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ABSTRACT: Spectrum clustering is a powerful strategy to minimize
redundant mass spectra by grouping them based on similarity, with the
aim of forming groups of mass spectra from the same repeatedly
measured analytes. Each such group of near-identical spectra can be
represented by its so-called consensus spectrum for downstream
processing. Although several algorithms for spectrum clustering have
been adequately benchmarked and tested, the influence of the consensus
spectrum generation step is rarely evaluated. Here, we present an
implementation and benchmark of common consensus spectrum
algorithms, including spectrum averaging, spectrum binning, the most
similar spectrum, and the best-identified spectrum. We have analyzed
diverse public data sets using two different clustering algorithms (spectra-
cluster and MaRaCluster) to evaluate how the consensus spectrum
generation procedure influences downstream peptide identification. The
BEST and BIN methods were found the most reliable methods for consensus spectrum generation, including for data sets with post-
translational modifications (PTM) such as phosphorylation. All source code and data of the present study are freely available on
GitHub at https://github.com/statisticalbiotechnology/representative-spectra-benchmark.
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■ INTRODUCTION

Spectrum clustering, i.e., the process of grouping similar
spectra in a larger collection of MS2 spectra into smaller
subsets, has multiple applications in mass spectrometry in
general and in proteomics in particular,1 including the
generation of spectral libraries2 and spectral archives,3 quality
assessment of peptide identifications in public repositories, and
improvement of quantification results.4 Spectrum clustering
algorithms strive to group highly similar spectra so that each
cluster contains spectra generated from the same analyte
(peptidoforms with a specific charge in the case of
proteomics). Differences between tools for spectrum clustering
vary in their implementation of the various data processing
steps, including the preprocessing of spectra (e.g., intensity
normalization and peak picking), the clustering algorithm used,
the metric used for determining similarity between spectra, and
the optional optimizations to increase computational effi-
ciency. Current tools for spectrum clustering include MS-
Cluster,3 spectra-cluster,2 MaRaCluster,5 msCRUSH,6 and
falcon.7

While the most apparent output of the process of spectrum
clustering is a grouping of spectra into clusters, the majority of
use cases benefit from a condensed single spectrum

representation for each cluster. This is, for instance, useful
for the data-driven creation of spectral libraries,8 for
reannotation and visualization of clustering results in public
data repositories,2 and for label-free quantification.4 The
generation of high-quality representative spectra for each
cluster is a key aspect of spectrum clustering, as the resulting
consensus spectra form the starting point for downstream
analyses. Although several spectrum clustering algorithms have
been adequately benchmarked,7,9 the impact of the consensus
spectrum generation procedure has so far not been properly
evaluated. Several common approaches can be used to
generate representative spectra, including spectrum binning,
spectrum averaging,3 and selecting the most similar spectrum
to all cluster members (medoid).7 Additionally, although this
strategy can only be used for clusters that contain one or more
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identified spectra, the “best-identified spectrum” method uses
the most confidently identified spectrum as cluster representa-
tive.10

Here, we have performed a comprehensive evaluation of
algorithms for the generation of consensus spectra to assess
their performance for downstream processing of spectrum
clustering results. We have used the spectra-cluster and
MaRaCluster tools to generate clusters from diverse publicly
available data sets and explore whether consensus spectrum
generation algorithms perform differently between different
tools. Additionally, we have evaluated the impact of consensus
spectrum generation on downstream peptide and protein
identification performance. All code and analyses are open-
s o u r c e and a v a i l a b l e a t h t t p s : / / g i t h ub . c om/
statisticalbiotechnology/representative-spectra-benchmark
under the permissive Apache 2.0 license.

■ METHODS

Consensus Spectrum Generation Methods and Evaluation

For the benchmark, we implemented four consensus spectrum
generation methods:

• Spectrum averaging (AVERAGE): The representative
spectrum is an average of all the spectra in the
cluster.8,11,12 In this algorithm, peaks with close m/z
values are merged into a single peak, and their m/z
values and intensities are averaged. m/z values are
averaged using the corresponding peak intensities as
weights.

• Spectrum binning (BIN): In this method, for each
cluster, a consensus spectrum vector with a bin width of
0.02 m/z was first constructed.12 For all spectra in the
cluster, peak m/z and intensity values were assigned to
the corresponding bin in the consensus spectrum vector.
Bins that contained values from fewer than 25% of the
cluster members were discarded. Next, the vector was
converted to a consensus spectrum by averaging all peak
m/z and intensity values per bin.2

• Most similar spectrum (MOST): For each cluster, the
spectrum that is on average most similar to all cluster
members was selected as a representative spectrum.13

The most similar spectrum was selected by first
calculating the dot product of all pairwise similarities
between spectra in the cluster. Next, the spectrum with
the maximal summed dot product to all other spectra
was selected as the representative for that cluster.

