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Since the outbreak of the COVID-19 epidemic, several control strategies have been proposed. ,e rapid spread of COVID-19
globally, allied with the fact that COVID-19 is a serious threat to people’s health and life, motivated many researchers around the
world to investigate new methods and techniques to control its spread and offer treatment. Currently, the most effective approach
to containing SARS-CoV-2 (COVID-19) and minimizing its impact on education and the economy remains a vaccination control
strategy, however. In this paper, a modified version of the susceptible, exposed, infectious, and recovered (SEIR) model using
vaccination control with a novel construct of active disturbance rejection control (ADRC) is thus used to generate a proper
vaccination control scheme by rejecting those disturbances that might possibly affect the system. For the COVID-19 system, which
has a unit relative degree, a new structure for the ADRC has been introduced by embedding the tracking differentiator (TD) in the
control unit to obtain an error signal and its derivative. Two further novel nonlinear controllers, the nonlinear PID and a super
twisting sliding mode (STC-SM) were also used with the TD to develop a new version of the nonlinear state error feedback
(NLSEF), while a new nonlinear extended state observer (NLESO) was introduced to estimate the system state and total dis-
turbance. ,e final simulation results show that the proposed methods achieve excellent performance compared to conventional
active disturbance rejection controls.

1. Introduction

COVID-19 has become one of the most dangerous pan-
demics in recent global history, with over 198 million
confirmed cases and 4.237 million deaths as of 1 August
2021, according to the World Health Organization (WHO)
[1]. Various control strategies have thus been proposed and
tested to suppress or even reduce the spread of SARS-CoV-2.

Various authors [2–7] have presented mathematical
models and the analyses of COVID-19, while others [8–12]

have sought to use optimal control theory to stem the
COVID-19 pandemic via measures such as social distancing,
quarantine, contact tracing, case detection, imposition of
face masks, media coverage, and other suppression and
mitigation strategies. In [13], a firm control technique was
used with a variable transformation technique (VTT) and
most valuable player algorithm (MVPA) as a way to control
the unstable behavior of a COVID-19 nonlinear model to
reduce spread, while in [14, 15], a PID controller was used to
stem the rapid spread of the COVID-19 pandemic. However,
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the aforementioned studies did not take into account the
effect of disturbance or uncertainty into consideration. ,e
authors of [16] introduced the extended state observer with a
U-model control-based city lockdown strategy with the
population size that is unknown, which can be considered as
a disturbance to show the effectiveness of the proposed
method, and [17] used various nonlinear models of COVID-
19 alongside various control strategies such as vaccination,
shielding and immunity, and quarantine by applying a
metric temporal logic (MTL) formula. ,e author in [18]
introduced a new control technique to remove disturbances
and parameter uncertainty effects within linear or nonlinear
systems, while the authors in [19–22] presented the design
and analysis of a super twisting sliding mode controller
(STC-SM) with respect to various systems, including three-
phase grid-connected photovoltaic, pneumatic muscle ac-
tuators, aircraft at a high angle of attack, and micro-
gyroscopes. In addition to that, a review of different schemes
of the sliding mode controller for the network system is
introduced in [23]. A nonlinear extended state observer
(NLESO) was also introduced in [24, 25].

Although various control strategies have been proposed
to address the COVID-19 pandemic, many of these suffer
from severe drawbacks: for example, most of them treat the
control signal as a constant or take insufficient account of
disturbances that may increase the spread COVID-19, such
as bad weather, failure to commit to health measures, and
failure to distribute vaccinations in a fair manner between
countries, especially the poor ones. ,e exception is [16],
which takes uncertainty around population numbers as a
source of the disturbance. However, none of the listed
studies has applied a vaccination control strategy with robust
control and ADRC techniques.

Motivated by this gap, this paper presents the proposed
nonlinear model of COVID-19, utilizing a vaccination
control strategy that takes account of the noted exogenous
disturbances. Furthermore, a novel nonlinear controller
with an unprecedented tracking differentiator and a new
nonlinear extended state observer were applied, generating
the combination necessary to support a new proposed
ADRC for the COVID-19 nonlinear system with a rapid
output response with noise reduction due to the use of TD
with the proposed nonlinear PID (NLPID) controller and
the proposed super twisting sliding mode (STC-SM) con-
troller. ,e parameters of the proposed nonlinear PID
(NLPID) controller, proposed super twisting sliding mode
(STC-SM) controller, proposed nonlinear ESO (NLESO),
and tracking differentiator are tuned using a genetic al-
gorithm, and a multiobjective performance index is used in
the minimization process, which includes the absolute
values of the control signals and the square of the control
signals.

