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Abstract

Transparent research in musculoskeletal imaging is fundamental to reliably investigate dis-

eases such as knee osteoarthritis (OA), a chronic disease impairing femoral knee cartilage.

To study cartilage degeneration, researchers have developed algorithms to segment femo-

ral knee cartilage from magnetic resonance (MR) images and to measure cartilage morphol-

ogy and relaxometry. The majority of these algorithms are not publicly available or require

advanced programming skills to be compiled and run. However, to accelerate discoveries

and findings, it is crucial to have open and reproducible workflows. We present pyKNEEr, a

framework for open and reproducible research on femoral knee cartilage from MR images.

pyKNEEr is written in python, uses Jupyter notebook as a user interface, and is available

on GitHub with a GNU GPLv3 license. It is composed of three modules: 1) image prepro-

cessing to standardize spatial and intensity characteristics; 2) femoral knee cartilage seg-

mentation for intersubject, multimodal, and longitudinal acquisitions; and 3) analysis of

cartilage morphology and relaxometry. Each module contains one or more Jupyter note-

books with narrative, code, visualizations, and dependencies to reproduce computational

environments. pyKNEEr facilitates transparent image-based research of femoral knee carti-

lage because of its ease of installation and use, and its versatility for publication and sharing

among researchers. Finally, due to its modular structure, pyKNEEr favors code extension

and algorithm comparison. We tested our reproducible workflows with experiments that also

constitute an example of transparent research with pyKNEEr, and we compared pyKNEEr

performances to existing algorithms in literature review visualizations. We provide links

to executed notebooks and executable environments for immediate reproducibility of our

findings.

Introduction

Open science and computational reproducibility are recent movements in the scientific

community that aim to promote and encourage transparent research. They are supported by
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national and international funding agencies, such as the United States National Institutes of

Health (NIH) [1] and the European Commission [2]. Open science refers to the free avail-

ability of data, software, and methods developed by researchers with the aim to share knowl-

edge and tools [3]. Computational reproducibility is the ability of researchers to duplicate

the results of a previous study, using the same data, software, and methods used by the

original authors [4]. Openness and reproducibility are essential to researchers to assess the

accuracy of scientific claims [5], build on the work of other scientists with confidence and

efficiency (i.e. without “reinventing the wheel”) [6], and collaborate to improve and expand

robust scientific workflows to accelerate scientific discoveries [7–9]. Historically, research

data, tools, and processes were rarely openly available because of limited storage and

computational power [9]. Nowadays, there are several opportunities to conduct transparent

research: data repositories (e.g. Zenodo and FigShare), code repositories (e.g. GitHub,

GitLab, and Bitbucket), and platforms for open science (e.g. The European Open Science

Cloud and Open Science Framework). In addition, there exist computational notebooks that

combine narrative text, code, and visualization of results (e.g. Jupyter notebook [10, 11] and

R markdown [12]), allowing researchers to create workflows that are computationally trans-

parent and well documented [6]. Finally, it is possible to recreate executable environments

from repositories to run notebooks directly in a browser and thus make code immediately

reproducible (e.g. Binder [13]).

In the evolution of research practice, the structure of scientific papers, intended as vehicles

to communicate methods and results to peers, is changing. In 1992, Claerbout was among the

first to envision interactive publications: “[. . .] an author attaches to every figure caption a

pushbutton or a name tag usable to recalculate the figure from all its data, parameters, and

programs. This provides a concrete definition of reproducibility in computationally oriented

research” [14]. Following this vision, papers are transforming from static to interactive. They

will progressively integrate data and code repositories, metadata files describing data charac-

teristics (e.g. origin, selection criteria, etc.), and computational notebooks used to compute

results and create graphs and tables [15, 16] for more transparent research.

Transparency in image-based research is crucial to provide meaningful and reliable answers

to medical and biological questions [17]. In the musculoskeletal field, quantitative analysis

from magnetic resonance (MR) imaging has assumed an increasingly important role in inves-

tigating osteoarthritis (OA) [18]. OA is the most common joint disease worldwide, affecting

about 2 in 10 women and 1 in 10 men over 60 years of age [19]. It causes structural changes

and loss of articular cartilage, with consequent pain, stiffness, and limitation of daily activities

[20]. OA of the knee is one of the main forms of OA, affecting 1/3 of the adults with OA [21]

and accounting for 83% of the total OA economic burden [22]. To investigate knee OA, scien-

tists have developed algorithms to preprocess MR images, segment femoral knee cartilage, and

extract quantitative measurements of morphology, such as thickness [23] and volume [24],

and relaxation times, such as T1ρ and T2 [25].

