirsdottir et al., 2008).

Clinical research has shown that the expression levels of CCL5
and CCR5 were increased in the subcutaneous adipose tissue of
obese individuals in comparison with those in the lean population,
which could be reduced back to the normal levels through physical
exercise (Baturcam et al., 2014). One study (Kim et al., 2018)
reported that ultraviolet irradiation of human sun-protected
subcutaneous fat in vitro could induce CXCL5 and CCL5
production; CCL5 treatment dose-dependently reduced
triglyceride (TG) content and downregulated the expressions of
acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl
CoA desaturase (SCD), and sterol regulatory element-binding
protein-1(SREBP-1) in human adipocytes. The changes could be
reversed when the CCL5 receptor, the CCR5 gene, is deleted,
suggesting that CCL5 impairs the synthesis of TG by reducing the
expression of SREBP-1 and lipogenic enzymes through binding to
its receptor, CCR5. In a nonalcoholic fatty liver disease mouse
model, treatment with a CCR5 antagonist, maraviroc, could
ameliorate hepatic steatosis via downregulation of dietary lipid
absorption or de novo lipogenesis (Perez-Martinez et al., 2018).
This also accords with Kitade et al.’s (2012) earlier observations,
which showed that the deletion of the CCR5 gene reduced the
content of TG and the lipogenic genes expression in mice. Similarly,
Berres et al. (2010) even found that the administration of CCR5
antagonist markedly ameliorated hepatic fibrosis and accelerated
fibrosis regression inmousemodels of liver fibrosis. Epidemiological
research (Hyde et al., 2010) has also shown that there was a
significant positive correlation between the CCR5-D32 mutation
and elevated serum high-density lipoprotein cholesterol (HDL) and
reduced serum TG, both of which are beneficial from a
cardiovascular perspective.

In addition to endothelial cells, dyslipidemia could drive the
phenotypic modulation of smooth muscle cells (SMCs) and
cause SMCs phenotypic alteration from the physiologically
contractile to the pathophysiologically synthetic phenotype.
CCR5 and CCL5 play crucial roles in the phenotypic
modulation of SMCs. In HFD fed mouse model, the CCR5 and
CCL5 gene knockouts showed significantly decreased levels of
serum lipids and increased expressions of the SMCs contractile
phenotype in the thoracoabdominal aorta as compared with the
levels observed in wild-type mice. In vitro, CCL5 treated human
aorta derived SMCs could induce cell proliferation and promote
the phenotypic switching from the contractile to the synthetic
phenotype (Lin et al., 2018).

Hypertension
Hypertension is an important risk factor for the development of
cardiovascular diseases (Perticone et al., 2004). Previous studies
have shown that angiotensin II (Ang II) promotes the infiltration
of T cells and monocytes into perivascular adipose tissues
(pVAT) (Mikolajczyk et al., 2016). Subsequent studies have
demonstrated that the activation and recruitment of T cells
and monocytes into pVAT is very important in the
pathogenesis of renin-angiotensin system (RAS)-dependent
hypertension (Guzik et al., 2007).
Frontiers in Pharmacology | www.frontiersin.org 5
CCL5 is produced by several tissues that contribute to the
regulation of the vasoconstriction and diastolic function, such as
the vascular endothelium, vascular smooth muscle (Jordan et al.,
1997), glomeruli (Wolf et al., 1997), renal tubules (Wada et al.,
1999), and the central nervous system (Gouraud et al., 2011).
CCL5 expression is upregulated in the aorta and pVAT during
RAS-dependent hypertension. Previous studies have shown that
there is a significant positive correlation between CCL5
expression and blood pressure in the Ang II-induced
hypertension mouse model (Mikolajczyk et al., 2016). CCL5
could enhance the genesis of perivascular inflammation, thus
affecting the development of hypertensive vascular dysfunction.
The deletion of CCL5 reduces the infiltration of leukocytes and T
lymphocytes into pVAT and importantly, this is independent of
blood pressure changes.