,e rest of this paper is organized as follows: Section 2
presents the modeling of the COVID-19 system, and Section
3 presents the proposed ADRC. Section 4 introduces the
convergence of the NLESO and the idea of closed-loop
stability, allowing the simulation results and q discussion of
the results to be demonstrated in Section 5. Finally, the
conclusion of this paper is presented in Section 6.

2. COVID-19 Mathematical Model

,eproposed nonlinear mathematical model of the COVID-
19 system is developed from the model in [17]. In this model,
the population is divided into seven classes: the susceptible,
the exposed, the infected, the hospitalized infected, the
cumulative infected, the dead, and the recovered. As shown
in the flow diagram in Figure 1, the proposed nonlinear
model of the COVID-19 with vaccination strategy is thus as
follows:

_I � ϵCOVE − cCOV + μCOV + αCOV + bCOV( 􏼁I, (1)

_E �
βCOVIS
NCOV

− μCOV + ϵCOV( 􏼁E, (2)

_S � λCOVNCOV − μCOVS −
βCOVIS
NCOV

− V, (3)

_H � bCOVI − cCOV + μCOV( 􏼁H, (4)

_C � bCOVI, (5)

_R � cCOVI − μCOVR +(V + d), (6)

_D � αCOVI + αCOVH, (7)

where V is the number of vaccinated people per day (the
controlled input), and S, E, I, H, C, and R denote the
susceptible, exposed, infected, hospitalized infected, cu-
mulative infected, and recovered populations, respectively.
Additionally, in this model, NCOV > 0 is the total pop-
ulation,; D represents the number of deaths caused by
COVID-19, and ϵCOV, μCOV, αCOV, bCOV, cCOV, βCOV, and
λCOV are the rates of progression from E to I (the reciprocal
of the incubation period), the per capita natural death rate,
the SARS-CoV-2 virus-induced average fatality, the diag-
nosis rate, the recovery rate of infectious individuals, the
probability of disease transmission per contact (transmis-
sion rate), and the per capita birth rate, respectively. ,e
value d is the exogenous disturbance of the system. All
parameters are assumed to be positive, and where the birth
rate is equal to the death rate (μCOV � λCOV), the total
population size may be considered constant over time.,us,
_N(t) � _S + _E + _I + _H + _R illustrates the dynamics of total
population size _NCOV � 0.

3. Active Disturbance Rejection Control Design

,e active disturbance rejection control (ADRC) was first
proposed by [18], and it is now considered one of the most
accurate and powerful control techniques for estimating the
unwanted disturbances, system dynamics, and parameter
variation often denoted as “generalized disturbances.” ,e
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ADRC segments work in a complementary manner whereby
the tracking differentiator (TD) offers a smooth reference
with its derivate and the nonlinear state error feedback
(NLSEF) draws the required information for the plant from
the extended state observer (ESO), in order to control the
system; meanwhile, the ESO estimates the internal and
external disturbance and actively cancels it. ,e ADRC is
thus suitable for systems with a relative degree of two or
higher. Figure 2 shows the general form of the ADRC.

In this paper, the ADRC for a system with a relative
degree of one is introduced by combining the proposed
tracking differentiator with the NLSEF to form a new control
frame for the ADRC. ,e general form of the proposed unit

relative degree ADRC is shown in Figure 3: this consists of
three parts described in more detail below.

3.1. Proposed Tracking Differentiator (TD). In order to
generate an accurate and smooth differentiated signal from
the reference signal, avoiding set point jumping and
achieving fast tracking, a TD is utilized. ,is TD limits the
high-frequency oscillations, allowing the differentiated
output signal to become more sensitive to noise. As men-
tioned previously, the tracking differentiator is generally
second-order or higher; however, for ρ � 1, using the TD has
previously been avoided because the extended state observer
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Figure 1: Flow diagram of COVID-19.
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estimates two states (i.e., z1 and z2). For the purposes of this
paper, however, it is possible to use the tracking differ-
entiator in a unit relative degree system, utilizing the
mathematical representation of TD for ρ � 1 given as

_􏽥e1 � 􏽥e2,

_􏽥e2 � −a1R
2 􏽥e1 − 􏽥e

�����������

1 + 􏽥e1 − 􏽥e( 􏼁
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − a2R􏽥e2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