In the image analysis pipeline, segmentation constitute a major challenge. Researchers still

tend to segment femoral knee cartilage manually or semi-automatically, using commercial or

in-house software, in a tedious and non-reproducible manner [26, 27]. However, there exist

several algorithms that researchers have developed to automatically segment knee cartilage. In

the literature and in published reviews [28–30], we have found 29 relevant publications that

propose new algorithms to segment femoral knee cartilage. These algorithms are based on dif-

ferent principles, namely active contours, atlas-based, graph-based, machine and deep learn-

ing, and hybrid combinations, and were developed by various research groups worldwide, as

depicted in the literature review visualization in Fig 1. Of these, only the implementations by

Wang et al. [31] and by Shan et al. [32] are open-source and hosted in public repositories (see
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Wang’s repository and Shan’s repository). These two implementations, however, have some

limitations: in the first case, documentations of code and usage are not extensive, while in the

second case the code is written in C++ and requires advanced programming skills to be com-

piled and run. Other communities, such as neuroimaging, largely benefit from robust, open-

source, and easy-to-use software to segment and analyze images (e.g. ANTs [33], FreeSurfer

[34], Nipype [35]). Because of these open-access tools, researchers do not need to re-imple-

ment algorithms for basic processing and can focus on further statistical analyses [36–38]. To

accelerate discoveries and findings, it is fundamentally important to have not only open-source

tools, but also workflows that are computationally reproducible, and thus enhance scientific

rigor and transparency [8].

In this paper, we present pyKNEEr, an automatic workflow to preprocess, segment, and

analyze femoral knee cartilage from MR images specifically designed for open and reproduc-

ible research. The main characteristics of pyKNEEr are embedded in its name: py is for

python, to indicate openness, KNEE is for femoral knee cartilage, and r is for reproducibility.
pyKNEEr is written in python with Jupyter notebooks as graphical user-interface, is shared

on GitHub, and has a documentation website. In addition, we provide an example of trans-

parent research with pyKNEEr through our validation study, implemented using images

from the Osteoarthitis Initiative (OAI) [68] as well as in-house images. Finally, to be compli-

ant with recommendations for interactive publications, throughout the paper we provide

links to data files and repositories, software repositories, specific code and Jupyter note-

books, executable environments), metafiles and web documentation, and websites [69].

In addition, we provide an example of transparent research with pyKNEEr through our

validation study, implemented using images from the Osteoarthitis Initiative (OAI) [68]

as well as in-house images. Finally, to be compliant with recommendations for interactive

publications, throughout the paper we provide links to data files and repositories, software

repositories, specific code and Jupyter notebooks, executable environments, metafiles and

web documentation, and websites [69].

Characteristics and structure of pyKNEEr

Openness: Python, file formats, code reuse, and GitHub

Characteristics and structure of pyKNEEr are based on recommendations for open scientific

software in the literature, such as usage of open language and file formats, code reuse, and

licensed distribution [6, 7, 70]. We wrote pyKNEEr in the open language python, using open-

access libraries to perform computations, such as NumPy for linear algebra [71, 72], pandas

for data analysis [73], matplotlib for visualizations [74], SimpleITK for medical image process-

ing and analysis [75], and itkwidgets for 3D rendering. We used widespread open-source for-

mats for input and output data, such as text files (.txt) for input image lists, dicom (.dcm)

and metafile (.mha) for images, and tabular files (.csv) for tables. To favor our code reuse,

we organized pyKNEEr in three modules: 1) image preprocessing; 2) femoral knee cartilage

segmentation; and 3) morphology and relaxometry analysis. Modularity will allow us and

other researchers to test, enhance, and expand the code by simply modifying, substituting, or

adding Jupyter notebooks. At the same time, we reused open-source code developed by other

scientists, such as preprocessing algorithms developped by Shan et al. [32] and elastix for

atlas-based segmentation [76]. Finally, we released pyKNEEr on GitHub with a GNU GPLv3

license, which requires openness of derivative work. For citation, we assigned pyKNEEr a

digital object identifier (DOI), obtained through the merge of the GitHub release to Zenodo