• Best identified spectrum (BEST): For each cluster that
contained at least one identified spectrum, the spectrum
with the maximal peptide-spectrum match score was
chosen as the representative for that cluster. Note that
this approach is not valid if all spectra in the cluster are
unmatched.

The data manipulation steps were implemented as
reproducible Nextflow workflows (Figure 1). The spectra-
cluster (version 1.1.2)2 and MaRaCluster (version 1.0)5

spectrum clustering tools were used to cluster the mass
spectrum data, and the MS-GF+ sequence database search
engine (version v2021.03.22)14 was used to perform peptide
identification. For each cluster, representative (consensus)
spectra were directly generated from the clustering output
using the first three consensus generation procedures described
above. For the best-identified method, the spectra were
additionally identified using MS-GF+, after which the PSMs

with the maximum scores were selected as representatives for
each cluster. To ensure a fair comparison between all
consensus spectrum generation procedures, clusters that only
contained unidentified spectra were ignored, as no valid
representative spectrum could be obtained using the best-
identified method. To evaluate downstream peptide identi-
fication performance, the consensus spectra obtained for both
spectrum clustering tools with each consensus spectrum
generation method were searched using MS-GF+,14 after
which the number of peptide identifications was compared
between all combinations of clustering and consensus
generation methods, and with the original data without
clustering.
Benchmark Datasets

We used four public ProteomeXchange data sets: PXD008355,
PXD023047, PXD021518, and PXD023361 (Table 1). RAW

data from each data set were converted to MGF using the
ThermoRawFileParser (version: 1.2.3) tool15 with default
parameters. Among them, PXD008355, PXD023047, and
PXD021518 are from Arabidopsis thaliana (mouse-ear cress),
and PXD023361 is from Saccharomyces cerevisiae (baker’s
yeast). The data sets have been acquired using three different

Figure 1. Study workflow, including clustering and peptide
identification of publicly available ProteomeXchange data sets,
consensus spectrum generation using alternative procedures, and
evaluation of cluster representatives using an identification bench-
mark.

Table 1. Datasets Were Reanalyzed to Evaluate the
Performance of Each Consensus Spectrum Generation
Algorithma

project accession instrument no. MS/MS

PXD00835516 Q Exactive 1 477 567
PXD02304717 Q Exactive HF 109 333
PXD02151818 Q Exactive HF-X 286 410
PXD02336119 Q Exactive 38 286

aThe number of peptide identifications and peptide-spectrum
matches can be found in the Supplementary Notes. In addition, the
description of each dataset can be found in the original publication
and PRIDE Archive.20
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instrument models: Q Exactive, Q Exactive HF, and Q
Exactive HF-X. The description of the samples, instrument
configuration, sample processing steps, and analytical method
can be read in the original publications: PXD008355,16

PXD023047,17 PXD021518,18 and PXD023361.19

For data sets PXD008355, PXD023047, and PXD021518,
the Arabidopsis thaliana protein database was downloaded
from http://f tp .ebi .ac .uk/pr ide-archive/2019/07/
PXD008355/TAIR10.fasta, while for data set PXD023361
the Saccharomyces cerevisiae database was downloaded from
http://ftp.pride.ebi.ac.uk/pride/data/archive/2021/04/
PXD023361/uniprot-S_yeast.fasta.
For data sets PXD008355, PXD021518, and PXD023361,

the precursor error tolerance was set to 10 ppm, while for data
set PXD023047, it was set to 20 ppm. Target-decoy was
performed using MS-GF+ (parameter -tda). For data sets
PXD023047 and PXD021518 two modifications were allowed
(NumMods = 2), fixed carbamidomethyl cysteine modification
and variable methionine oxidation, while for data sets
PXD008355 and PXD023361, phosphorylation was also
considered as variable modification.

