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Abstract
Identification of glomerular lesions and structures is a key point for pathological diagnosis, treatment instructions,
and prognosis evaluation in kidney diseases. These time-consuming tasks require a more accurate and reproducible
quantitative analysis method. We established derivation and validation cohorts composed of 400 Chinese patients
with immunoglobulin A nephropathy (IgAN) retrospectively. Deep convolutional neural networks and biomedical
image processing algorithms were implemented to locate glomeruli, identify glomerular lesions (global and segmen-
tal glomerular sclerosis, crescent, and none of the above), identify and quantify different intrinsic glomerular cells,
and assess a network-based mesangial hypercellularity score in periodic acid–Schiff (PAS)-stained slides. Our frame-
work achieved 93.1% average precision and 94.9% average recall for location of glomeruli, and a total Cohen’s kappa
of 0.912 [95% confidence interval (CI), 0.892–0.932] for glomerular lesion classification. The evaluation of global,
segmental glomerular sclerosis, and crescents achieved Cohen’s kappa values of 1.0, 0.776, 0.861, and 95% CI of
(1.0, 1.0), (0.727, 0.825), (0.824, 0.898), respectively. The well-designed neural network can identify three kinds
of intrinsic glomerular cells with 92.2% accuracy, surpassing the about 5–11% average accuracy of junior patholo-
gists. Statistical interpretation shows that there was a significant difference (P value < 0.0001) between this analytic
renal pathology system (ARPS) and four junior pathologists for identifying mesangial and endothelial cells, while
that for podocytes was similar, with P value = 0.0602. In addition, this study indicated that the ratio of mesangial
cells, endothelial cells, and podocytes within glomeruli from IgAN was 0.41:0.36:0.23, and the performance of
mesangial score assessment reached a Cohen’s kappa of 0.42 and 95% CI (0.18, 0.69). The proposed computer-aided
diagnosis system has feasibility for quantitative analysis and auxiliary recognition of glomerular pathological fea-
tures.
© 2020 The Authors. The Journal of Pathology published by JohnWiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Chronic kidney disease (CKD) has become a significant
public health problem in the world [1,2]. IgA nephropa-
thy (IgAN) is the leading cause of CKD worldwide,
especially in Asian regions, with up to 30–40% of
patients developing end-stage renal disease (ESRD)
within 10–25 years [3,4]. Renal pathology provides the
most important reference for diagnosis, treatment
instructions, and prognosis evaluation of kidney dis-
eases. Patients with IgAN have varied clinical presenta-
tions and histological lesions, ranging from mild
mesangial proliferation, endocapillary hypercellularity,

crescentic glomerulonephritis, to global and segmental
sclerosis. All of these should be described in pathology
reports [5]. The 2016 Oxford Classification of IgAN
considers mesangial hypercellularity (M), endocapillary
hypercellularity (E), segmental glomerular sclerosis (S),
interstitial fibrosis and tubular atrophy (T), and crescents
(C) [6]. Several studies have indicated that the ‘MSTC’
score provides a prediction of prognosis, and guides
management decisions in patients with IgAN [6–13].
At present, these complex pathological features are
mainly evaluated by manual quantitative evaluation,
which is time-consuming and laborious with subjective
variations. Due to the heavy workload of pathologists,
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requirements for automatic identification and quantita-
tive analysis have become more and more urgent.
In recent years, much effort has been made to locate

glomeruli or glomerular structures (Table 1) [14–25].
Among these methods, deep convolutional neural net-
works (CNNs) have produced inspiring results, and are
widely used for auxiliary diagnosis in whole-slide images.
Sarder et al addressed the glomerulus location task
through image processing algorithms, and obtained
87.8% accuracy on 15 slides [22]. Studies based on hand-
crafted feature extraction techniques [15,16] obtained an
�87% F1 score, while those based on CNN-based
methods mostly stand at more than 90%. Due to the diver-
sity of stain qualities and pathological features, fixed
handcrafted feature extractor and color threshold-based
methods cannot obtain superior results compared with
strong, robust deep neural networks. Hermsen et al [25]
obtained comprehensive results from renal tissue stained
with periodic acid–Schiff (PAS) to segment glomeruli,
tubules, and interstitium using five ensembling U-Nets,
which was the first attempt at multi-class segmentation
of PAS-stained nephrectomy samples and transplant
biopsies. Since the number of glomerular lesions provides
diagnostic information, prognosis prediction, and guides
management decisions in patients with CKD, it is crucial
to develop models for glomerulus classification. To
address this issue, researchers such as Ginley et al [23]
developed CNN models with a long short-term memory
(LSTM) layer to classify five different types of glomeruli
in diabetic nephropathy (DN), while others [21,28–30]
aimed to distinguish sclerotic glomeruli, normal glomer-
uli, and non-glomeruli [31].