(Table 1).
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Fig 1. Literature map of femoral knee cartilage segmentation. The visualization shows name of first author, year of publication, affiliation of last author, and

segmentation method for 29 relevant publications on femoral knee cartilage segmentation from 1997 to 2018. Publications by segmentation method and in

alphabetical order are: Active contours: Amberg(2010) [39], Carballido-Gamio(2008) [40], Solloway(1997) [41], Vincent(2011) [42], Williams(2010) [43]; Atlas-

based: Pedoia(2015) [44], Shan(2014) [32], Tamez-Pena(2012) [45]; Deep-learning: Liu(2018) [46], Norman(2018) [47], Prasoon(2013a) [48], Zhou(2018) [49];

Graph-based: Bae(2009) [50], Ozturk(2016) [51], Shim(2009) [52], WangP(2016) [53], Yin(2010) [54]; Hybrid: Ambellan(2018) [55], Dam(2015) [56], LeeJG

(2014) [57], LeeS(2011) [58], Seim(2010) [59], WangQ(2013) [31], WangZ(2013) [60]; Machine learning: Folkesson(2007) [61], Liu(2015) [62], Pang(2015) [63],

Prasoon(2013) [64], Zhang(2013) [65]. This graph and graphs in Figs 4 and 5 were made in Jupyter notebook using ggplot2 [66], an R package based on the

grammar of graphics [67]. (See data, code, executable environment).

https://doi.org/10.1371/journal.pone.0226501.g001

Table 1. Openness and reproducibility of pyKNEEr code and experimental data.

Repository Metadata /

Documentation

Language /

Format

License DOI Citation

Software Used
Preprocessing Bitbucket Wiki C++, ITK Apache https://doi.org/10.

1016/j.media.2014.05.

008�

[32]�

elastix 4.8 GitHub Github Wiki C++, ITK Apache https://doi.org/10.

1109/TMI.2009.

2035616�

[76]�

Developed
pyKNEEr GitHub Website python, Jupyter

notebook

GNU GPLv3 https://doi.org/10.

5281/zenodo.2574172

Bonaretti S. et al. “pyKNEER” (v0.0.1).

Zenodo. 2019. 10.5281/zenodo.2574172

Data
Original OAI Website .dcm Data user

agreement

https://doi.org/10.

1016/j.joca.2008.06.

016�

[68]�

Derived (results) Zenodo Jupyter notebook .mha, .txt, .csv CC-BY-NC-SA https://doi.org/10.

5281/zenodo.2530608

Bonaretti S. et al. Dataset used in (Bonaretti

et al. 2019). Zenodo. 2019. 10.5281/zenodo.

2530608

�DOIs and citations of used software and original data refers to their corresponding publication.

https://doi.org/10.1371/journal.pone.0226501.t001
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Reproducibility: Jupyter notebooks with computational narratives and

dependencies

We designed pyKNEEr as a tool to perform and support computational reproducible

research, using principles recommended in the literature [5, 6]. For each module of the frame-

work, we used one or more Jupyter notebooks as a user-interface, because of their versatility

in combining code, text, and visualization, and because they can be easily shared among

researchers, regardless of operating systems.

Across pyKNEEr modules, we used the same notebook structure for consistent computa-

tional narratives (Fig 2). Each notebook contains:

1. Link to the GitHub repository: The repository contains code and additional material, such

as source files of documentation and publication;

2. Link to documentation: Each notebook is associated with a webpage containing instruc-

tions on how to create input text files, run notebooks, and evaluate outputs. Explanations

include step-by-step instructions for a demo dataset, provided to the user to become famil-

iar with the software. Single webpages are part of a documentation website, comprehensive

of installation instructions and frequently asked questions. We created the website using

sphinx, the python documentation generator;

3. Introduction: Brief explanation of the algorithms in the notebook;

4. User inputs: The input of each notebook is a text file (.txt) with folder paths and file

names of images to process or analyze. Additional inputs are variables to customize the pro-

cess, such as number of cores and algorithm options;

5. Commands with narrative: Titles and subtitles define narrative units of computations, and

additional texts provide information about command usage and outcome interpretation.