_􏽥e1 � 􏽥e2,

_􏽥e2 � −a1R
2 􏽥e1 − 􏽥e

1 + 􏽥e1 − 􏽥e
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡 − a2R􏽥e2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

where 􏽥e1 and 􏽥e2 are the tracking error and the tracking error
derivative, respectively, and 􏽥e is the input error to the TD.
,us, R is a positive tuning parameter that is chosen
depending on the application, and a1 and a2 are tuning
parameters. As shown in equations (8) and (9), the error
becomes the input to the tracking differentiator rather than
the reference signal, and the result is a smooth original signal
and its derivative that avoids chatter in the output signal. In
the proposed TD, the sigmoid function (2) and Elliott squash
function (equation (9) given in [26] are utilized instead of
the sign function used in the conventional tracking differ-
entiator proposed by [18], however.

3.2. Proposed Controller. In this paper, two nonlinear
controllers are proposed as NLSEF, which can be further
defined as follows.

3.2.1. NLPID-TD. ,e NLPID controller is the developed
version of the LPID; this is necessary to handle the strong
nonlinearity of the COVID-19 system, which cannot be
addressed using the linear version. ,e proposed NLPID
thus depends on nonlinear functions, particularly the sign
function and exponential function. ,e proposed NLPID
can thus be given as

u1 �
k1

1 + exp 􏽥e
2
1􏼐 􏼑

􏽥e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α1 sign 􏽥e1( 􏼁,

u2 �
k2

1 + exp _􏽥e
2
1􏼒 􏼓

_􏽥e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α2 sign _􏽥e1􏼐 􏼑,

u3 �
k

1 + exp 􏽒 􏽥e
2
1􏼐 􏼑

􏽥e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α3 sign 􏽚 􏽥e1dt􏼒 􏼓,

u0NLPD � u1 + u2 + u3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where k1, k2, k3, α1, α2 and α3 are tuning design parameters
and _􏽥e1 � 􏽥e2. Moreover, α1, α2, andα3 < 1 to ensure that the
error functions |􏽥e|α1 , |􏽥e1|

α2 , and|_􏽥e1|
α3 are sensitive to small

error values. ,e combination of the proposed NLPID

controller and the proposed tracking differentiator showed
excellent results in terms of controlling the spread of
COVID-19.

3.2.2. Proposed Super Twisting Sliding Mode Controller (STC-
SM). To avoid the problem of chatter, a conventional super
twisting controller (CST-SMC) is utilized. ,is offers a
second-order sliding mode in the nonlinear version of the PI
controller, which is designed for a system with a relative
degree of one [19, 26]. ,e STC-SM guarantees that tra-
jectories can reach the sliding surface and converge in a finite
amount of time because the trajectories twist around the
origin of the sliding surface; the STC-SM thus guarantees
this continuity and convergence in finite time by replacing
the term b 􏽒 sign(σ) with a continuous function, which has
several advantages. One of these advantages is the shape of
the signal, which is S-shaped and produces a more rapid rise
in the value of the result; in addition, the range is bounded
between [x, −x], which saturates the value without creating a
sharp edge. ,e proposed STC-SM can thus be expressed as
follows:

ς � κ􏽥e1 + _􏽥e1, (11)

u0STC−SM
� κ|ς|psign(ς) + ξtanh

ς
δ

􏼒 􏼓, (12)

where ς is the sliding surface; κ is sliding coefficient and a
positive tuning parameter; 􏽥e1 and _􏽥e1 are the tracking error
and its derivative, respectively; ξ is sliding coefficient; and p

and δ are positive values that need to be tuned to achieve the
optimal value parameters, such that 0<p< 1 and δ > 0. It is
important to note that ς is selected in such ways that
guarantee that the equation (i.e., equation (11)) is stable.
,us, as can be seen from equation (11), the sliding surface is
selected that depends on the error and its derivative obtained
from the tracking differentiator mentioned previously and
the sliding coefficient that is considered a tuning parameter
in this paper.