Code Availability

All code and analyses are freely available as open source under
the Apache 2.0 l icense at ht tps ://gi thub.com/
statisticalbiotechnology/representative-spectra-benchmark.
The consensus generation procedures were implemented in
Python 3.6. Software dependencies that were used include
Matplotlib (version 3.1.2),21 Numba (version 0.47.0),22

NumPy (version 1.17.3),23 Pandas (version 0.25.3), pyO-

penMS (version 2.4.0),24 Pyteomics (version 4.1.2),25 and
spectrum_utils (version 0.3.3).26

■ RESULTS

Impact of Consensus Clustering in Database Search
Algorithms

Figure 2 shows the number of PSMs (FDR = 1%) identified
with MS-GF+ (data sets PXD023047, PXD021528,
PXD008355, and PXD023361) for spectrum clustering using
MaRaCluster and spectra-cluster followed by consensus
spectrum generation using the MOST, AVERAGE, BIN, and
BEST procedures. Among the four public proteomics data sets,
whether using spectrum clustering results from MaRaCluster
or spectra-cluster, the identification rate for the MOST method
is lower compared to the other methods, while the BIN and
BEST methods achieve a higher spectrum identification rate
(Figure 2).
While the number of identified spectra only differs by a small

amount between the various consensus spectrum generation
procedures, when analyzing large public proteomics databases
(billions of spectra)27 these differences can be translated into
millions of spectrum identifications. Among the methods that
transform the original spectra, the BIN method is the one that
performed best. The BIN method divides the m/z range into
bins and then integrates the intensities in the spectra that fall
within those bins. The method favors the most intensive peaks,
which might be a reason for the improved identification rates.
Most of the consensus generation methods modify the

original spectra, not only by removing or keeping some of the
spectrum peaks but also by modifying the corresponding

Figure 2. Number of PSMs obtained by MS-GF+ when searching consensus spectra produced by the MOST, AVERAGE, BIN, and BEST
representative cluster generation methods for public proteomics data sets PXD023047, PXD021528, PXD008355, and PXD023361. Note that the
bar plots are truncated past 0 to highlight relevant performance differences.
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intensity of each peak. We have used the distributions of the
MS-GF+ RawScore to explore the relationship between the
final spectra and the quality of the peptide identifications.
Figure 3 shows the distribution of MS-GF+ RawScore for the
four consensus generation methods (MOST, AVERAGE, BIN,
and BEST) after clustering with MaRaCluster and spectra-
cluster. For both clustering tools, the BIN and BEST methods
generate consensus spectra with higher average RawScore
values (Figure 3), and similar to the previous metric (number
of PSMs), the BEST algorithm achieves the highest average

RawScore (Supplementary Note S1). The representative
consensus spectra generated by the MOST method have the
lowest average RawScore (Figure 3). The distribution of
RawScore values (Figure 3) shows that the RawScores are
more homogeneous for the BIN method (lower standard
deviation) than for all the other methods, including the BEST
algorithm (Supplementary Note S1).
Furthermore, we compare the clustering algorithms and

consensus methods for all the spectra of the four data sets
combined (PXD023047, PXD021528, PXD008355, and

Figure 3. Distribution of MS-GF+ RawScores for MOST, AVERAGE, BIN, and BEST representative spectra from the public proteomics data sets
PXD023047, PXD021528, PXD008355, and PXD023361.

Figure 4. Number of PSMs and distribution of MS-GF+ RawScores for MOST, AVERAGE, BIN, and BEST representative spectra from the
combined spectrum data (PXD023047, PXD021528, PXD008355, and PXD023361). Note that the bar plots are truncated past 0 to highlight
relevant performance differences.
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PXD023361). Similar to the analysis performed in individual
data sets, when the data was combined, the MOST and
AVERAGE performed worse than BEST and BIN. This
experiment shows that the instrument has little influence on
the four representative spectrum generation methods (Figure
4).
The MOST method calculates the similarity distance

between each spectrum in the cluster and other spectra in
the cluster, sums the similarity distances, and finally selects the
spectrum with the largest sum of similarity distances as the
representative spectrum. For cases where the sum of multiple
distances is the same, MOST always randomly selects a
spectrum to represent. This process is likely to make the
representative spectrum selected by MOST not truly
representative of the entire cluster. And the selected
representative spectrum is likely to be suboptimal (or even
the worst) in the MS-GF reference score, which may also cause
the representative spectrum to be screened out in the quality
control process.
Impact of Cluster Size and Quality of Peptide
Identifications

Figure 5 shows the changes in mean RawScore of the identified
spectra generated with the four evaluated methods (MOST,