Commands in the notebook call functions in python files associated with that notebook

(e.g. in the preprocessing module, the notebook preprocessing.ipynb calls the

python file preprocessing_for_nb.py). In turn, associated python files call func-

tions in core files (e.g. the python file preprocessing_for_nb.py calls sitk_
functions.py, containing image handling functions);

6. Visualization of outputs: Qualitative visualizations include sagittal slices with superimposed

cartilage mask or relaxometry map, 2D thickness maps, and 3D relaxometry maps, to allow

users a preliminary evaluation of outputs. Quantitative visualizations include scatter plots

and tables with numerical values and descriptive statistics (Fig 2b), which are also saved in

.csv files to allow researcher subsequent analysis;

7. References: List of main references used in notebook algorithms;

8. Dependencies: Code dependencies (i.e. version of python, python packages, and computer

operating systems and hardware) to allow researchers to recreate the current computational

environment and thus reproduce findings. To print dependencies, we used the python

package watermark.

Algorithms in pyKNEEr
pyKNEEr contains specific algorithms to preprocess, segment, and analyze femoral knee car-

tilage from MR images.

Image preprocessing. Spatial and intensity preprocessing provide standardized high qual-

ity images to the segmentation algorithm [77]. In spatial preprocessing, we transform images
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to right-anterior-inferior (RAI) orientation, we flip right knees (when present) to the left later-

ality, and we set image origin to the origin of the cartesian system (0,0,0). In intensity prepro-

cessing, we correct image intensities for the inhomogeneities of the static magnetic field (B0)

[78], we rescale intensities to a common range [0—100], and we enhance cartilage edges with

Fig 2. User-interface of modules in pyKNEEr. (a) Structure of Jupyter notebooks and (b) qualitative and quantitative visualization of

outputs (from top: cartilage segmentation on image slice, flattened map of cartilage thickness, relaxation map on image slice, 3D relaxation

map, and plot and table with average and standard deviation of thickness values).

https://doi.org/10.1371/journal.pone.0226501.g002
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edge-preserving smoothing using curvature flow [79] (Fig 3I). Implementation of intensity

preprocessing is a translation of the open access code by Shan et al. [32] from C++ to python.

Femoral knee cartilage segmentation. Three steps comprise femoral cartilage segmenta-

tion: 1) finding a reference image; 2) segmenting femoral cartilage; and 3) evaluating segmen-

tation quality (Fig 3II). Finding reference image and evaluating segmentation quality are

possible only when ground truth segmentations are available.

Finding a reference image. We propose a convergence study to find the reference image, i.e.

a segmented image used as a template, or atlas, for the segmentation. First, we randomly select

an image as a reference image. Then, we register all images of the dataset to the reference using

rigid, similarity, and spline transformations, as explained in the following paragraph. Next, we

average the vector fields that result from the registrations. Finally, we choose the image whose

vector field is the closest to the average vector field as the new reference for the following itera-

tion. We repeat until two consecutive iterations converge to the same reference image or after

a fixed number of iterations. It is possible to execute the search for the reference several times

using different images as the initial reference to confirm the selection of the reference image.

This algorithm requires femur masks because the comparison among vector fields and their

average is calculated in the femur volume, as cartilage volume is limited.

Atlas-based segmentation. Initially, we register a moving image (i.e. any image of the data-

set) to a reference image, by transforming first the femur and then the cartilage. Then, we

invert the transformation describing the registration. Finally, we apply the inverted transfor-

mation to the cartilage mask of the reference image to obtain the cartilage mask of the moving

image. The images to segment can be new subjects (intersubject), images of the same subject

acquired at different time points (longitudinal), or images of the same subject acquired with

different protocols (multimodal). To segment intersubject images, we use rigid, similarity, and

spline registration, to segment longitudinal images only rigid and spline registration, and to

segment multimodal images only rigid registration. We perform image registration and mask

warping with elastix and transformix, respectively [44, 76], using a multiresolution

approach with smoothing image pyramid, random coordinate sampler, adaptive stochastic

gradient descent optimizer, and B-spline interpolators [44]. Detailed parameters are in the

code repository (GitHub).