3.3. Proposed Nonlinear Extended State Observer (NLESO).
In order to solve the problem of peaking that may appear in a
linear ESO, a nonlinear extended state observer (NLESO) is
utilized. ,e proposed NLESO is designed to estimate ex-
ternal disturbances, internal dynamics, and uncertainty,
expressed as follows:

_z1 � z2 + b0u + β1􏽢e1,

_z2 � β2􏽢e2,
􏼨 (13)

􏽢e1 � sign e1( 􏼁 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p1 + Ae1,

􏽢e2 � sign e1( 􏼁 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p1/2 + Ae1,

⎧⎨

⎩ (14)

where e1 � S − z1, e1 is the estimation error, z1 is the esti-
mation state of S, 􏽢e1 and 􏽢e2 are the nonlinear functions, p1 is
a tuning parameter of less than 1, A is a tuning parameter,
and β1 and β2 are the observer gain parameters, selected in
such a way that the characteristic polynomial s2 + β1s + β2 �
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(ω0 + s)2 is Hurwitz [27, 28]. ,us, ω0 is the NLESO
bandwidth, and b0 is the approximated parameter of b in the
system. ,e proposed ADRC with a nonlinear model of the
COVID-19 system is thus shown in Figure 4.

4. Closed-Loop Stability Analysis

,e convergence of the proposed NLESO and the closed-
loop stability of the overall system are introduced in this
section and stated in the sequence below.

4.1. Fe Convergence of the Proposed NLESO. In this sub-
section, the convergence of the proposed NLESO is analyzed
and demonstrated using the Lyapunov stability criterion.

,e error dynamics can be written as follows: equations
(1)–(7) can be rewritten in Brunovesky form:

Let x1 � S, x2 � _S, and x � [I E H C R D], then

_x1 � x2,

_x2 � 5(x, t) + g x1( 􏼁u + d(x, t),

y � x1.

⎧⎪⎪⎨

⎪⎪⎩
(15)

Arranging (6) gives

_x1 � x2,

_x2 � F + b0u + b0d,

y � x1.

⎧⎪⎪⎨

⎪⎪⎩
(16)

Let

x3 � F + b0d. (17)

,us, substituting equations (18) into (16) yields

_x1 � x2,

_x2 � x3 + b0u,

y � x1.

⎧⎪⎪⎨

⎪⎪⎩
(18)

Differentiating (19) thus gives

_x3 � _F + b0
_d, (19)

_x2 � x3 + b0u,

_x3 � _F + b0
_d,

􏼨 (20)

where x3 is the generalized disturbance, F represents the
system dynamics and parameter uncertainty, and d is the
exogenous disturbance.

,e general form of equations (13) and (14) can be
rewritten as

_z1 � z2 + β1􏽢e1,

_z2 � z3 + β2􏽢e2,

⋮,

_zρ � zρ+1 + b0u + βρ􏽢eρ,

_zρ+1 � βρ+1􏽢eρ+1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where ρ is the relative degree of the system, zρ is the esti-
mated state of xρ, and zρ+1 is the estimated total disturbance.
To achieve this, 􏽢e1,2···ρ+1 is a nonlinear function that can be
expressed as

􏽢e1 � sign e1( 􏼁 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
ρ1 + Ae1,

􏽢e2 � sign e1( 􏼁 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
ρ1/2 + Ae1,

⋮

􏽢eρ � sign e1( 􏼁 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
ρ1/ℓ + Ae1,

􏽢eρ+1 � sign e1( 􏼁 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
ρ1/ℓ+1 + Ae1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

,e estimated error can thus be written as

ei � xi − zi, (23)

where i ∈ 1, 2, . . . , ρ + 1􏼈 􏼉, ei is the estimated error, and zi is
the estimated state of xi, ℓ ∈ 1, 2, . . . , m{ }, where m is an
integer number.

e1 � x1 − z1,

e2 � x2 − z2,

⋮

eρ � xρ − zρ,

eρ+1 � xρ+1 − zρ+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Differentiating (24) gives

+ –

1/b0
b0
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Figure 4: ,e proposed ADRC with a nonlinear model of the COVID-19 system with relative degree ρ � 1.
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_e1 � _x1 − _z1,

_e2 � _x2 − _z2,

⋮

_eρ � _xρ − _zρ,

_eρ+1 � _xρ+1 − _zρ+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

L � x3 can be used to describe the generalized distur-
bance, and substituting (21) into (25) yields

_e1 � x2 − z2 − β1􏽢e1,

_e2 � x3 − z3 − β2􏽢e2,

⋮

_eρ � xρ+1 + b0u − zρ+1 − b0u − βρ􏽢eρ,

_eρ+1 � _L − βρ+1􏽢eρ+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Simplifying (26) goes to

_e1 � e2 − β1􏽢e1,

_e2 � e3 − β2􏽢e2,

⋮

_eρ � eρ+1 − βρ􏽢eρ,

_eρ+1 � _L − βρ+1􏽢eρ+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Expressing (27) in matrix form yields

