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ABSTRACT Ionophores are the second most widely used class of antibiotic in agricul-
ture, with over 4 million kilograms sold in the United States in 2016. Because iono-
phores are not used in humans, it is widely assumed that their agricultural use will not
impact human health. Consequently, these drugs have not been subject to the same regula-
tions as medically important antibiotics. Here, I argue that the current evidence base is insuf-
ficient to conclude that ionophores do not contribute to human relevant antimicrobial resis-
tance. It is unclear whether ionophore resistance can result in cross-resistance to medically
important antibiotics. Moreover, recent evidence suggests that ionophore use may coselect
for resistance to vancomycin in some cases. Systematic investigation of the consequences of
agricultural ionophore use for human health is therefore imperative.
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Antimicrobial resistance (AMR) is a serious and growing challenge in the treatment of
infectious disease, with single-drug- or multidrug-resistant varieties of most major

pathogens circulating at appreciable frequencies. It is increasingly acknowledged that AMR
management efforts need to look beyond the clinic, since antimicrobials, AMR pathogens,
and resistance genes may be found throughout the natural and built environments (1–4).
For example, while human medicine is the most obvious source of clinically relevant
resistance, the widespread and massive use of antibiotics in animal agriculture likely plays
an important role in the persistence and spread of AMR. Consequently, national and
international AMR strategies embrace the One Health paradigm (5–8), which highlights the
need to consider agricultural and environmental contributors to AMR.

Recently, the use of antibiotics in farm animals has come under increased scrutiny (7, 9)
since resistance that arises in animals may ultimately impact human health (10). In the
Netherlands, for example, a national program to limit the veterinary use of antibiotics has
seen sales drop by over 60% between 2009 and 2017 (11), largely with concomitant
reductions in the prevalence of AMR among bacterial isolates from farm animals (11, 12). In
Canada, a growth promotion ban on medically important antibiotics (MIAs) has been in
place since 1 December 2018 (9). Regulation of veterinary antibiotics has primarily focused
on MIAs, i.e., those that are used, or that belong to drug classes that are used, in treating
human infectious disease (see, e.g., reference 13 and https://www.canada.ca/en/health
-canada/services/drugs-health-products/veterinary-drugs/antimicrobial-resistance/
categorization-antimicrobial-drugs-based-importance-human-medicine.html).

Other drugs, such as ionophores, are used solely in animals and are thus not
considered medically important by major regulatory agencies (7, 14) (https://www
.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/
antimicrobial-resistance/categorization-antimicrobial-drugs-based-importance-human-
medicine.html). They have thus escaped some growth promotion bans (https://www
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.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/
actions/responsible-use-antimicrobials.html). Nonetheless, ionophores are the second
most widely used class of antibiotic in animals in both the United States and Canada
(14, 15), with 4.6 million kg of ionophores sold in the United States in 2016 (14); their
use is likely to increase as medically important drugs are withdrawn from animal use.
In light of their heavy use in agriculture, it is imperative that we understand the
contribution of ionophores to the overall burden of AMR. Here, I argue that the current
evidence base is insufficient to conclude that ionophores do not contribute to human
relevant AMR.

While they are not used in humans due to toxicity, the use of ionophores may
still carry risk, owing to the possibility of cross-resistance or coselection (Fig. 1).
Resistance to any drug may be accompanied by cross-resistance to other antibiot-
ics. For example, animal use of avoparcin was halted in Europe in 1997 due to
concerns of vancomycin cross-resistance in human zoonotic pathogens (16). Van-
comycin and avoparcin are structurally similar glycopeptides, so cross-resistance
between these drugs is perhaps unsurprising. However, cross-resistance can even
arise toward chemically unrelated drugs. The multiple antibiotic resistance (Mar)
phenotype in Escherichia coli, for instance, results from regulatory mutations that
increase efflux and decrease cell permeability, resulting in resistance to several
distinct drug classes (quinolones, phenicols, and some �-lactams [17]). Similarly,
vancomycin-resistant enterococci (VRE) selected in the presence of the antiseptic
chlorhexidine sometimes show cross-resistance to the antibiotic daptomycin, pos-
sibly due to alterations to membrane phospholipids (18). Thus, the use of animal-
only drugs could in principle lead to cross-resistance to MIAs through shared
resistance mechanisms. Notably, both the U.S. Food and Drug Administration (FDA)
and Health Canada (HC) explicitly consider cross-resistance in categorizing the
safety risks of drugs for veterinary use (13) (https://www.canada.ca/en/health
-canada/services/drugs-health-products/veterinary-drugs/antimicrobial-resistance/
categorization-antimicrobial-drugs-based-importance-human-medicine.html).

