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Abstract: A series of novel mono- and di-substituted N-n-butyl-1,8-naphthalimide derivatives
were synthesized simultaneously via a three-step reaction. The single crystal structure of
N-n-butyl-4-[N′,N′-bis(2′,4′-dichlorobenzoyl)ethylamino]-1,8-naphthalimide (3f) was determined.
The UV-vis and fluorescence properties of compound 3f were investigated. The 3f showed highly
selective and sensitive fluorescence changes response towards Pb2+. A titration of monomer with
Pb2+ ion was performed. When Pb2+ ion concentration increased from 0 to 10 eq., the fluorescent
intensity of 3f decreased from 199.97 to 48.21. The pH effect on 3f showed that it is stable in a wide
range of pH. The results indicated that 3f might be a probe molecule for Pb2+.

Keywords: N-n-Butyl-4-(N′,N′-dihydroxyethylamino)-1,8-naphthalimide; design; synthesis; crystal
structure; fluorescence

1. Introduction

Determining the contents of metal cations in environmental objects and biological systems is
an important practical task for industry, medicine and ecology and for chemical and biochemical
studies [1–5]. Among the extensive modern physicochemical methods of analysis, optical electron
spectroscopy has gained great popularity due to the relative simplicity of experimental procedures
combined with its high sensitivity toward analytes. In particular, fluorescent chemosensors have been
proven to be highly valuable tools for sensing chemical and biological species such as metal ions, anions
and amino acids, because of their high sensitivity, selectivity, rapidity, portability and the availability of
a wide range of indicator dyes, etc. [6]. There is no doubt that fluorescent chemosensors with differential
responses toward multiple components are economic and highly desirable for practical applications.

In recent years, 1,8-naphthalimide derivatives have been widely applied as fluorescent dyes,
metal sensors and organic light emitting materials because of their excellent fluorescence properties,
high absorption coefficients, good fluorescence and quantum yields, large stokes shifts, good stability
and easy modification. The considerable interest in 1,8-naphthalimide derivatives as the photoactive
component of optical chemosensors is caused, on the one hand, by relative simplicity of their synthesis,
on the other hand, by the great diversity of their photo-physical properties [7–9]. Naphthalimide-based
probes have been developed to detect H+, Hg2+, Zn2+, Cu2+, Ag+, Cd2+, Pd2+, Cr3+, Al3+, Fe3+ and
F− via chromogenic and fluorometric analyses [10–15]. Therefore, the naphthalimide derivatives are
potential carriers that could be used in the preparation of new optical chemosensors. Though extensive
excellent work has been reported on the 1,8-naphthalimide derivatives with an O- [16,17], N- [18],
S-substituted group [19], or five-member heterocycle [20,21] in the C-4 position as an electron donating
group, it is still meaningful to extend the research of such materials, including introducing different
electron-donating groups, such as hydroxyl or ester group to explore their fluorescence property.
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However, few studies have focused on fluorescent 1,8-naphthalimide esters containing mono- or
di-substituted ester at the C-4 position.

In this study, we designed and synthesized a series of N-n-butyl-1,8-naphthalimide fluorescent
sensors with a diethyl amino link at the C-4 position. As shown in Scheme 1, a functional group
containing a nitrogen atom and a carbonyl group was introduced to 1,8-naphthalimide; these groups are
commonly used as acceptor units in probes designed for metal ions and anions [22,23]. The biological
importance of the combination of the carbonyl groups with naphthalimide prompted us to explore a
new class of fluorescent probe for selective recognition of metal ions in aqueous media. This is the
first attempt to synthesize mono- and di-substituted 1,8-naphthalimide esters simultaneously at the
C-4 position. In addition, a single crystal was prepared to characterize its spatial configuration and to
propose its possible complex with metal ions. The spectroscopic changes that result from structural
changes signal the existence of different metal ions.

Molecules 2018, 23, x FOR PEER REVIEW  2 of 14 

 

materials, including introducing different electron-donating groups, such as hydroxyl or ester group 
to explore their fluorescence property. However, few studies have focused on fluorescent 
1,8-naphthalimide esters containing mono- or di-substituted ester at the C-4 position. 