_e � A0e + Ad
_L. (28)

Assuming 􏽢e1 � Κ1(e1), . . ., 􏽢eρ � Κρ(e1) and 􏽢eρ+1 �

Κρ+1(e1).
,en

A0 �

−β1Κ1 e1( 􏼁 1 . . . 0 0

−β2Κ2 e1( 􏼁 0 ⋱ 0 0

⋮ ⋮ ⋮ ⋮

−βρΚρ e1( 􏼁 0 . . . 0 1

−βρ+1Κρ+1 e1( 􏼁 0 . . . 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ad �

0
⋮
0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

_e � _e1 · · · _eρ+1􏽨 􏽩,

e � e1 · · · eρ+1􏽨 􏽩.

(29)

In order to check if the estimated error converges to zero
at t⟶∞, the Lyapunov stability test can be used [29].
Taking the Lyapunov function VNLESO � 1/2eTe and
_VNLESO � eT _e.

So that for ρ � 1

_VNLESO � e1 e2􏼂 􏼃
−β1Κ1 e1( 􏼁 0

−β2Κ2 e1( 􏼁 1
􏼢 􏼣

e1

e2
􏼢 􏼣 + _L. (30)

Assuming that _L converges to zero as t⟶∞, which is
the case for constant exogenous disturbances, then

_VNLESO � e1 e2􏼂 􏼃
−β1Κ1 e1( 􏼁 0

−β2Κ2 e1( 􏼁 1
􏼢 􏼣

e1

e2
􏼢 􏼣. (31)

,e quadric form, _VNLESO � eTQ _e, is asymptotically
stable if Q is a negative definite matrix, which causes the
system to be asymptotically stable.

To check whether the Q matrix is negative definite and to
find its stability limits, the Routh stability criteria can be
used. It is first necessary to compute the characteristic
equation for matrix Q as

|λΙ − Q| � 0,

λ + β1Κ2 e1( 􏼁 −1

β2Κ2 e1( 􏼁 λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0.

(32)

Analyzing using the Routh stability criteria yields
Table 1.

λ2 + β1Κ1 e1( 􏼁λ + β2Κ2 e1( 􏼁 � 0,

β1Κ1 e1( 􏼁> 0, β1 > 0, β2Κ2 e1( 􏼁> 0, β2 > 0,
(33)

where Q is thus negative definite if the β1 and β2 > 0. Based
on this, it can be determined that the NLESO is asymp-
totically stable.

4.2. Closed-Loop Stability Analysis. In this subsection, the
closed-loop stability of the overall system is analyzed and
proved using the Lyapunov stability criterion.

Taking a nonlinear system as given in equations (1)–(7),
where ρ � 1, the error dynamic of the closed-loop system can
be written as

􏽥e � r − z1. (34)

Differentiating (34) yields
_􏽥e � _r − _z1. (35)

Simplifying (35) thus gives
_􏽥e � −z2 − b0u. (36)

Assumption 1. ,e tracking differentiator in equation (8)
tracks the reference error signal with a very small error that
approaches zero and with _􏽥e � 0.

lim
t⟶∞

􏽥e1 − 􏽥e
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0. (37)

Assumption 2. ,e NLESO in equation (12) estimates all
states of the nonlinear system.

Table 1: Routh stability analysis for Q matrix (NLESO case).

1 β2K2(e1)

β1Κ1(e1) 0
β2Κ2(e1)β1Κ1(e1)

β1Κ1(e1)
� β2Κ2(e1)

0
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lim
t⟶∞

e1 � 0. (38)

Theorem 1. Taking the nonlinear system given in equation
(14) and the modified ADRC as a basis, then, based on as-
sumptions 1 and 2, the closed-loop system is stable if
K1(􏽥e1)􏽥e1,K2(􏽥e2)􏽥e2􏼈 􏼉 is chosen in such a way that the Q

matrix is negative definite and satisfies the characteristic
equation λ2 + λ( ′K1 + ′K2) + ′K1

′K2 � 0.