Evaluating segmentation quality. We quantitatively evaluate quality of segmentation using

the Dice Similarity Coefficient (DSC) and average surface distance (ASD) for the whole mask

region of interest. DSC is a measure of the overlap between a newly segmented mask and the

corresponding ground truth segmentation [80]. The Dice Similarity Coefficient is calculated

as:

DSC ¼
2jNM \ GTj
jNMj þ jGTj

ð1Þ

where NM is the newly segmented mask, and GT is the ground truth. ASD is the average of

the Euclidean distances between the newly segmented mask and the ground truth mask, calcu-

lated as:

ASD ¼
1

nnm þ ngt

Xnnm

i¼1

min
gt2edgeGT

knmi� gtk2
þ
Xngt

j¼1

min
nm2edgeMN

kgtj � nmk2

 !

ð2Þ

where edgeNM is the edge the newly segmented mask, nm is any voxel, and nnm is the number

of voxels; similarly, edgeGT is the edge the ground truth mask, gt is any voxel, and ngt is the

number of voxels. [55].
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Morphology and relaxometry analysis. In pyKNEEr, cartilage analysis includes mor-

phology and relaxometry (Fig 3III).

Cartilage morphology. Morphology quantifications are cartilage thickness and cartilage vol-

ume. To calculate cartilage thickness, first we extract contours from each slice of the cartilage

Fig 3. Main algorithms in pyKNEEr modules. I. Image preprocessing; II. Femoral cartilage segmentation; and III. Analysis of morphology and relaxometry. Left:

Names of Jupyter notebooks. In parenthesis, notebooks in the module not depicted here. Middle: Graphic summary of algorithms. Right: Algorithm descriptions.

https://doi.org/10.1371/journal.pone.0226501.g003
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mask as a point cloud. Then, we separate the subchondral side of the cartilage from the articu-

lar side, we interpolate each cartilage side to a cylinder that we unroll to flatten cartilage [26],

and we calculate thickness between the two cartilage sides using a nearest neighbor algorithm

in the 3D space [40, 81]. Finally, we associate thicknesses to the subchondral point cloud to

visualize them as a 2D map. We compute cartilage volume as the number of voxels of the mask

multiplied by the voxel volume.

Cartilage relaxometry. We implemented two algorithms to calculate relaxometry maps:

Exponential or linear fitting and Extended Phase Graph (EPG) modeling. We use exponen-

tial or linear fitting to compute T1ρ maps from T1ρ-weighted images and T2 maps from T2-

weighted images. We calculate exponential fitting by solving a mono-exponential equation

voxel-wise using a Levenberg-Marquardt fitting algorithm [25]:

SðTaÞ ¼ K � expð� Ta=TbÞ ð3Þ

where: for T1ρ-weighted images, Ta is time of spin-lock (TSL) and Tb is T1ρ; for T2-weighted

images, Ta is echo time (TE) and Tb is T2; and K is a constant. We compute linear fitting by

transforming the images to their logarithm and then linearly interpolating voxel-by-voxel.

Linear fitting is not recommended when signal-to-noise ratio is high because the logarithm

transformation alters the normality of noise distribution, but it is fast and computationally

inexpensive [82]. Before calculating exponential or linear fitting, the user has the option to

register the images with lowest TE or TSL to the image with the highest TE or TSL to correct

for image motion during acquisition [83]. We use EPG to calculate T2 maps from DESS

acquisition. The implementation in pyKNEEr is the one proposed by Sveinsson et al. [84],

which is based on a linear approximation of the relationship between the two DESS signals.

Computational costs. Computation time for one image through the whole pipeline is

about 45 minutes on one core on a MacOS laptop with a processor Intel Core i5 at 2.3 GHz

and memory of 16 GB at 2133 MHz. On average, the computation times for the workflow

steps are: preprocessing: 20 minutes, segmentation: 15 minutes, morphology analysis: 5 min-

utes, and relaxometry analysis: 5 minutes. To optimize computational effort, we used the

multiprocessing python package to process images on separate cores. Therefore, computation

time for a whole dataset is linearly dependent on the number of cores. As an example, compu-

tation time for 2 images on one core is about 90 (45x2) minutes, on two cores is 45 minutes.