In computer-aided diagnosis, the amount of data is a
crucial factor for model evaluation. Although some pre-
vious studies have used a moderate number of rat renal
biopsy samples, research on human renal biopsy sam-
ples is still insufficient (shown in Tables 1 and 2). In this
study, we aimed to establish an analytic renal pathology
system (ARPS) to identify the basic lesions and patho-
logical changes in IgAN by employing deep learning
methods on a large number of whole-slide images
(WSIs). To address this issue, our work was divided into
the following subtasks: (1) detect the glomeruli within
the WSI; (2) distinguish glomeruli with global glomeru-
lar sclerosis (GS), segmental glomerular sclerosis (SS),
crescents (C), and none of the above (NOA); (3) identify
the intraglomerular structures including intrinsic glo-
merular cells (M: mesangial cells; E: endothelial cells;
P: podocytes), mesangial area, and glomerulus parame-
ters (glomerular diameter, proportion of the three types
of intrinsic glomerular cells); and (4) apply ARPS to
automatic mesangial score (M score) evaluation in
IgAN. The convolutional neural networks implemented
in this paper consist of U-Net, DenseNet, LSTM-GCNet,
and 2D V-Net. All of these architectures receive images
with labels, and output the corresponding predictions. U-
Net [33], consists of several contracting paths to capture
context and symmetric expanding paths which enable
precise segmentation and location. Due to its outstand-
ing performance, many researchers have employed this
architecture to tackle the bio-medical image segmenta-
tion task [34,35]. Based on these approaches, we applied
it with structural similarity loss to segment the glomeruli
from the WSIs, followed by a glomerular lesion

Table 1. Previous work on location of glomeruli and the performance obtained.
Source Data/slide Approach Performance

Temerinac-Ott et al [14] Train: 16
Test: 4

Mutual information + CNN 68.94% F1

Kato et al [15] Train: *
Test: 20

S-HOG + SVM 86.6% F1

Marée et al [16] Total: 200 Ellipsoidal shape + decision tree 87% F1
Gadermayr et al [17] Total: 24 U-Net 90% Dice
Gallego et al [18] Total: 40 AlexNet 93.7% F1 (pixel-wise)
Sheehan et al [19] Total: 90 AlexNet + SVM 92% recall, 90% specificity
Bukowy et al [20] Train: 72

Test: 13
Faster RCNN 96.9% precision, 96.8% recall

Bueno et al [21] Train: 38
Test: 9

SegNet-VGG19 99.8% precision, 99.2% F1
(pixel-wise)

Sarder et al [22] Train: *
Test: 15

Gabor filters 87.8% accuracy

Ginley et al [23] Train: 41
Test: 13

DeepLab v2 93% accuracy

Simon et al [24] Train: 25
Test: 9

Multi-radial LBP + SVM 90.4% precision, 76.7% recall

Hermsen et al [25] Train: 37
Test: 3

5 U-Nets ensemble 79% Dice

Comparison I Train: 360
Test: 40

U-Net 89.2% precision, 90.6% recall
Comparison II U-Net-SSIM 91.4% precision, 92.1% recall
Comparison III Mask R-CNN [26] 88.1% precision, 92.3% recall
Comparison IV FCOS [27] 91.7% precision, 92.8% recall
APRS U-Net-SSIM + marked watershed 93.1% precision, 94.0% F1

94.9% recall, 90.1% Dice

*Not mentioned. Dice, dice coefficient; F1, F1 score.
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classifier. Densely connected convolutional neural net-
work (DenseNet [36]) alleviates vanishing-gradient
problem and strengthens feature reuse and propagation,
as well as reducing the quantity of parameters. Global
context block and squeeze-excitation block [37] were
proposed in 2019 to assist the attention focusing mecha-
nism in natural image classification tasks. Here, we
introduce this approach with a long short-term memory
(LSTM) layer to tackle the bio-medical image fine-
grained classification task, named LSTM-GCNet. In
the final position, a 2D V-Net [38] with self-attention
module and center channel is presented so as to identify
intrinsic glomerular cells, since the residual block can
reduce the number of parameters while the center chan-
nel produces the center of each intrinsic cell. Moreover,
image processing algorithms such as marked watershed
were implemented to detect the glomerular structures.