Proof of Feorem 1. Taking u � u0 − z2/b0, equation (36)
can be rewritten as

_􏽥e � −z2 − b0 u0 −
z2

b0
􏼢 􏼣. (39)

Simplifying (39) thus gives
_􏽥e � −b0u0, (40)

Eq. (40) when substituting the NLPID in Eq. (10) or STC-SM
Eq. (12) is introduced next and stated as follows. □

4.2.1. With NLPID-TD

Remark 1. ,e extended state of the NLESO z2 approaches
the generalized disturbance L and cancels it in an online
manner with a steady-state error, e2, that converges to zero as
t⟶∞, converting the system in equation (14) into a chain
of integrators, thus removing the need for integrator term u3
in the proposed NLPID controller as seen in equation (9).,e
NLPD used in this paper is thus expressed as follows:

u0NLPD � u1 + u2,

u1 �
k1

1 + exp 􏽥e
2
1􏼐 􏼑

􏽥e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α1 sign 􏽥e1( 􏼁,

u2 �
k2

1 + exp _􏽥e
2
1􏼒 􏼓

_􏽥e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α2 sign _􏽥e1􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

Substituting (41) into (40) gives
_􏽥e � −b0 u1 􏽥e1( 􏼁 + u2 􏽥e2( 􏼁􏼂 􏼃. (42)

Assumption 3. Assume Ki(􏽥ei) � ki/1 + exp(􏽥e2i ), i ∈ 1, 2{ },
with α1 and α2 assumed to approach unity: thus, the term
|S|sign(S) in (41) is approximately equal to S, allowing
equation (42) to be rewritten as

_􏽥e � −b0 K1 􏽥e1( 􏼁􏽥e1 + K2 􏽥e2( 􏼁􏽥e2􏼂 􏼃. (43)

Expressing (36) in matrix form gives _􏽥e � ACNLPD
􏽥e, where

ACNLPD
� −K1′ −K2′􏼂 􏼃 and 􏽥e �

􏽥e1
􏽥e2

􏼢 􏼣, Ki
′ � b0Ki(􏽥ei), i ∈

1, 2{ }.
,e Lyapunov function is then used to check the stability

of the closed-loop system:Vcl � 1/2􏽥eT􏽥e, so that _Vcl � 􏽥eT _􏽥e.

_Vcl � 􏽥e1 􏽥e2􏼂 􏼃 −K1′ −K2′􏼂 􏼃
􏽥e1

􏽥e2
􏼢 􏼣. (44)

,e quadric form _Vcl � 􏽥eTQ_􏽥e is stable if Q is a negative
semidefinite matrix, causing the whole system to be stable.

To verify the negative definiteness of Q, the Routh
stability criteria (Table 2) can be used. ,is requires com-
pleting the characteristic equation for matrix Q and com-
puting it as follows:

|λΙ − Q| � 0,

λ 0

0 λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−

− ′K1 0

0 − ′K2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

λ2 + λ ′K1 + ′K2􏼒 􏼓 + ′K1
′K2

′
� 0,

(45)

,e system is stable if the nonlinear function gains K1′
and K2′ satisfy the conditions noted above.

′K1
′K2 > 0⇒1 > 0or

K2 > 0.
(46)

4.2.2. With the Proposed STC-SM. STC-SM substitution of
equation (11) into equation (40) yields

_􏽥e � −b0 κ|ς|ρsign(ς) + ξtanh
ς
δ

􏼒 􏼓􏼔 􏼕, (47)

where ς � κ􏽥e1 + _􏽥e1.
As noted previously, the Lyapunov function was used to

check the stability of the closed-loop system:
If Vcl � 1/2ςT ς, then _Vcl � ςT _ς. Given _ς � u0STC−SM

, ,en
_Vcl � ςT[−κ|ς|ρsign(ς) − ξtanh(ς/δ)].

Table 2: Routh stability analysis forQmatrix (closed-loop analysis
case).

λ2

λ
λ0

1
′K1 + ′K2

( ′K1 + ′K2)
′K1
′K2

′K1 + ′K2

� ′K1
′K2

′K1
′K2

0
0
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_Vcl � −κ|ς|ρ+1sign(ς) − ςξtanh
ς
δ

􏼒 􏼓, (48)

where _Vcl < 0 if κ and ξ > 0, and the system is stable.

5. Simulation Results and Discussion

,e proposed ADRC and proposed COVID-19 nonlinear
model were designed and simulated using MATLAB/
Simulink. ,e parameters of the COVID-19 model are
shown in Table 3, based on estimated data from Italy [17].
,e simulations included comparing the proposed schemes
with a nonlinear ADRC. In this paper, the performance of
each overall system is measured using the multiobjective
performance index (OPI), expressed as follows:

OPI � W1 ∗
IAU
N1

+ W2 ∗
ISU
N2

, (49)

where W1 andW2 are the weighting factors that satisfy
W1 + W2 � 1. Based on this, they are set to W1 � 0.6 and
W2 � 0.4, while N1 and N2 are the nominal values of the
individual objective functions, and their values are set to
N1 � 514.250880 and N2 � 1.449457. Table 4 shows the
description and mathematical representation of all perfor-
mance indices. ,e simulation was done with initial value
S(0) � 9, 979000, E(0) � 2, 000000, I(0) � 1000, R(0) � 0,
H(0) � 0, C(0) � 0, and D(0) � 0.