Open and reproducible research with pyKNEEr: Our validation

study

We validated pyKNEEr with experiments that also constitute an example of open and repro-

ducible research with pyKNEEr.

Image data

We used three datasets that we named OAI1, OAI2, and inHouse (Table 2). OAI1 contained

19 Double-Echo in Steady-State (DESS) images and T2-weighted (T2-w) spin-echo images

acquired at year 4 of the OAI study. Ground truth segmentations were created using an atlas-

based method (Qmetrics Technologies, Rochester, NY, USA) [45] for a previous study [85].

OAI2 consisted of 88 DESS images acquired at baseline and at 1-year followup. Ground truth

segmentations were computed using an active appearance model (imorphics, Manchester,

UK) [42]. Finally, inHouse contained 4 images acquired at Stanford University using DESS

and CubeQuant protocols. For clarity in the following, OAI1 will be split in OAI1-DESS and

OAI1-T2, OAI2 in OAI2-BL (baseline) and OAI2-FU (followup), and inHouse in inHouse-

DESS and inHouse-CQ (CubeQuant). Details of the acquisition parameters are in Table 2I.
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Results

We preprocessed, segmented, and analyzed all the dataset using different options in pyK-
NEEr, according to dataset characteristics and availability of ground truth segmentation (link

to dataset here) (Table 2III).

Preprocessing. We executed spatial preprocessing for all images of the datasets and intensity

preprocessing only for the images directly involved in segmentation.

Finding reference. We selected the reference mask from the dataset OAI1-DESS because of

the availability of ground truth segmentations of the femur, which is the volume where we

compare velocity fields. We picked 5 images as initial reference for our parallel investigation

Table 2. Datasets used to evaluate pyKNEEr. I. Acquisition parameters: Parameters of the protocols used to acquire the images. Images of OAI1-DESS, OAI2-BL, and

OAI2-FU were acquired with the same DESS protocol, consisting of 2 echos, although only their average was available (�). Images of one subject of the dataset OAI1 had

different slice spacing and thickness (?). Data queries to obtain acquisition parameters are in a Jupyter notebook (here). The original identification numbers (IDs) of the

OAI images are in a Jupyter notebook used as a metafile (here). II. Ground truth segmentation: The datasets OAI1 and OAI2 have ground truth segmentations. They differ

for computational method, segmented anatomy, and label type. III. Experimental results: Details of the steps in pyKNEEr for each dataset. Full circle (•) indicates process-

ing of the dataset, while empty circle (�) indicates processing of ground truth segmentations. The numbers in “Find reference” indicated the ID of the seed images used in

the convergence study. Links are to the executed notebooks on GitHub.

Dataset OAI1-DESS OAI1-T2 OAI2-BL OAI2-FU inHouse-DESS inHouse-CQ

Number of subjects 19 19 88 88 4 4

I. Acquisition parameters

Acquisition protocol DESS T2-w DESS DESS CubeQuant

Acquisition plane sagittal sagittal sagittal sagittal sagittal

Number of images in series 2 (1 available)� 7 2 (1 available)� 2 4

In-plane spacing [mm] 0.3646 x 0.3646 0.3125 x 0.3125 0.3646 x 0.3646 0.3125 x 0.3125 0.3125 x 0.3125

(0.4270 x 0.4270)? (0.4296 x 0.4296)?

Slice thickness [mm] 0.7 (0.75)? 3 (3.5)? 0.7 1.5 3

Echo time (TE) [ms] 4.7 10, 20, 30, 40, 50, 60,

70

4.7 42.52 -

Spin-lock time (TSL) [ms] - - - - 1, 10, 30, 60

Repetition time (TR) [ms] 16.32 2700 (2900)� 16.32 25 1302

Flip angle [˚] 25 180 25 30 90

II. Ground truth segmentation

Method atlas-based active models - - - -

Anatomy femur, femoral cartilage femoral cartilage - - - -

Type mask contour - - - -

III. Experimental results

Image number in series 1 1 2-7 1 1 1 2 1 2-4

Preprocessing

Spatial standardization • • • • • • • • •

Intensity standardization • • - • - • - • -

Segmentation

Find reference 4, 8, 10, 13, 16 - - - - - - - -

Intersubject • - - • - • - - -

Longitudinal - - - - • - - - -

Multimodal - • - - - - - • -

Segmentation quality

Dice coefficient • • - • • - - - -

Analysis

Morphology • � • � - • � • � • - • -

Relaxation - • � - - • •

https://doi.org/10.1371/journal.pone.0226501.t002
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using a python random function (random seed = 4; see code). For all the studies, we found the

reference as the subject whose vector field distance to the average vector field was the mini-

mum (subject ID = 9).