In this study, we designed and synthesized a series of N-n-butyl-1,8-naphthalimide fluorescent 
sensors with a diethyl amino link at the C-4 position. As shown in Scheme 1, a functional group 
containing a nitrogen atom and a carbonyl group was introduced to 1,8-naphthalimide; these 
groups are commonly used as acceptor units in probes designed for metal ions and anions [22,23]. 
The biological importance of the combination of the carbonyl groups with naphthalimide prompted 
us to explore a new class of fluorescent probe for selective recognition of metal ions in aqueous 
media. This is the first attempt to synthesize mono- and di-substituted 1,8-naphthalimide esters 
simultaneously at the C-4 position. In addition, a single crystal was prepared to characterize its 
spatial configuration and to propose its possible complex with metal ions. The spectroscopic 
changes that result from structural changes signal the existence of different metal ions. 

 
Scheme 1. Design of the novel 1,8-naphthalimide-based chemosensors. 

2. Results and Discussion 

2.1. Synthesis and Characterization 

As shown in Scheme 2, the mono- and di-substituted 1,8-naphthalimide esters were 
synthesized via three steps. Although many efforts have been made to prepare 1,8-naphthalimide 
derivatives with different substitutions at position 4 [1,9,10,24–28], this is the first attempt to 
synthesize mono- and di-substituted 1,8-naphthalimide esters simultaneously at position 4. 
N-n-Butyl-4-bromo-1,8-naphthalimide was prepared by the convenient substitution of 
4-bromo-1,8-naphtalic anhydride with n-butyl amine. The intermediate 
N-n-butyl-4-(N′,N′-dihydroxyethyl)amino-1,8-naphthalene imide (BNI) was obtained through 
nucleophilic substitution with diethanolamine. The mono- and di-substituted products were 
obtained simultaneously in fair to moderate yields via the acylation reaction (Scheme 2). 

Scheme 1. Design of the novel 1,8-naphthalimide-based chemosensors.

2. Results and Discussion

2.1. Synthesis and Characterization

As shown in Scheme 2, the mono- and di-substituted 1,8-naphthalimide esters were
synthesized via three steps. Although many efforts have been made to prepare 1,8-naphthalimide
derivatives with different substitutions at position 4 [1,9,10,24–28], this is the first attempt to
synthesize mono- and di-substituted 1,8-naphthalimide esters simultaneously at position 4.
N-n-Butyl-4-bromo-1,8-naphthalimide was prepared by the convenient substitution of
4-bromo-1,8-naphtalic anhydride with n-butyl amine. The intermediate N-n-butyl-4-(N′,N′-
dihydroxyethyl)amino-1,8-naphthalene imide (BNI) was obtained through nucleophilic substitution
with diethanolamine. The mono- and di-substituted products were obtained simultaneously in fair to
moderate yields via the acylation reaction (Scheme 2).
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Scheme 2. Synthetic route for the production of compounds 3 and 4.

To determine the optimal reaction conditions for the efficient preparation of the target molecules,
the reaction temperature was varied. The results indicated that room temperature is crucial for
preventing the facile generation of anhydride during the addition of aroyl chloride. The target
molecular structure depended on the molar ratio of compound BNI and aroyl chloride. When the
molar ratio of compound BNI and aroyl chloride was less than 1:1.5, the product was primarily
the mono-substitution product 4. However, when the molar ratio was 1:2.2–1:2.5, both mono-
and di-substituted products were generated. The yields of compounds 3 and 4 indicated that the
substituents on the benzene ring exerted negligible effects. All of the 1,8-naphthalimide derivatives
were confirmed via 1H-NMR, 13C-NMR, MS, elemental analysis and the data are reported in the
experimental section.