AVERAGE, BIN, and BEST) for clusters of different sizes
(cluster sizes 1, 2, 3, 4, 5, 5−10, 10−20, 20 or higher). As
expected, for clusters of a single spectrum, no differences were
observed between different consensus methods, but minor
differences were observed between the clustering algorithms.
For other small clusters containing three or fewer spectra,
consensus spectra derived from the spectra-cluster results, in
combinations with all the consensus spectrum generation
methods, provide higher mean RawScores than consensus
spectra derived from MaRaCluster results. In contrast, for
larger clusters, MaRaCluster consensus spectra lead to higher
mean RawScores. For both spectra-cluster and MaRaCluster,
the mean RawScore increases with increasing cluster size. The
BEST and BIN algorithms are stable for both clustering
algorithms and all data sets (Supplementary Note S1), and the
scores of these two algorithms are generally higher than MOST
and AVERAGE. In combination with MaRaCluster, the
AVERAGE algorithm shows instability and the score of the
AVERAGE algorithm is generally lower than the other three
algorithms.

In addition, we explored how the clustering quality and
consensus spectrum generation can impact the accuracy of the
identification results. For example, which analyte will be
identified from the consensus spectrum if a cluster contains
four spectra and three were generated from the same analyte,
but the last spectrum was generated from a different one? Will
the search engine identify the most predominant or the
divergent peptide?
We used the data of the four experiments combined to

benchmark the quality of peptide identifications from the
multispectral clusters, i.e., clusters that contained more than
one spectrum. We hence removed singleton clusters, as well as
clusters where there was no single peptide that appeared in
more than 50% of the peptide-spectrum matches to its
constituent spectra. We subsequently divided our clusters into
two categories based on the relations between their
representative spectra and their corresponding clustered
spectra, the case when the consensus spectrum matched (1)
the same or (2) a different peptide than the majority of the
spectra in the cluster. We refer to these cases as high- and low-
quality representative spectra.
Table 2 summarizes the results for the comparison of the

matches to the spectra in the multispectral clusters and their

representative spectrum. MaRaCluster showed better perform-
ance for all the consensus methods compared with spectra-
cluster. For both clustering algorithms, the BEST method
presented the best ratio of high-quality identified representa-
tive spectra, followed by the BIN, MOST, and/or AVERAGE
methods. For spectra-cluster, which showed a higher number
of mixed clusters, the number of high-quality representative
spectra was higher for the BIN methods than for BEST. That
difference is mainly due to the differences in the number of
available clusters, after removing the clusters where no single
peptide appeared in more than 50% of the peptide-spectrum
matches, there were more multispectral clusters for the BEST
than the BIN method (103 955 vs 102 639 clusters), but the
methods have approximately the same number of high-quality
representative spectra (80 577 vs 80 441).
Due to the characteristics of the BIN and AVERAGE

methods, some of the representative spectra have different
peptides from all spectra in their corresponding multispectral
clusters, which does not occur in BEST and MOST. The vast
majority of poor representative spectra arise from situations

Figure 5. Average RawScore for the evaluated methods as a function
of cluster size (1, 2, 3, 4, 5, 5−10, 10−20, 20 or higher).

Table 2. Fraction of the High- and Low-Quality
Representative Spectra from Multispectral Clusters

methods
high-quality representative

spectrum ratio
low-quality representative

spectrum ratio

MaRaCluster
BEST

0.871 0.129

MaRaCluster BIN 0.853 0.135
MaRaCluster
AVERAGE

0.831 0.143

MaRaCluster
MOST

0.842 0.158

spectra-cluster
BEST

0.776 0.224

spectra-cluster
BIN

0.779 0.212

spectra-cluster
AVERAGE

0.770 0.215

spectra-cluster
MOST

0.772 0.228
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where the peptides identified by the representative spectra are
the same as those identified by a small fraction of the spectra in
the cluster. The statistical results indicate that the representa-
tive spectra corresponding to the BEST and BIN methods are
of higher quality, and the results of the representative spectra
generation methods are more stable.
Consensus Spectrum Generation Methods for Spectra
Library Search

We studied the impact of peptide identification for spectral
library search approaches using the four different methods to
create spectral libraries. In spectral library searches, all the
consensus spectra are identified peptides. We performed a
spectral library search on the combined data of the four
methods using SpectraST (version: 5.0). We use the four
methods to generate consensus spectra of BEST, BIN, MOST,
and AVERAGE derived from the MS-GF+ matches for both
clustering tools (MaRaCluster and spectrum-cluster), resulting
in 8 spectral libraries in total). We used a threshold of the
SpectraST scores, Fval ≥0.5, as the quality control criterion to
perform statistical analysis on the postcharge search results
(Figure 6).
In terms of the number of identifications, the results of

spectral searches using SpectraST repeated the pattern of the
previous experiments. The lowest number of matches was
obtained against the library generated with the MOST method,
followed by AVERAGE and BIN methods, and the BEST
libraries performed better than the others. We explored the

Fval (identification score) distribution of the identified
peptides with each combination (Figure 6). No major
differences are observed across consensus spectra generation;
however, the Fval values are significantly higher when using
spectra-cluster for clustering compared with MaRaCluster.