Materials and methods

An outline of our scheme is shown in Figure 1. Given an
input WSI, the glomeruli are first segmented through the
location model, followed by glomerular lesion identifi-
cation and decomposition of glomeruli. The proposed
method mainly consists of five parts, including prepara-
tion of specimens, annotation details, convolutional neu-
ral network design and training strategies, workflow
demonstration, and evaluation metric illustration (shown
in supplementary material, Supplementary materials and
methods). The algorithm is developed on PyCharm
Community v2019.3.4 and TensorFlow v1.14

(TensorFlow: Large-scale machine learning on hetero-
geneous systems, 2015; software available from https://
www.tensorflow.org).

Specimen preparation
This study strictly followed the tenets of the Declaration
of Helsinki, and was approved by the Ethics Committee
of the Jinling Hospital (2019NZGKJ-101). We selected
in total 400 IgAN patients who underwent renal biopsy
between 2016 and 2018 in the National Clinical
Research Center of Kidney Diseases, Jinling Hospital.
Renal biopsy tissues were processed using the standard
techniques of light microscopy (LM) and were scanned
by a Leica Aperio ScanScope AT Turbo (Leica, Wetzlar,
Germany) under 400×magnification. We selected slides
showing crescents from asmany cases as possible for the
training model. The clinicopathological data of 400
patients are shown in Table 3.

Annotation details
Annotations of glomeruli were provided by three experi-
enced junior pathologists through labeling along the
outer margin of the glomerular capsule and their subcat-
egories (global sclerosis, segmental sclerosis, crescent,
etc.) using Aperio Image Scope software (Leica). These
annotations were then checked by three senior patholo-
gists. Glomerular sclerosis is defined as the obliteration
of capillary lumen by increased extracellular collage-
nous matrix. Definitions of different classes can be
described as global glomerular sclerosis (GS, sclerosis
involving 100% of the tuft), segmental glomerular

Table 2. Previous work on glomerulus classification and intrinsic cell recognition and performance obtained.
Glomerulus classification

Source Approach Data/glomeruli Class Performance

Chagas et al [31] CNN + SVM Total: 811 4 82.0% accuracy
81.9% F1 score

Ginley et al [23] RNN Total: 1989 5 Cohen’s kappa 0.55
Barros et al [30] LoG + kNN Total: 811 3 88.3% accuracy
Jayapandian et al [32] CNN Total: 146 2 82.5% accuracy
Marsh et al [28] CNN + FCN Total: 3867 2 84.8% F1 score
Kannan et al [29] Inception v3 Total: 1496 3 92.4% accuracy
Bueno et al [21] AlexNet Total: 1245 3 98.2% accuracy

99.4% F1 score
Comparison I ResNet50 Train: 10 935

Test: 1483
5 84.9% accuracy

Comparison II Inception-ResNet-v2 85.9% accuracy
Comparison III DenseNet 87.1% accuracy
Comparison IV ResNeXt-50 84.9% accuracy
APRS DenseNet +

LSTM-GCNet
92.8% accuracy
Cohen’s kappa 0.91

Intrinsic glomerular cell recognition
Source Approach Data/glomeruli Class Performance
Ginley et al [23] DeepLab v2 Train: 616

Test: 22
1 (RC) 94% sensitivity

93% specificity
Sarder et al [22] Threshold + morphology Train: *

Test: 50
1 (RC) 92.3% accuracy

ARPS CI 2D V-Net Train: 300
Test: 160

3(M, E, P) 89.4% accuracy
ARPS CII 2D Attention V-Net 3(M, E, P) 90.8% accuracy
APRS 2D Attention V-Net-center 3(M, E, P) 92.2% accuracy