To further confirm the structure of the synthesized compounds, a single-crystal structure of
compound 3f was obtained by dissolving the crystal in ethanol followed by slow evaporation of the
solvent at room temperature over approximately 3 days. The molecular structure of compound 3f is
shown in Figure 1. A packing diagram is shown in Figure 2. In Figure 2 showed that all of the atoms
of the rings were almost in the same plane. The 3D net consists of moderate π-π stacking interactions
with a centroid-to-centroid distance of 3.6548 Å and the shortest distance (X1A to C2, C3) between the
core planes was 3.490 Å (Figure 3).
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2.2. Absorption Spectra and Fluorescence

The photo-physical properties of 1,8-naphthalimides mainly originate from the polarization
of the naphthalimide moiety due to the electron donor-acceptor interaction that occurs between
the substituents at C-4 (electron donor) and the carbonyl groups from the imide structure (electron
acceptor) of the molecule [29]. The normalized UV-vis spectra of compounds 3a–3f and 4a–4f in
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EtOH/H2O (v/v = 4:1) with a concentration of 1 × 10−5 M are listed in Table 1. As shown in Table 1,
the main absorption band of these dyes is centered between 414 and 440 nm. The main absorption band
of mono-substituted compounds was centered at 440 nm and that of the di-substituted compounds was
centered at 420 nm because the substituents at benzene affected the molecular polarities of compounds
3 and 4.

Table 1. Absorption and fluorescence characteristics of compounds a–f in EtOH/H2O (v/v = 4:1) solution.

Comp. Log ε (1 M−1·cm−1) a λmax b A λem b ΦF
c

3a 4.286 421.5 0.103 521 0.264
3b 3.748 419.5 0.090 529 0.245
3c 4.100 420.0 0.035 524 0.289
3d 3.699 414.0 0.120 522 0.238
3e 4.336 417.0 0.055 527 0.238
3f 4.017 421.5 0.118 528 0.247
4a 4.241 439.5 0.228 526 0.554
4b 4.255 439.5 0.121 524 0.596
4c 4.233 440.5 0.054 523 0.577
4d 4.140 440.0 0.168 523 0.600
4e 4.201 440.0 0.116 522 0.579
4f 4.212 438.5 0.098 521 0.599

a Extinction coefficient. b Maximum absorbance (λabs) and emission intensity (λem) wavelengths. c Fluorescence
quantum yield (ΦF) were determined by using rhodamine 6G in an EtOH solution. (ΦF = 0.94) as a reference.

The emission was detected at 521–529 nm. Compared with the emission maximum of compound
3a (λem = 521 nm), those of the other di-substituted compounds, namely 3b–3f, were all slightly
red-shifted, which might be the result of the electron-withdrawing and electron-donating capabilities
of the substituents of the benzene. In addition, the emission maxima of the mono-substituted
compounds were almost equal [30]. However, the mono-substituted compounds exhibited greater
fluorescence quantum yield (ΦF) at approximately 329–398 nm, almost twofold greater than that of the
di-substituted compounds. Di-substitution with hydroxyl groups, which exerted a steric effect, resulted
in a bathochromic shift in the emission maximum. Because of this spatial steric effect, the fluorescence
emissions of all the mono-substituted compounds exceeded those of the di-substituted compounds.
This result indicated that the mono-substituted compounds might be better probe molecules due to
their greater fluorescence quantum yield and the large space between the hydroxyl and carbonyl.

2.3. Solvent Effect

Compound 3f was selected for the fluorescence intensity experiment because its single crystal
structure was determined by X-ray analysis, which was able to explain the ion-recognition performance
based on the molecular configuration. As shown in Figure 4, the fluorescence emission of compound 3f
is more dependent on the solvent. As the solvent polarity increased, the emission wavelength λem

was red-shifted and the fluorescence intensity decreased. The fluorescence maximum shifts to longer
wavelengths from nonpolar to polar solvents are indicative of the charge transfer nature of the emitting
state. As shown in Figure 4, the λem for 3f shifted from 495 nm to 529 nm as the solvent was changed
from dichloromethane to dimethylformamide. Examination of the chemical structure of entitled dyes
suggested that the occurrence of an intramolecular charge transfer (ICT) process might be responsible
for their solvent sensitivity. The absorption of light by these molecules is accompanied by electron
density shift from the donor to the acceptor and most often, results in an increase in the dipole
moment on going to the excited state. Depending on the mode of receptor attachment, binding of the
cation would induce either a bathochromic or hypochromic shift of the absorption maximum with a
simultaneous change in the intensity [31]. Therefore, EtOH and H2O were selected as the solvents to
reduce the use of organic solvents and allow the dissolution of metal ions.
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2.4. Selectivity of Probe 3f