Furthermore, the effects of CCL5 signaling on hypertensive
organ damage appear to be tissue-and context-dependent. For
example, CCL5 and CCR5 are possibly involved in the
pathogenesis of pulmonary arterial hypertension (PAH). CCL5
can be released from endothelial cells and perivascular fibroblasts.
Anti-endothelial cell antibody (AECA)-positive systemic sclerosis
patients are associated with an increased risk of PAH, which may
result from the increased CCL5 expression induced in endothelial
cells by the stimulation with AECA. CCR5 is expressed in the
macrophages, pulmonary artery endothelial cells, and pulmonary
artery smooth muscle cells. Inhibition of CCR5 expression in mice
model decreased perivascular macrophages recruitment and the
proliferation of pulmonary-artery smooth muscle cell during
hypoxia exposure (Mamazhakypov et al., 2019). However, this
finding is contrary to previous studies which have suggested that
CCL5 plays an important protective role in hypertension-induced
renal injury. In the angiotensin II-induced hypertension mice
model, CCL5 gene deficiency exhibited markedly aggravation of
kidney damage, macrophage infiltration, and proinflammatory
cytokine expression, which led to the aggravation of urinary
albumin excretion (Rudemiller and Crowley, 2017). This may be
explained by the blockade of one chemokine leading to the
upregulated expressions of other cytokines that exacerbate RAS-
dependent hypertension, as CCL2 blockade abrogates the enhanced
renal macrophage infiltration and interstitial fibrosis in CCL5-
deficient mice (Mikolajczyk et al., 2016; Rudemiller et al., 2016).

Atherosclerosis
Atherosclerosis is characterized by the accumulation of lipids,
immune cells, and cell debris in the vessel wall, which form
atherosclerotic lesions that can grow over time and eventually
occlude the blood vessels, leading to ischemia and angina
(Halvorsen et al., 2015; Pothineni et al., 2017). As a chronic
inflammatory disease, atherosclerosis is associated with many
chemokines and chemokine receptors (Zhang et al., 2015b;
Andersen et al., 2019; Van der Vorst et al., 2019).

In recent years, much attention has been focused on the role of
CCR5 and its ligands, which is crucial in the context of
atherosclerosis initiation and progression (Pai et al., 2006; Afzal
et al., 2008; Zhang et al., 2015a). CCR5 is expressed in the
endothelial cells, monocytes/macrophages, and leukocytes
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(Soehnlein et al., 2013). CCL5 may be released from activated
platelets and T cells. During the progression of atherosclerotic
disease, CCR5 and CCL5 proteins are faintly detected when there
are no visible atherosclerotic plaques and are highly expressed in
the stable plaques and advanced unstable plaques (Zhang et al.,
2015b). Activated platelets release CCL5 (Gleissner et al., 2008),
transferring CCL5 to the surface of injured endothelial cells and
leading to increased monocyte/macrophage and leukocyte
adhesion to the atherosclerotic vascular wall by binding with its
receptor, CCR5 (Soehnlein et al., 2013; Zhang et al., 2015b), both
of which are adverse effects from a cardiovascular perspective. The
deletion of the CCR5 gene in apolipoprotein E-deficient (ApoE-/-)
mice has a protective effect on diet-induced atherosclerosis and
reduces the infiltration of mononuclear and Th1 type immune
response. CCR5 is also associated with a more stable plaque
phenotype (Braunersreuther et al., 2007). Administration of the
CC chemokine antagonist METRANTES (Veillard et al., 2004) or
treatment with [44AANA47]-RANTES (Braunersreuther et al.,
2008) inhibits the progression of atherosclerosis in a
hyperlipidemic mouse model. This inhibition of lesions is
associated with reduced infiltration of leukocytes into plaques
and increased content of smooth muscle cells and collagen
content, indicating a more stable plaque phenotype. Systemic
CCL5 deficiency in ApoE-/- mice was found to cause reduced
neointima formation after carotid artery injury (Czepluch et al.,
2016). The atheroprotective effect of CCL5 deficiency might be
mediated by the upregulation of kruppel-like factor 4 expression
in smooth muscle cells. For HIV-infected patients, treatment with
a CCR5 antagonist (Maraviroc) could significantly improve
endothelial dysfunction, arterial stiffness, and early carotid
atherosclerosis (Francisci et al., 2019). Matrix metalloproteinases
(MMP) are involved in the vascular remodeling and
immunomodulation during the process of atherosclerosis
(Clemente et al., 2018). Studies have demonstrated that mice
deficient for MT4-MMP have higher numbers of patrolling
monocytes/macrophages adhered to inflamed endothelial cells,
leading to larger lipid deposits in atherosclerotic plaques.
Interestingly, these effects could be reversed by CCR5 inhibition
(Clemente et al., 2018). However, epidemiological studies have
shown that the association between CCR5 gene mutation and the
risk of atherosclerosis-related diseases is conflicting and
inconclusive. Previous studies have found that CCR5-D32 allele
bearing individuals exhibit more beneficial values of
cardiovascular function parameters (Pai et al., 2006; Afzal et al.,
2008; Hyde et al., 2010). There was a significant positive
correlation between CCR5-D32 allele bearing individuals and
reduced susceptibility to CVD (Afzal et al., 2008) or
development of CVD in a North Indian population (Pai et al.,
2006). This may be due to CCR5 deficiency affecting lipid
metabolism (Hyde et al., 2010). CCR5-D32 was significantly
associated with higher levels of HDL-C and lower levels of TG,
both of which are beneficial from a cardiovascular perspective.
However, this outcome is contrary to those of Sharda et al. (2008)
and Apostolakis et al. (2007) who found that there was no
significant difference between the CCR5-D32 and the risk of
CVD. Zhang et al. (2015a) even indicated that the CCR5-D32
Frontiers in Pharmacology | www.frontiersin.org 6
increased the risk of atherosclerotic disease in Asian population
(Zhang et al., 2015a). Moreover, previous studies have reported
that a CCR5 gene promoter region mutation (CCR5-59029 G/A)
was an independent risk factor for CVD (Simeoni et al., 2004;
Vogiatzi et al., 2009). The CCR5 59029A-positive genotype was
correlated with an increased risk of acute coronary syndrome
(Ting et al., 2015). Considering that the role of CCR5 gene
mutation in the risk of CVD is controversial, further studies
with more focus on the association is therefore suggested.