*Not mentioned. RC, regardless of category.
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sclerosis (SS, sclerosis involving a portion of the glo-
merular tuft), crescent (C, containing more than two
layers of cells within Bowman’s space, often with fibrin
and collagen deposition); a glomerulus with mild to
moderate or severe mesangial proliferation without any
sclerosis and crescent is defined as none of the above
(NOA). Furthermore, each intrinsic glomerular cell was
annotated by three senior pathologists who either have
worked for more than 10 years, signing about 1600 renal
biopsy reports per year and participating in the study of
the Oxford Classification of IgAN and further research
on crescents [6,39]. The hypercellularity score was
defined as when any mesangial area within the glomeru-
lus had no fewer than four mesangial cells. Simplifica-
tion of the mesangial hypercellularity score is defined

as M1, when more than half of non-sclerosing glomeruli
within a slide appeared with mesangial hypercellularity,
and M0 otherwise. All of the conflicted cases were care-
fully discussed by three senior pathologists to reach a
consensus. Inter-observer agreement evaluation was
conducted for glomeruli and intrinsic cells. Assuming
each senior pathologist would not miss a target without
considering its types, we treated the coherence assess-
ment of the detection task as that of a sequential classifi-
cation task. The Kendall correlation coefficient (KCC)
between three senior pathologists for intrinsic cells was
high (Kendall’s W = 0.891, Fleiss’ kappa = 0.89,
p < 0.0001) and that for glomerular lesions was compa-
rable (Kendall’s W = 0.768, Fleiss’ kappa = 0.733,
p < 0.0001).

Figure 1. Workflow of the automatic detection model. The entire workflow is demonstrated in this figure, including glomerulus location,
lesion identification, and glomerulus decomposition. Each glomerulus is divided into NOA, SS, GS, and C, followed by the NOA decomposition,
which can identify intrinsic glomerular cells and evaluate the mesangial hypercellularity score automatically.
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Convolutional neural network design and training
strategies
Details of our proposed neural network and train strate-
gies are shown in supplementary material, Supplemen-
tary materials and methods.

Workflow demonstration
The workflow (shown in Figure 1) of ARPS includes four
continuous components: (1) slide preprocessing, including
ROI (region of interest) orientation and patch extraction;
(2) location of glomeruli; (3) identification of glomerular
lesions; and (4) decomposition of glomeruli, including rec-
ognition of intrinsic glomerular cells, mesangial region
extraction, and M-score assessment.

The whole-slide pathological images range in size
from 20 000 × 30 000 to 50 000 × 70 000 pixels, and
cannot be trained directly due to hardware limitations.
In total, 41 000 patches with a size of 1024 * 1024 and
the corresponding semantic masks were extracted from
400 slide images, with 30 000 for training, 5000 for val-
idation, and 5000 for test (patches in the training set, val-
idation set, and test set are extracted from different
slides). We then trained the attention U-Net on these
patches for location of glomeruli.

With accurate location of glomeruli, researchers tried
to distinguish different glomerular lesions. Lesion

identification can be treated as a fine-grained classifica-
tion problem, which is a challenging field in computer
vision due to the subtle differences between subcate-
gories. We selected 12 418 glomeruli from 400 slides,
with 5361 NOA, 3416 GS, 2268 SS, 1373 C, and 5100
Neg (negative samples were regions excluding glomer-
uli), and allocated the training set, validation set, and test
set in the ratio of 7:2:1. Following the location of glo-
meruli, those easily classified glomeruli such as GS
and Neg were picked out by DenseNet. Then the glomer-
ular boundary was utilized to remove redundant infor-
mation outside the margin of the glomerular capsule,
and the LSTM-GCNet was trained to classify SS,
NOA, and C through the internal glomerular features.
After glomerular lesion classification, we employed V-

Net [38] architecture with center channel to obtain an accu-
rate prediction for intrinsic glomerular cells. In total, 460
images of glomeruli (about 70 000 cells) were selected from
NOA samples, with 240 for training, 60 for validation, and
160 for testing. Each intrinsic glomerular cell was annotated
by senior pathologists. Since those adherent cells will affect
the accuracy of the intrinsic glomerular cells’ statistic, a dig-
ital image processing algorithm was applied to optimize the
segmentation results. The concave region is calculated by
extracting the convex hull of each contour and the interfer-
ence points are carefully removed by area threshold. With
the results of intrinsic glomerular cells, an ingeniousmethod
was designed to compute the mesangial region and mesan-
gial hypercellularity score. We combined the segmentation
results of intrinsic cells with the raw images, and developed
a novel method to assess the M score, which is depicted as
follows: (1) obtain the intrinsic cell and glomerulus segmen-
tation results based on the abovework; (2) remove the back-
ground outside of the glomeruli and Inpaint the mesangial
cells’ region with the value of their surrounding pixels; (3)
extract the white regions based on the pixel value threshold;
and (4) apply a marker-controlled watershed segmentation
algorithm, with the mesangial cells’ region as the fore-
ground, podocytes as white regions, and endothelial cells
as the background (Figure 1).