Figure 5 shows the fluorescence emission spectra of compound 3f in EtOH/H2O (v/v = 4:1)
solution (1 × 10−5 M) that was excited at its absorption maximum. As shown in Figure 5, upon
addition of 3 eq. of each cation, only Pb2+ induced a distinct spectrum change while other metal ions
(Cu2+, Ag+, Na+, K+, Ba2+, Ca2+, Co2+, Mg2+, Mn2+, Ni2+, Sn2+, Zn2+, Al3+, Hg2+ and Fe3+) showed
either no or slight changes in the fluorescence spectra relative to the free compound 3f, which indicated
that compound 3f might be a probe molecule for Pb2+. The fluorescence intensity difference might be
attributable to the formation of a compound 3f-Pb2+ complex. The fluorescence intensity difference
might be attributable to the formation of a 3f-Pb2+ complex. The fluorescence intensity of 3f is strong
in original, after Pb2+ added, the N, carbonyl O and OH are likely to coordinate with it, resulting
in fluorescence decrease. On the basis of the aforementioned fact, a plausible binding mode of the
complex was proposed, as shown in Figure 6.
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2.5. Titration Experiments

To further assess its utility as a Pb2+-selective probe, its UV–vis spectrum response to Pb2+ as
demonstrated in Figure 7, in the concentration range of 0 and 10 eq. the absorbance of 3f decreased
from 0.118 to 0.054. The results led us to conclude that 3f could be an effective colorimetric probe
for Pb2+.
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As shown in Figure 8, in the concentration range of 0 and 10 eq., emission intensity decreased
significantly with increasing Pb2+ concentration, implying that Pb2+ can be quantitatively detected in a
wider concentration range. These results will support the design of novel fluorescent materials based
on 1,8-naphthalimide derivatives.
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2.6. Effect of pH

The pH effect on 3f was investigated in EtOH-H2O solution (v/v = 4:1) in a pH value 2–12
(Figure 9). No obvious fluorescence emission change of probe 3f was observed with the pH changes
and this indicated that the free probe 3f was stable at a wide pH range. Meanwhile, an obvious
fluorescence decrease was observed after mixing 3f with Pb2+ in the range pH 2–12. These suggested
that compound 3f could act as a fluorescent probe for Pb2+ under physiological pH conditions and
also be applicable at complex environment conditions.
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3. Experimental

3.1. Chemicals and Instruments

All of the solvents and reactants are commercially available and were used without purification.
The melting points were determined using a Beijing Taike melting point apparatus (X-4) and were
uncorrected. The 1H-NMR and 13C-NMR spectra were recorded on a Bruker AVANCE 300 MHz or
400 MHz nuclear magnetic resonance spectrometer using CDCl3 or DMSO-d6 as the solvent and TMS
as the internal standard. The mass spectra were recorded on a Waters XevoTQ mass spectrometer.
The elemental analysis was performed on FLASH EA1112 elemental analyzer. Absorption spectra
were collected using a PERSEE TU-1900 ultraviolet spectrophotometer. Fluorescence emission spectra
were obtained on a Perkin Elmer LS55 fluorospectrophotometer. The X-ray data were collected on
a Bruker AXSII CCD area-detector diffractometer using graphite monochromated Mo Ka radiation
(λ = 0.71073 Å) at 293(2) K. All of the calculations were performed with the SHELX-97 program
package [32,33].

3.2. Testing Methods

Compound 3f was dissolved in EtOH to form a 10−4 M stock solution. Deionized water was used
throughout the experiment and the solutions of metal ions were prepared from CuCl2·2H2O, AgNO3,
NaCl, KCl, BaCl2, CaCl2, CoCl2, MgCl2, MnCl2, NiCl2, Pb(NO3)2, SnCl2, ZnCl2, AlCl3, Hg(OAc)2 and
FeCl3, respectively. All the cations were dissolved in deionized water to obtain 10−2 M stock solutions.
For fluorescent measurement of Pb2+, the mixed stock solutions were diluted to 10 mL with EtOH and
H2O to form EtOH/H2O (v/v = 4:1) solutions. For the titration experiments, 3f stock solution (10 µL)
was mixed with a certain amount of Pb2+ stock solution and diluted to 10 mL with EtOH and H2O to
form EtOH/H2O (v/v = 4:1) solutions. The wide pH range solutions were prepared by adjustment of
0.05 mol·L−1 Tris-HCl solution with HCl or NaOH solution.