In this paper, three schemes are used, expressed as
follows:

(1) Scheme 1: Nonlinear state error feedback
(NLADRC) [18] + linear ESO (LESO).,e LESO can
be expressed as

_z1 � z2 + b0u + β1 e1( 􏼁,

_z2 � β2 e1( 􏼁,

⎧⎨

⎩ (50)

while the NLSEF of [18] can be expressed as

fal 􏽥e1, α1, δ1( 􏼁 �

􏽥e1

δ1−α1
1􏼐 􏼑

, x≤ δ1,

􏽥e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α1 sign 􏽥e1( 􏼁, x> δ1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u0 � fal 􏽥e1, α1, δ1( 􏼁,

u1 � u0NLSEF −
z2

b0
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

where 􏽥e1 � r − z1, ei2 is the tracking error, α1 and δ1
are positive tuning parameters, and β1 and β2 are the
observer gain parameters.

(2) Proposed Scheme 1: ,e NLESO of equations (13)
and (14) +NLPD of (41) +TD of (2).

(3) Proposed Scheme 2: ,e NLESO of equations (13)
and (14) + STC-SM of equations (11) and (12) +TD
of equation (9).

Table 3: Sampled parameters for the COVID-19 system.

Parameters Value Descriptions
λCOV 3.3∗ 10− 5 ,e per capita birth rate
βCOV 75∗ 10− 2 ,e probability of disease transmission per contact (transmission rate)
cCOV 2∗ 10− 1 ,e recovery rate of infectious individuals
bCOV 5∗ 10− 1 ,e diagnosis rate
αCOV 6∗ 10− 3 ,e SARS-CoV-2 virus-induced average fatality
μCOV 3.3∗ 10− 5 ,e per capita natural death rate
ϵCOV 2∗ 10− 1 ,e rate of progression from E to I (the reciprocal of the incubation period)

Table 4: Description and mathematical representation of the performance index.

Performance index (PI) Descriptions Mathematical representation

IAU Integral absolute of the control signal 􏽒
tf
0 |u(t)|dt

ISU Integral square of the control signal 􏽒
tf
0 u(t)dt

Table 5: Scheme 1 parameters.

ADRC part Parameter Value

NLSEF α1 0.0907
δ1 0.7427

LESO
β1 0.2110
β2 0.0111
b0 −4.5958

Table 6: Proposed scheme 1 parameters.

ADRC part Parameter Value Parameter Value

NLPD k1 6.616000 k2 4.187500
α1 0.084400 α2 0.339500

TD R 74.7348 a2 15.5400
a1 0.4511 −— —−

NLESO
β1 0.97000 β2 0.235710
A 16.210000 a1 0.529200
b0 −1 —− —−
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,e simulated results for each scheme are given in
Tables 5, 6, and 7, along with the tuned parameters of
both controllers and observers for the aforementioned
schemes.

,e simulation was performed to confirm the effec-
tiveness of the vaccination control strategy with different
nonlinear controllers and nonlinear ESO in the proposed
model, to verify the robustness of the proposed method. ,e
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Figure 5: Simulation results for scheme 1: (a) susceptible individuals, (b) exposed individuals, (c) infected individuals, (d) hospitalized
individuals, (e) cumulative infected, (f ) recovered individuals, and (g) cumulative deaths due to SARS-CoV-2.

Table 7: Proposed scheme 2 parameters.