In addition to CCL5, CCL3 and CCL4 have also been reported
to participate in the process of atherosclerosis. CCL3 was highly
expressed in atherosclerotic plaques, and the treatment with
atorvastatin alleviated atherosclerotic lesions through inhibition
of the 5-Lipoxygenase pathway and downregulation of CCL3
expressions in an atherosclerotic mouse model (Yang et al.,
2013). CCL4 was also upregulated in vulnerable atherosclerosis
plaques and was expressed by T cells in advanced atherosclerotic
lesions in stroke patients (Montecucco et al., 2010). Studies has
been conducted in a cohort of hypertensive patients for an average
follow-up period of 37.2 ± 19.9 months; the result found that
elevated serum CCL4 levels is an independent predictor of stroke
and cardiovascular events (Tatara et al., 2009).
DISCUSSION

It is generally assumed that CCR5 and its ligands play a critical
role in promoting inflammation by recruiting immune cells, such
as monocytes and T cells. They may contribute to insulin
resistance by M1/M2 phenotype switching of macrophages that
infiltrate adipose tissues (Kitade et al., 2012). On the one hand, an
impaired insulin signal via PI3K-Akt directly reduces endothelial
NO synthase (eNOS) activation (Rask-Madsen and King, 2007),
leading to endothelial dysfunction. On the other hand, long-term
exposure of endothelial cells to high levels of glucose induces
cellular dysfunction (Brownlee, 2005) and production of CCR5
and its ligands (Li et al., 2013). Adipokines, primarily adiponectin
and TNF-a, secreted by fat tissue, also contribute to endothelial
damage (Rask-Madsen and King, 2007), which is regarded as the
initiation of cardiovascular diseases. CCR5 seems to be associated
with endothelial dysfunction via proinflammatory activity (Figure
1A) (Yao, et al., 2014).

However, therapies targeting CCR5 and its ligands are not
always satisfactory. Populations with CCR5-D32 are not
consistently protected from diabetes and its complications.
Deletion of CCR5 or treatment with a CCR5 antagonist in mouse
model did not always reverse the inflammatory status in metabolic
syndrome. One possible explanation may be that blockade of one
chemokine leads to the upregulated expressions of other cytokines
that exacerbate cellular dysfunction and inflammation. Another
explanation may point to the potential therapeutic effect role of
CCR5 in endothelial repair. The macrophages recruited by CCR5
may release various pro-angiogenic factors, including VEGF, basic
fibroblast growth factor (bFGF), and platelet derived growth factor
(PDGF) (Figure 1B) (Ridiandries et al., 2016). In addition, CCR5
facilitates the recruitment of EPCs into injured vessels and enhances
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endothelial regeneration, which may also explain the genetic
inactivation of CCR5 as an independent risk factor for DR and
DKD (Slominski et al., 2017).

CCR5 is a double-edged sword for metabolism-related
cardiovascular diseases, which may result from the patients
with varying degrees of damage at different growth stages. In
addition, the specificity of populations and organs should also be
taken into consideration. Further studies are required to clarify
the details of the mechanism.
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