3.3. Synthesis of N-n-Butyl-4-bromo-1,8-naphthalimide (1)

N-n-Butyl-4-bromo-1,8-naphthalimide was prepared by modifying a previously reported
procedure [24] to obtain an improved yield of 84%. 4-Bromo-1,8-naphthalic anhydride (58 mmol,
16.1 g) and n-butylamine (60 mmol, 4.4 g) were heated under reflux in ethanol (250 mL) with vigorous
stirring for 12 h under N2. Then, the mixture was cooled and the precipitated solids were filtered and
recrystallized from ethanol to yield 13.5 g (70%) of a light-yellow product. m.p. 105–106 ◦C; IR (KBr,
v cm−1): 2932, 2848 (C-H) 1686 (C=O). 1H-NMR (DMSO-d6, 300 MHz), δ (ppm): 7.92–8.52 (m, 5H),
3.98–4.03 (t, J = 7.3 Hz, 2H), 1.56–1.66 (m, 2H), 1.31–1.39 (m, 2H), 0.90–0.95 (t, J = 7.3Hz, 3H). 13C-NMR
(100 MHz, DMSO-d6) δ (ppm) 163.21, 132.95, 131.94, 131.94, 131.73, 131.73, 131.32, 131.32, 129.51, 128.60,
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123.09, 122.31, 39.76, 30.01, 20.27, 14.18. MS (ESI) m/z: 332 (M + H)+. Anal. Calcd. For C16H14BrNO2

(%): C, 57.85; H, 4.25; N, 4.22. Found: C, 57.80; H, 4.18; N, 4.28.

3.4. Synthesis of N-n-Butyl-4-N′,N′-dihydroxyethyl-1,8-naphthalimide (BNI)

N-n-Butyl-4-(N′,N′-dihydroxyethyl)amino-1,8-naphthalimide was obtained using a procedure
similar to that reported by Guo et al. [25]. N-n-Butyl-4-bromine-1,8-naphthalimide (45.2 mmol,
15 g) and diethanolamine (75 mL mmol) were mixed in ethylene glycol monomethyl ether
(100 mL). The mixture was refluxed for 6 h. The crude product was purified by column
chromatography using silica gel, with an EtOAc and light petroleum (v/v = 1:4) solution as the
eluent. N-n-Butyl-4-(N′,N′-dihydroxyethyl)amino-1,8-naphthalene imide (BNI) was obtained as a
yellow solid at a yield of 20.4%. m.p. 129–130 ◦C; IR (KBr, v cm−1): 3432 (O-H), 2957, 2872 (C-H) 1658
(C=O). 1H-NMR (400 MHz, CDCl3) δ (ppm) 8.88–7.28 (m, 5H), 4.16–4.12 (t, J = 7.2 Hz, 2H), 3.85–3.88
(t, J = 5.2 Hz, 4H), 3.61–3.64 (t, J = 5.2 Hz, 4H), 2.81 (s, 2H), 1.68–1.69 (m, 2H), 1.43–1.45 (m, 2H),
0.96–0.99 (t, J = 7.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ (ppm) 164.34, 163.91, 154.28, 131.18, 131.22,
130.85, 130.14, 127.24, 125.65, 122.92, 117.18, 117.05, 59.73, 59.73, 55.33, 55.33, 40.10, 30.20, 20.38, 13.85.
MS (ESI) m/z: 357 (M + H)+. Anal. Calcd. for C20H24N2O4 (%): C 67.40; H 6.79; N 7.86. Found: C 67.28;
H 6.86; N 7.95.

3.5. General Procedure for the Synthesis of N-n-Butyl-4-[N′,N′-dihydroxyethyl]-1,8-naphthalene Imide

A mixture of BNI (1.0 g, 2.81 mmol) and TEA (0.63 g, 6.25 mmol) solution in dichloromethane
(40 mL) was stirred and substituted benzoyl chloride (6.25 mmol) was then slowly added over 30 min
and allowed to react for 8 h at 25 ◦C. The product was neutralized by saturated Na2CO3(aq) and
purified by column chromatography on a silica gel column using cyclohexane-EtOAc (v/v = 1:3) as
the eluent.