Evaluation metrics of CNN performance
The evaluation metrics implemented in this study are
described in supplementary material, Supplementary
materials and methods.

Results

Location of glomeruli
Since identification of glomeruli is the basis for glomer-
ular structure and lesion analysis, the first step is to locate
and identify all glomeruli. We employed 360 slides
(approximately 41 000 patches) with PAS stain from
patients with IgAN for training and validation, and 40
slides (nearly 5000 patches) for testing. Performance of
glomerulus location was evaluated through the dice
coefficient (a common metric for segmentation),

Table 3. Clinicopathological features of patients with IgAN at time
of biopsy.
Variable Value

Age (years) 33 (27–42)
Male (%) 43.98
Ethnicity (% Asian) 100
BMI (kg/m2) 23.0 ± 3.7
SBP (mm Hg) 126.9 ± 14.8
DBP (mm Hg) 78.2 ± 11.3
MAP (mm Hg) 94.2 ± 12.5
Hypertension before biopsy (%) 20.2
Serum creatinine (mg/dl) 0.96 (0.76–1.34)
eGFR (ml/min per 1.72m2) 78.2 (57.5–107.0)
CKD stage (%)

1 50
2 28.3
3 17.3
4 3.5
5 0.9

Proteinuria (g/day) 1.1 (0.6–2.0)
Serum albumin (g/l) 40.1 (36.6–43.0)
Serum cholesterol (mmol/l) 4.6 (4.0–5.4)
Serum triglycerides (mmol/l) 1.4 (1.0–2.0)
Serum uric acid (μmol/l) 359 (303–428)
Oxford Classification (%)

Ml 29.9
E1 22.5
S1 86.1
T1/T2 17.2/2.7
C1/C2 87.3/3.0

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure;
MAP, mean arterial pressure; eGFR, estimated glomerular filtration rate (CKD-
EPI); CKD, chronic kidney disease; M, mesangial hypercellularity; E, endocapillary
hypercellularity; S, segmental glomerular sclerosis; T, interstitial fibrosis and
tubular atrophy; C, crescent.
Data are presented as the mean ± SD, the median with range or percentages.
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precision, and recall (a widely used metric for object
detection). The results showed that our model could
achieve 0.931 average precision and 0.949 average
recall for all kinds of glomeruli (NOA, SS, GS, C) in
IgAN on 40 slides, which indicates a superior

performance in locating glomeruli. In addition, we also
compared the performance of glomerulus localization
with those of previous studies and architectures, and
our model obtained an outstanding performance accord-
ing to precision and recall (Table 1).

Figure 2. Assessment of glomerular lesion identification. (A) Visualization of location and classification of glomeruli with PAS stain. (B) Glo-
merular lesion classification confusion matrix, which provides the condition of how predictions are distributed over subcategories. (C) Metrics
of the classification task, with Cohen’s kappa, 95% confidence interval score, P value, sensitivity, and specificity.

Table 4. Quantitative results of intrinsic glomerular cell recognition.

Metric ARPS Doctor 1 Doctor 2 Doctor 3 Doctor 4

Precision 0.882 0.763 0.764 0.828 0.856
Recall 0.879 0.742 0.740 0.816 0.823
Specificity 0.931 0.852 0.857 0.903 0.918
Accuracy 0.922 0.810 0.814 0.874 0.882
Time taken 0.6 s/image 43 ± 11 s/image
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Figure 3. Assessment of internal glomerular structures. (A) Original glomerulus image with PAS stain. (B) Intrinsic glomerular cell segmen-
tation, with detected mesangial cells (M), podocytes (P), endothelial cells (E), and glomerulus boundary. (C) Assessment of mesangial regions,
including mesangial regions and mesangial cells. (D) Measurement results of the glomerulus in C.

Figure 4. Boxplot of the residual map in the intrinsic glomerular cell recognition task. The horizontal axis represents the ground truth, while
the vertical axis indicates the residual between the competitors (ARPS and four doctors) and ground truth (senior pathologists). The horizon-
tal lines from top to bottom in each boxplot represent the maximum, third quartile, median, first quartile, and minimum, respectively, and the
cross represents the mean value of residual.
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Glomerular lesion identification
To evaluate the utility of ARPS for identifying glomeru-
lar lesions, 1438 images of glomeruli (almost 300
images per category) were used for assessment. Dense-
Net-121 [36] was applied in step 1 to classify each glo-
merulus into three categories: negative, GS, and others,
followed by the LSTM-SENet, classifying SS, C, and
NOA. The ability of ARPS to identify the glomerular
lesions is presented in Figure 2. As shown in Figure 2B,
the glomerular lesion classification confusion matrix
was calculated by combining the results of two stages,
indicating that ARPS can achieve an extraordinary per-
formance for classification of GS, and Neg, and achieve
superior results for C, NOA, and SS identification. The
combination of glomerular lesion classification in IgAN
yielded an average accuracy of 92.8%, 0.912 Cohen’s
kappa, and 95% CI (0.892–0.923).