Segmenting intersubject, longitudinal, and multimodal images. We segmented images

from OAI1-DESS, OAI2-BL, and inHouse-DESS as new subjects. Segmentation failure were

1 for OAI1-DESS (ID = 6, DSC = 0.05, ASD = 28.14mm; see code), 3 for OAI2-BL (ID = 6,

DSC = 0.01, ASD = 60.98mm; ID = 24, DSC = 0.34, ASD = 5.49mm; ID = 31, DSC = 0.57,

ASD = 8.18mm; see code), and none inHouse-DESS (see code). We excluded the failed

registrations from the following analysis of segmentation quality, cartilage morphology, and

cartilage relaxometry. We segmented the first acquisition of OAI1-T2 images (see code) and

inHouse-CQ images (see code) using the multimodal option in pyKNEER, and OAI2-FU

images (see code) using the longitudinal option.

Segmentation quality. We evaluated segmentation quality for the datasets OAI1 and OAI2

because they had ground truth segmentations of femoral cartilage. The Dice similarity coeffi-

cients were 0.86 ± 0.02 (mean ± standard deviation) for OAI1-DESS, 0.76 ± 0.04 for OAI1-T2,

0.73 ± 0.04 for OAI2-BL, and 0.72 ± 0.04 for OAI2-FU (Fig 4a). The ASD measures were

0.60 ± 0.12mm for OAI1-DESS, 0.54 ± 0.11mm for OAI1-T2, 1.33 ± 0.33mm for OAI2-BL, and

1.38 ± 0.33mm for OAI2-FU (see code).

Morphology. We calculated cartilage thickness and volume for all datasets, including

ground truth segmentations. We computed correlations of cartilage thickness calculated from

pyKNEEr’s segmentation and ground truth segmentation, and we found that Pearson coeffi-

cients were 0.958 for OAI1-DESS, 0.668 for OAI1-T2, 0.654 for OAI2-BL, and 0.667 for

OAI2-FU (Fig 4b). Similarly, we computed correlations for cartilage volume, and we found

that Pearson coefficients were 0.983 for OAI1-DESS, 0.847 for OAI1-T2, 0.891 for OAI2-BL,

and 0.885 for OAI2-FU (Fig 4c) (see code).

Relaxometry. Before calculating relaxometry maps for OAI1-T2, we rigidly registered the

images with shortest TE to the image with longest TE. Similarly, before calculating T1ρ maps

for inHouse-CQ, we rigidly registered the images with shortest TSL to the image with longest

TSL. Then, we calculated T2 maps for OAI-T2 images extracting values in pyKNEEr’s masks

(see code) and ground truth masks (see code), and we compared them, obtaining a Pearson’s

coefficient of 0.513 (Fig 4d) (see code). Finally, we computed relaxometry maps using expo-

nential fitting for inHouse-CQ (see code) and EPG modeling for inHouse-DESS (see code) to

show feasibility of the methods.

Discussion

To test possible reproducible workflows with pyKNEEr, we ran experiments with three dif-

ferent datasets. Image preprocessing was successful in all cases, while image segmentation

failed in 4 cases. Average DSC were 0.81 for dataset OAI1 and 0.73 for dataset OAI2. These

values are in the range of published values, as depicted in the literature review visualization

of DSC (Fig 5). Discrepancies of DSC between OAI1 and OAI2 can be due to the different

characteristics of ground truth segmentations. OAI1 ground truth segmentations were cre-

ated using an atlas-based method with DSC = 0.88 [45] (see “TamezPena (2012)” in Fig 5),

whereas OAI2 ground truth segmentations were created using an active appearance model

with DSC = 0.78 [42] (see “Vincent (2011)” in Fig 5). In addition, to calculate DSC we trans-

formed OAI2 ground truth segmentations from contours to volumetric masks, potentially

adding discretization error. Quality of segmentation had a direct impact on morphology and

relaxometry analysis. Pearson’s coefficient was higher for cartilage volume than cartilage

thickness, suggesting higher preservation of volume, and it was low for T2 relaxation times,
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suggesting higher dependency on segmentation quality for intensity-based measurements.