ADRC part Parameter Value Parameter Value

STC-SM κ 0.164000 ξ 1.684000
℘ 0.50000 δ 6.982000

TD R 5.9990 a2 0.3280
a1 3.1520 —− —−

NLESO
β1 6.82000 β2 12.187081
A 12.140000 a1 0.423800
b0 −8 —− —−
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simulation was done with the initial values mentioned
previously and an applied disturbance of −10000. As shown
in Figures 5(a)–5(g), the number of recovered individuals
after about 35 days reached about 12 million, while infected
individuals reached about zero after 18 days. Moreover, the
number of hospitalized people and exposed people reached
zero after 35 days and 24 days, respectively, while the total
deaths did not exceed 0.08 million in total within 100 days.
Figures 6(a)–6(g) shows almost the same results except for
the total death, which increased by 0.043385% of the
proposed scheme 1 total death value, but it did not increase
after day 35. As shown in Figure 7(a) to 7(g), the proposed
schemes (i.e., Figures 6 and 7) together achieve excellent
results as compared to scheme 1, where total deaths within

100 days exceed 0.08 million, an increase of about 0.0456%,
and it takes about 40 days to arrive at the desired value. In
addition, the numbers of exposed, infected, and hospital-
ized individuals reach zero after about 35–50 days, high-
lighting the effectiveness of the vaccinations used. As these
vaccinations were discovered and developed only recently,
proof of effectiveness is required; currently, there is some
fear and various questions about the effectiveness of the
vaccine or the side effects that may appear in the future and
affect people’s health, counterbalanced by the fact that
some countries or small cities do not have sufficient ca-
pability to buy vaccines. ,ese issues can be considered as
disturbances, further supporting the effectiveness of the
proposed NLESO.
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Figure 6: Simulation results for proposed scheme 1: (a) susceptible individuals, (b) exposed individuals, (c) infected individuals, (d)
hospitalized individuals, (e) cumulative infected, (f ) recovered individuals, and (g) cumulative deaths due to SARS-CoV-2.
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Figure 8 shows the control signal for the proposed scheme
1, proposed scheme 2, and scheme 1. ,is shows that vacci-
nation within the first 15 days after an outbreak can reduce or
suppress the spread of COVID-19 in a highly efficient manner.
Moreover, the number of vaccinated individuals per day for the
proposed schemes is higher than in scheme 1, with the number
of vaccinated individuals at about 2.5 million and 2 million per
day for proposed scheme 1 and proposed scheme 2, respec-
tively, while for scheme 1, the number of vaccinated individuals
is only about 1.2 million, which proves the success of the
proposed controller with respect to achieving a smooth re-
sponse and excellent results. Table 8 shows the simulation
results for the performance index and OPI.

Table 8 shows the simulated results of the performance
indices for the schemes applied in this paper. As shown, the
proposed schemes offer improvements in energy-saving,
which for this paper and its focus on COVID-19 systems,
represent the capability of the vaccines to be stored at the
normal temperature of pharmacy refrigerators, which is
about −20°C. Based on this, the vaccines will be available in a
short time in most countries, as the IAU is reduced by
95.75694% and 90.49362% for proposed scheme 1 and
proposed scheme 2, respectively, and the ISU is reduced by
98.3729%% and 99.0166% for proposed scheme 1 and
proposed scheme 2, respectively. Finally, the proposed
schemes also achieve the best values for OPI, IAU, and ISU.
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Figure 7: Simulation results for proposed scheme 2: (a) susceptible individuals, (b) exposed individuals, (c) infected individuals, (d)
hospitalized individuals, (e) cumulative infected, (f ) recovered individuals, and (g) cumulative deaths due to SARS-CoV-2.
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Remark 2. Although, all the obtained results are perfect,
however, there are some difficulties that we faced in this
work and can be summarized as follows:

(1) ,e stability of the COVID-19 mathematical model.
,is issue has been solved by choosing a suitable
value for bCOV and the suitable design of the pro-
posed controller.

(2) Tuning of the controller and observer parameters.
,is issue is solved by making that all the parameters
are tuning parameters that tuned using GA [30, 31]
and improved the system using the multi-objective
performance index OPI.

6. Conclusions

,e COVID-19 epidemic has spread rapidly in recent years,
and the number of infections and deaths around the world
increased rapidly at first.,e need for vaccines was thus seen
to increase day by day, as part of multiple efforts to reduce
the spread of COVID-19 and subsequently eliminate the
COVID-19 virus. About a year and a half after the first
infections, vaccination wasmade available around the world.
In this paper, NLPD and STC-SM are proposed for appli-
cation to generate proper vaccination control, together with
a proposed nonlinear ESO that eliminates the total distur-
bance to form an ADRC that can be used to contain the
spread of COVID-19. ,e simulation results show that the
proposed schemes are very effective in reducing the spread
of COVID-19, assuming that the vaccinated individuals have
acquired immunity to the virus sufficient that even if they
contact infected people, they will not be further infected.,e

closed-loop stability and convergence of the NLESO are also
demonstrated. A proposed extension to this work would
include another country with a large population as a case
study [32].
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