Complex glomerular structure analysis
Intrinsic glomerular cell recognition

To analyze intraglomerular structures, we used 460 glo-
meruli (nearly 70 000 intrinsic glomerular cells) from
NOA to train the 2D V-Net. With sufficient training,
our model could obtain 0.882 average precision and

0.879 average recall for intrinsic glomerular cell recog-
nition (Table 4). Combined with glomerular parameters,
APRS was able to acquire several types of information,
such as the numbers of three kinds of intrinsic glomeru-
lar cells, identify mesangial regions, glomerulus diame-
ter, and the area of these structures (Figure 3).

To better evaluate the performance of cell recognition
by ARPS, we plotted the residual between ground truth
and the prediction given by junior pathologists (doctors
1–4) and APRS, shown in Figure 4. Experimental results
showed that ARPS had the minimum gap with senior
pathologists for identifying podocytes, followed by
endothelial cells and mesangial cells. The residual of
ARPS was significantly less than that of junior patholo-
gists, especially in mesangial and endothelial cells, indi-
cating the approving performance of ARPS (Figure 4).
Overall, ARPS performed better with a mean accuracy
of 92.2%, surpassing by about 5–11% that of the junior
pathologists (Table 4). It took only 0.6 s to estimate the
number of intrinsic cells per glomerulus, which was
about 1/50 to 1/100 times that of the junior pathologists.
In the final step, we employed t-tests to evaluate the dif-
ference between ARPS and the average of four junior
pathologists. The result shows that there was a signifi-
cant difference (p < 0.0001) between ARPS and junior

Figure 5. Distribution of intrinsic glomerular cells. (A) Distribution map of three kinds of intrinsic glomerular cells. (B–D) Histogram of mesan-
gial cells, endothelial cells, and podocytes, respectively. The kernel density estimation (KDE, green line) represents the real distribution, while
the red line indicates the normal distribution.
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pathologists for identifying mesangial and endothelial
cells, with t-statistic of 10.859 and 11.644, respectively,
but not for identifying podocytes (p = 0.0602; t-statis-
tic 1.896).

Intrinsic glomerular cell distribution

The first step in evaluating the pattern of glomerular
injury is to determine whether glomeruli are hypercellu-
lar or not. To better study the hypercellularity of intrinsic
glomerular cells, ARPS was employed to measure the
quantification of the intrinsic cells including mesangial
cells (Figure 5B), endothelial cells (Figure 5C), and
podocytes (Figure 5D) based on 3592 qualified NOA
samples. Since we can only observe one cross-section
from aWSI, calculating the intrinsic cell ratio can be bet-
ter suited for analyzing the association between intrinsic
cells and a lesion rather than the number of cells. As
shown in Figure 5A, each tri-fold line represents the dis-
tribution of intrinsic cells in a single glomerulus. The
distribution histogram (Figure 5B–D) describes the ratio
distribution of each kind of intrinsic glomerular cell
across 3592 glomeruli, while the kernel density estima-
tion (KDE, green line) represents the real distribution.
The red line indicates the normal distribution with mean
and variance from real data. Since each diagram in Fig-
ure 5B–D appears to follow a normal distribution, the
mean value of sample distribution is treated as the mean
value of overall distribution, and the confidence interval
can be calculated from supplementary material, Supple-
mentary materials and methods, equation (5). The aver-
age proportion of M, E, and P of each glomerulus in
IgAN was 0.41:0.36:0.23 and their margin of error cal-
culated from the expectation and sample capacity was
0.0082, 0.0080, and 0.0070, with 95% CI (0.39–0.42),
(0.35–0.38), and (0.22–0.25), respectively. The correla-
tion between M cells’ ratio in ARPS and M score in the
Oxford Classification was also calculated, with Pear-
son’s r = 0.368. In addition, we conducted cell distribu-
tion analysis on biopsies from patients with Henoch–
Schönlein purpura nephritis (80 slides, 758 glomeruli);
the results showed that the average proportion of M, E,
and P of each glomerulus in Henoch–Schönlein purpura
nephritis was 0.36:0.37:0.27.