Posttranslational Modification Site Localization of
Consensus Spectra

In addition to peptide identification, we explored how using
consensus spectra instead of the original spectra affects
phospho-peptide identification and phosphorylation site local-
ization. We analyzed the number of phosphorylation sites
identified in data set PXD008355 after clustering with both
tools (MaRaCluster and spectra-cluster) and the four different
consensus spectrum generation methods (MOST, AVERAGE,
BIN, and BEST). We have evaluated two metrics, (i) the
number of phosphorylated PSMs identified and (ii) the
phosphorylation sites identified.
Figure 6 shows the intersection of the phosphorylated PSMs

among the four representative cluster methods after spectrum
clustering with MaRaCluster and spectra-cluster. Most of the
PSMs (91.2% for MaRaCluster and 96.4% for spectra-cluster)
for the four representative cluster methods produce the same
phosphorylated PSMs. The BIN method produces the largest
number of unique PSMs, which is about double the number of
other methods, followed by the BEST, MOST, and AVERAGE
methods (Figure 7).

Figure 6. Number of spectral-spectral matches (SSMs) and distribution of Fval (SpectraST identification score) for MOST, AVERAGE, BIN, and
BEST representative spectra from the combined spectrum data (PXD023047, PXD021528, PXD008355, and PXD023361).

Figure 7. Intersection of the total phosphorylated PSMs among the four representative cluster methods in (a) MaRaCluster and (b) spectra-cluster.
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While the majority of phosphorylated PSMs are aggregated
among all methods, around ∼1% are different and we also
observed differences in terms of phosphorylation sites. Table 3
shows the difference in phosphorylation sites between BIN and
BEST representative spectra from MaRaCluster and spectra-
cluster (extended table, Supplementary Note S3). Because the
BEST and BIN methods were the best performing consensus
generation12 options in terms of peptide identification, we
focus the discussion on these two methods (extended table,
Supplementary Note S3). Most phosphorylated PSMs (63 165
for MaRaCluster and 89 161 for spectra-cluster) have their
spectra mapped to peptides and phosphorylation sites in
common for the BEST and BIN methods. We here call such
PSMs corroborative. However, for a small number of PSMs,
there were differences in the mapped phosphosites between
the consensus spectrum generation methods (2683 in
MaRaCluster and 1494 in spectra-cluster), which we here
refer to as divergent PSMs. These small differences can be
attributed to the fact that the BIN method modifies the ion
peak intensity and m/z of the spectrum through the binning
algorithm.

■ CONCLUSIONS

Representative spectra from clusters have typically been
generated using four different algorithms: spectrum averaging,
spectrum binning, the most similar spectrum, and the best-
identified spectrum. Most tools and resources, including
SpectraST,8 MassIVE28 spectral libraries, or spectra-cluster
and PRIDE Cluster2 use one of these methods. However, to
our knowledge, no systematic analysis has been performed to
compare multiple algorithms to generate consensus spectra.
We implemented a Python framework to benchmark existing
algorithms to generate representative spectra from clustering
results from two different popular clustering toolsMaR-
aCluster and spectra-cluster.
The BEST and BIN methods were found to be the most

reliable methods for consensus spectrum generation, including
for data sets with post-translational modifications such as
phosphorylation. The BEST method generates representative
consensus spectra based on existing spectrum identification
results, which requires that all clusters contain identified
spectra. Therefore, the BEST method cannot be used on
spectral archives (clusters of nonidentified spectra) or if
clustering is performed before the identification step. The BIN
method is based on the original spectrum file and binning
algorithm to generate representative consensus spectra and
performed best in all benchmarks and comparisons after the
BEST method. While the BIN algorithm modifies the original
spectra, we do not observe major differences in identifying
phosphorylated peptides and phosphorylation sites compared
to the results of the BEST method to generate representative

spectra. The fact that the BEST method is performing so well,
compared to existing methods, suggests that better algorithms
could be developed in the future to generate consensus spectra
from clustering results.
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