Coselection can occur if resistance genes for several drugs are genetically linked. The
use of any one of the drugs to which an organism is resistant will increase the
frequency of all linked AMR genes, even those that are not under direct selection. For
example, experimental supplementation of animal feed with sulfonamides (a drug class
of only “medium importance” to human health, according to Canadian regulations) can
coselect for carbapenem resistance in Klebsiella pneumoniae (19). Genetic linkage can
occur because of physical linkage, for example, when two resistance genes are on the
same plasmid (20, 21). Importantly, however, physical linkage is not necessary for
coselection: so long as rates of horizontal gene transfer are not too high, all genes in
the genome of an asexual organism are genetically linked. Coselection is thought to
underlie the failure of drug restriction protocols to reduce the prevalence of AMR in
several cases (22–24). Again, the use of animal-only drugs could contribute to resistance
to MIAs if resistance genes to these drugs are linked.

FIG 1 (A) A single mutation or gene may confer cross-resistance to two or more drugs (here, drugs “A”
and “B” as hypothetical examples). (B) Alternatively, if separate resistance (R) mutations or genes are
linked, selection with one drug will coselect for resistance to a second drug.
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IONOPHORE RESISTANCE, CROSS-RESISTANCE, AND COSELECTION

Ionophores are a diverse class of antibiotics, largely produced by bacteria in the
genus Streptomyces (25, 26). Structurally, ionophores used in agriculture are carboxylic
polyethers, a subclass of polyketides. Ionophores bind cations and transport them
across the cell membrane, disrupting cellular ion balance (reviewed in reference 27).
Monensin, for example, is an antiporter that transports K� out of, and Na� and H� into,
the cell. These changes are ultimately thought to disrupt proton motive force (28).
Other ionophores have different ion preferences; lasalocid, for example, prefers divalent
metal cations and organic bases (26). Ionophores are primarily active against Gram-
positive organisms, although there are a few exceptions (see, e.g., reference 29).

Several ionophores, including lasalocid, monensin, narasin, and salinomycin, are
routinely administered to cattle and/or pigs for growth promotion. Furthermore, these
same drugs, as well as maduramicin, are used for the prevention of coccidiosis in
poultry and other farm animals (30–33). Data are not readily available on the distribu-
tion of ionophore use by animal species. For example, the FDA only reports on
ionophore use aggregated across all animal species, owing to confidentiality con-
straints, whereas the use of medically important antibiotics is broken down according
to animal species (cattle, swine, chicken, turkey, and other [14]). Growth promotion in
cattle is thought to occur through alterations to ruminal fermentation (25, 34), pre-
sumably due to changes in the gut microbiome. Ionophores may also have direct
impacts on the host’s metabolism and physiology (35).

For the most part, mechanisms of ionophore resistance are not well understood
(Table 1). The one known mechanism comes from Streptomyces longisporoflavus, the
bacterium that produces the ionophore tetronasin. By expressing an S. longisporoflavus
genomic library in Streptomyces lividans (which is partially tetronasin sensitive), Linton
et al. identified a putative ABC transporter that confers tetronasin resistance (36). Thus,
it is thought that ABC transporter-mediated efflux is at least partially responsible for
intrinsic tetronasin resistance in S. longisporoflavus. Related ABC transporter genes are
associated with narasin resistance in VRE isolated from Swedish broiler chickens (37,
38), although knockout/knock-in studies have not confirmed this finding.

Ionophore resistance can be selected in the lab by serial passaging in the presence
of antibiotic (29, 39). In Prevotella ruminicola (previously Bacteroides ruminicola), a rare
Gram-negative bacterium that is tetronasin sensitive, phenotypic analyses suggested
that evolved tetronasin resistance was caused by changes in cell envelope permeability
(29). Similarly, monensin-resistant isolates of Enterococcus spp. and Clostridium perfrin-
gens had thicker cell walls than did unexposed controls (39), and monensin adaptation
in Clostridium aminophilum was accompanied by changes in several cell wall/envelope
characteristics (40). Thus, there is phenotypic evidence that acquired ionophore resis-
tance can be mediated by changes to the cell wall and/or envelope. To date, however,
mutations associated with acquired ionophore resistance have not been identified. I
note that Simjee et al. argued that monensin resistance was not mutation based, since
resistance decreased after several weeks of culture in the absence of drug (39). This is
not a compelling argument, for if monensin resistance is costly, compensatory muta-
tions or back mutations arising during drug-free culture could reduce levels of resis-
tance.