Mesangial hypercellularity score evaluation
The mesangial hypercellularity score is the indispens-
able parameter for predicting clinical outcome. In this
study, in total 100 slides were used for M-score assess-
ment, and each of the slides had a visual score of mesan-
gial hypercellularity made by senior pathologists.
Regions of indeterminate mesangial cellularity were
excluded through the Oxford Classification, including
global sclerosis/advanced segmental sclerosis, global
endocapillary hypercellularity, retracted glomerular tuft,
incomplete mesangial area, and crescent-only glomeruli.
After carefully scoring and counting each glomerulus
and calculating the mesangial score, ARPS achieved
0.42 Cohen’s kappa and 95% CI (0.18–0.69).

Discussion

Accurate renal pathological diagnosis relies on the rec-
ognition of pathological patterns within glomeruli,
tubules, and vascular compartments under light micros-
copy, combined with immunofluorescence, electron
microscopy, and clinical information [5]. Due to the
complexity and diversity of renal pathology, computer-
aided diagnosis for renal pathology demands the recog-
nition of all kinds of glomeruli and their pathological
features. Since the change of intrinsic glomerular cells
is highly correlated with the basic lesion in renal disease,
we designed ARPS, employing deep learning methods
to automatically identify three types of intrinsic glomer-
ular cell, which has been rarely reported in previous lit-
erature. We also applied ARPS to calculate the
mesangial hypercellularity score automatically in IgAN,
although the performance still needs to be improved.
In this study, in total 100 human slides (60 for valida-

tion and 40 for testing) were used for evaluation to
obtain convincing results for localization of glomeruli.
Deep neural learning is a data-drivenmethod. In addition
to neural architectures, the network’s performance relies
greatly on the quality and quantity of datasets, since the
more data, the more precise features that can be extracted
by networks.Most existing studies (Table 1) were imple-
mented on a middle-sized dataset (10–90) with limited
test images. In this paper, we adopted in total 400
whole-slide images for developing ARPS, and designed
ablation experiments to prove the proposed method. Use
of the original U-Net could only achieve 89.2% preci-
sion and 90.6% recall, which is close to the Mask R-
CNN-basedmethod.When aided by SSIM loss function,
the performance could be increased to the FCOS level
(�91% precision and 92% recall). Furthermore, the
marked watershed algorithm aimed at adherent glomer-
uli led to a 2% and 3% improvement of precision and
recall, respectively. The adequate training data and the
attention U-Net [40] trained with the instance similarity
loss enabled our work to yield an average recall of
94.9% in the localization of glomeruli task.
For classification of glomeruli, previous studies have

shown that computational techniques can be used to
identify global sclerosis and non-sclerosis glomeruli
[28–30,32]. Due to the diversity and co-existence of
pathological changes in IgAN (such as the co-existence
of segmental sclerosis and crescents), doctors are more
interested in understanding the types of lesions in the
non-sclerosis glomeruli. Thus, computational tools for
IgAN require a more detailed sub-division of glomerular
lesions. To classify these fine-grained glomerular
lesions, we applied the LSTM-GCNet, combining the
LSTM layer [41] with the GCNet [37] to extract more
useful features, and focused more on regional informa-
tion instead of local message. The experimental results
demonstrated that identification of global sclerosis and
crescents gave satisfactory results with 1.0 and 0.861
Cohen’s kappa, respectively, and that identification of
segmental sclerosis still needs to be improved (Cohen’s
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kappa 0.776). It was also proved that obtaining satisfac-
tory agreement for segmental sclerosis recognition was
difficult, even by expert pathologists (intra-class correla-
tion coefficients of GS, C, and SS were 0.9, 0.66, and
0.46, assessed by three to five pathologists in the Oxford
Classification in IgAN [39]).
Intrinsic glomerular cell proliferation is a manifesta-