Finally, regression lines show that measurements from pyKNEEr segmentation overesti-

mated small thicknesses and underestimated large volumes and T2 values (Fig 4). We imple-

mented atlas-based segmentation because it has the advantage to provide byproducts for

further analysis. Image correspondences established during the registration step can be used

for intersubject and longitudinal comparison of cartilage thickness and relaxation times, and

voxel-based morphometry and relaxometry [44].

Fig 4. Results for the datasets OAI1-DESS (red), OAI1-T2 (green), OAI2-BL (cyan), and OAI2-FU (purple). (a) Violin plots

describing the distribution of the DSC within each dataset. The dots represent DSC values spread around the y-axis to avoid visualization

overlap. (b-d) Correlation between measurements derived from ground truth segmentations and pyKNEEr’s segmentations, i.e.

cartilage thickness (b), cartilage volume (c), and T2 maps (d). (See data, code, computational environment).

https://doi.org/10.1371/journal.pone.0226501.g004
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We designed pyKNEEr to facilitate transparent research on femoral knee analysis from

MR images. Traditionally, medical image analysis workflows are in ITK, VTK, and Qt, requir-

ing advanced computational skills in C++ to build, run, and extend code. We wrote pyKNEEr
in python because of its ease of use, compatibility with various operating systems, and exten-

sive computing support through packages and open code. As a consequence, pyKNEEr can be

easily installed as a package in the python environment and does not require advanced pro-

gramming skills. In addition, we used Jupyter notebooks as a user-interface because of their

ease of use, literate computing approach [86], versatility for publications, and sharing among

researchers. In pyKNEEr, Jupyter notebooks can be simply downloaded from our GitHub

repository to a local folder. Researchers have to input an image list and optionally set a few

variables, and after automatic execution of the notebook, they directly obtain visualizations,

graphs, and tables for further analysis. In addition, researchers can link the executed notebook

directly to papers (similarly to Table 2) and thus create an interactive publication with repro-

ducible analysis. In the medical image analysis community, other examples of combined use of

python and Jupyter notebooks are mainly for educational and general research purpose (e.g

SimpleITK notebooks [87]), while usage of python as a programming language is rapidly

gaining popularity in neuroimaging (e.g. Nipype [35]).

Several extensions of pyKNEEr could be imagined, due to the modularity of its structure.

In the segmentation module, the current notebook implementing atlas-based segmentation

(segmentation.ipynb) could be substituted by notebooks with hybrid machine or deep

learning algorithms, which can provide higher DSC [55] (Fig 5). In the morphology module

(morphology.ipynb), the code structure already includes a flag (thickness_algo) to

integrate additional algorithms for cartilage thickness, such as surface normal vectors, local

thickness, and potential field lines [81]. Finally, new notebooks could be added to the workflow

to segment and analyze more knee tissues, such as tibial cartilage, patellar cartilage, and the

Fig 5. Performances of the segmentation module of pyKNEEr, compared with 24 studies in literature that report

it. Full dots represents studies where DSCs were calculated on the whole mask, whereas empty dots represent studies

where DSCs were calculated in specific parts of the cartilage, e.g. the weight-bearing area [28]. (See data, code,

executable environment).

https://doi.org/10.1371/journal.pone.0226501.g005
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menisci. Extensions will require a limited amount of effort because of the popularity and ease

of python, the free availability of a large number of programming packages, and the flexibil-

ity of Jupyter notebooks [87]. In addition, standardized file format and computational envi-

ronment will facilitate comparison of findings and performances of new algorithms.

In conclusion, we have presented pyKNEEr, an image analysis workflow for open and

reproducible research on femoral knee cartilage. We validated pyKNEEr with three experi-

ments, where we tested preprocessing, segmentation, and analysis. Through our validation

test, we presented a possible modality of conducting open and reproducible research with

pyKNEEr. Finally, in our paper we provide links to executed notebooks and executable envi-

ronments for computational reproducibility of our results and analysis.
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