The prevalence of ionophore resistance is difficult to assess, since there are no
clinical breakpoints for resistance. Moreover, large-scale surveys have not been carried

TABLE 1 Known and putative mechanisms of ionophore resistance

Antibiotic Mechanism Organism Genetic basis known? Reference

Tetronasin Efflux Streptomyces longisporoflavus Yes 36
Narasin Efflux (putative) VRE Yes 38
Tetronasin Permeability Prevotella ruminicola No 29
Monensin Cell wall thickening Enterococcus spp., C. perfringens No 39
Monensin Increased extracellular polysaccharide C. aminophilum No 40
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out given the animal-only use of ionophores. A few attempts have been made,
however. Aarestrup et al., defining resistance in terms of a markedly higher MIC, found
up to 6% monensin resistance in Staphylococcus hyicus and Enterococcus spp. in pigs
(41; see also reference 42). Other instances of circulating ionophore resistance have
been described but do not provide estimates of prevalence; for example, decreased
narasin sensitivity was found for some poultry-derived VRE strains in Sweden (37).

Houlihan and Russell (43) are frequently cited in support of the claim that iono-
phores do not cause meaningful cross-resistance to MIAs (44, 45). Here, cross-resistance
toward 16 different drugs, mostly MIAs, was measured in monensin- or lasalocid-
resistant cultures of Clostridium aminophilum. Cross-resistance was only noted for
bacitracin, and not for any other drug, suggesting that cross-resistance is not an issue.
I suggest that these results should be interpreted with caution, as sample sizes in this
study were small (n � 3), cultures were selected in ionophore for only a single growth
cycle, and drug susceptibility testing appears to have been carried out on mixed
cultures rather than on isolated genotypes. Thus, it is inappropriate to conclude from
this work that ionophore resistance does not present risks to human health.

Few other studies have examined cross-resistance between ionophores and MIAs.
Tetronasin resistance in P. ruminicola was accompanied by a modest increase in
resistance to avoparcin, a glycopeptide with similarities to vancomycin (29); no other
medically relevant drugs were tested in this study. Notably absent from the literature
are studies on cross-resistance in human pathogens. The observation that ionophore
resistance is sometimes accompanied by thickening of the cell wall (Table 1) does raise
the possibility of cross-resistance, since cell wall thickening is thought to contribute to
resistance to some MIAs (46, 47).

The prospect of ionophore-mediated coselection for AMR has been investigated in
several animal systems. Multiple studies in poultry have found that ionophore feed
supplementation has mixed effects on AMR, with decreases in the prevalence of
some resistances, increases in the prevalence of others, and no effect on others
(48–51). It should be noted, however, that most of these studies measured AMR in
specific Gram negatives (e.g., E. coli). Given the specificity of ionophores toward
Gram positives, I suggest that Gram-positive indicator organisms, or metagenomic
analyses, will be more informative regarding the clinical relevance of ionophore use.
Along these lines, a recent metagenomic study found that monensin treatment of
cattle had little to no effect on the population of antibiotic resistance genes (ARGs)
in the gut (52).

There is, however, evidence of an emerging association between narasin resistance
and vancomycin resistance in Swedish broiler chickens, with a putative narasin resis-
tance ABC transporter located on the same plasmid as a vanA gene cluster, which
confers vancomycin resistance in VRE (38). This finding raises the possibility that
vancomycin resistance could be maintained in animal populations not because of
treatment with vancomycin or related compounds but because of ionophore use. In a
recent search of the nucleotide database at the NCBI, I found 15 strains of Enterococcus
spp. bearing identical or near-identical matches to both genes encoding this putative
narasin transporter. These strains came from around the world, including the United
States, Scandinavia, and Taiwan, indicating a global distribution. Notably, these strains
were derived from both animal and human sources. Linkage to vanA was present in
some, but not all, strains. Coselection is therefore a real possibility, and more work will
be required to assess its actual impact on AMR in human pathogens.

CONCLUSIONS

Widespread veterinary use of ionophores has been assumed to be safe for humans,
largely on the grounds that this class of drugs is not used in human medicine. However,
the risks posed by cross-resistance to MIAs, and by coselection between ionophores
and MIAs, have not been adequately determined. The UK Review on Antimicrobial
Resistance, which culminated in the seminal O’Neill report, recognized this dearth of
evidence in writing, “It is clear to us, however, that more research is needed to ensure
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that ionophores, and other widely used antimicrobials, are not contributing to resis-
tance problems” (53). There is thus a clear and urgent need to systematically investigate
the contribution of ionophores to the burden of antimicrobial resistance.
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