tion of certain glomerular diseases, including IgAN,
lupus nephritis, etc., and is closely related to the diagno-
sis, severity, and prognosis. Different from Barros et al
[30], who applied the Gaussian method to extract the
features and could only segment intrinsic cells without
category information, we carefully designed a deep neu-
ral network to extract pathological features and segment
intrinsic cells. The convincing results showed that ARPS
can distinguish M, E, and P, with none of the previous
work accomplishing this task, to our knowledge. Suffi-
cient experiments show that ARPS can surpass junior
pathologists in the identification of M and E (significant
difference between ARPS and the average of four doc-
tors, with p < 0.0001), while the performance of podo-
cytes is similar, with p = 0.0602 (due to the relative
isolated location and morphological features). We also
found that junior pathologists were more likely to mis-
classify M and E, which was also mentioned in the pre-
vious study [39] [the ICC (intra-class correlation
coefficient) of the endothelial proliferation achieved
only 0.36] and can be alleviated with the application
of ARPS.
In addition, inspired by Steffes et al [42], who ana-

lyzed intrinsic cell distribution from normal kidney
donors (proportion of M, E, and P was 0.37:0.37:0.26),
we employed ARPS in calculating the distribution of
intrinsic cells from patients with IgAN at an extremely
low cost. Experiments showed that the average propor-
tion of M, E, and P within each glomerulus from patients
with IgAN was 0.41:0.36:0.23, illustrating that IgAN
was a disease with the proliferation of mesangial cells.
The relatively weak correlation (Pearson’s r 0.368)
between the M cells’ ratio in ARPS and M score in the
Oxford Classification is probably because of the differ-
ent definitions of these two parameters. The Oxford
Classification M score reflects the absolute mesangial
cellularity, whilst the M cells’ ratio reflects the propor-
tion of glomerular cells that are mesangial cells, and is
therefore affected by the number of endothelial, epithe-
lial, and inflammatory cells. Meanwhile, we conducted
cell distribution analysis on Henoch–Schönlein purpura
nephritis and the results showed that the average propor-
tion of M, E, and P of each glomerulus in this disease
was 0.36:0.37:0.27. In the future, we propose to investi-
gate the relationship between the ratio variation of M, E,
P and clinical data, including clinical parameters, patho-
logical classification, and the prognosis of different kid-
ney diseases using more cases.
Mesangial score is the crucial parameter in the Oxford

Classification, which has great significance to the prog-
nosis of IgAN. Evaluation of the mesangial score is
time-consuming and of great variability for pathologists,
with a consistency of 0.64 ICC [39]. Here we applied

ARPS to automatically assess mesangial score for IgAN
patients according to the simplified mesangial score.
Due to the disturbance of the mesangial area adjacent
to the vascular stalk, our model only reached a Cohen’s
kappa of 0.42, indicating moderate consistency with
senior doctors. We found that we obtained this imperfect
Cohen’s kappa even with a high accuracy of recognition
of intrinsic glomerular cells, which could be related to
the following: (1) the central mesangial regions are not
well excluded, which leads to error in M-score assess-
ment; and (2) there exists variability on M-score assess-
ment among several studies as the ICC of the median
mesangial score varied from 0.37 to 0.80 [10,13,39].
The consistency of ARPS may be further improved by
accurate segmentation of mesangial regions and intrinsic
cells. The model in this study could also be helpful for
assisting Oxford Classification score and proposing a
new mesangial-related indicator to predict prognosis,
which can be verified through many more IgAN cases.

In the future, with a much better performance than
junior pathologists in kidney pathology, ARPS could
be employed in training and improving the level of
pathologists in glomerular lesion identification. We can
extract the quantified pathological features of a glomeru-
lus through ARPS, and combine them with clinical data,
prognostic information, genomics, transcriptome, prote-
omics, metabolomics, and other multi-group data to find
an individual’s pathogenesis and predict the treatment
and prognosis of patients.

Our study has several limitations. It was initially
based on assessment of PAS stains and cannot identify
the crescent subcategories due to insufficient cases with
different types of crescents. Furthermore, we did not
study endocapillary hypercellularity, as the incidence
of endocapillary hypercellularity is 11–42% [9,13,43],
which is relatively low compared with other pathologi-
cal features, and we did not have enough cases for train-
ing our models. In addition, we did not obtain
comprehensive assessment about the MESTC score
based on present research. Finally, the performance of
mesangial score evaluation still needs to be improved.
In our work, only partial glomerular lesions were evalu-
ated by AI technology, and much work remains to be
done before the entire renal biopsy pathology can be
evaluated and generate a pathological report
automatically.

In conclusion, this paper presents ARPS, which pro-
vides a digital indicator for renal pathology. Our system
can provide a computational approach for the identifica-
tion of glomerular lesions and recognition of intrinsic
glomerular cells, and provides a mesangial hypercellu-
larity score, which could be used directly for assisting
the pathological diagnosis of kidney diseases.
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