3.5.1. [(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)imino]diethane-2,1-diyl
dibenzoate (3a)

Yield 46.0%, yellow solid, m.p. 148–150 ◦C; IR (KBr, v/cm−1) 2960–2897 (C-H), 1719 (C=O). 1H-NMR
(400 MHz, CDCl3) δ (ppm) 8.53–7.28 (m, 15H), 4.54–4.51 (t, J = 5.2 Hz, 4H), 4.17–4.13 (t, J = 7.2 Hz, 2H),
3.91–3.88 (t, J = 5.2 Hz, 4H), 1.75–1.67 (m, 2H), 1.50–1.41 (m, 2H), 1.01–0.97 (t, J = 7.8 Hz, 3H). 13C-NMR
(100 MHz, CDCl3) δ (ppm) 166.15, 166.15, 164.28, 163.64, 153.96, 153.96, 133.13, 133.13, 131.74, 131.19,
130.26, 129.93, 129.51, 129.42, 128.27, 128.27, 128.27, 128.27, 127.61, 127.61, 125.92, 125.92, 123.92, 123.20,
118.85, 117.69, 62.06, 62.06, 52.76, 52.76, 40.03, 30.24, 20.39, 13.88. MS (ESI) m/z: 565 (M + H)+. Anal.
Calcd. for C34H32N2O6 (%): C 72.32; H 5.71; N 4.96. Found: C 72.44; H 5.68; N 4.82.

3.5.2. [(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)imino]diethane-2,1-diyl
bis(2-methylbenzoate) (3b)

Yield 48.2%, yellow solid, m.p. 94–95 ◦C; IR (KBr, v/cm−1) 2959–2871 (C-H), 1717 (C=O). 1H-NMR
(300 MHz, CDCl3) δ (ppm) 8.54~7.08 (m, 13H) 4.51–4.47 (t, J = 5.4 Hz, 4H), 4.17–4.12 (t, J = 7.5 Hz,
2H), 3.96–3.87 (t, J = 5.4 Hz, 4H), 2.46 (s, 6H), 1.74–1.66 (m, 2H), 1.49–1.42 (m, 2H), 1.02–0.97 (t, 3H).
13C-NMR (75 MHz, CDCl3) δ (ppm) 166.96, 166.96, 164.38, 163.72, 153.96, 140.52, 140.52, 132.28, 132.28,
131.76, 131.76, 131.25, 130.47, 130.47, 130.31, 129.99, 128.68, 128.68, 127.55, 125.92, 125.92, 125.59, 125.59,
123.27, 118.70, 117.67, 61.68, 61.68, 52.83, 52.83, 40.12, 30.30, 21.75, 21.75, 20.46, 13.93. Anal. Calcd. for
C36H36N2O6 (%): C 72.95; H 6.12; N 4.73. Found: C 72.98; H 6.21; N 4.78.

3.5.3. [(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)imino]diethane-2,1-diyl
bis(4-methylbenzoate) (3c)

Yield 30.4%, yellow solid, m.p. 104–105 ◦C; IR (KBr, v/cm−1) 2957–2927 (C-H), 1707 (C=O). 1H-NMR
(400 MHz, CDCl3) δ (ppm) 8.56–7.13 (m, 13H), 4.53–4.51 (t, J = 5.6 Hz, 2H), 4.20–4.17 (t, J = 7.6 Hz, 2H),
3.91–3.88 (t, J = 5.2 Hz, 2H), 3.57–3.56 (m, 1H), 3.31–3.30 (m, 1H), 2.45–2.38 (m, 8H), 1.76–1.75 (m, 1H),
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1.74–1.39 (m, 7H). 13C-NMR (100 MHz, CDCl3) δ (ppm) 171.88, 171.88, 166.32, 164.41, 163.76, 154.15,
154.15, 144.49, 143.91, 139.17, 134.15, 134.15, 130.24, 130.24, 130.24, 130.24, 129.51, 129.51, 129.19, 129.19,
129.01, 129.01, 126.76, 126.76, 126.41, 118.84, 61.94, 61.94, 52.79, 52.79, 40.09, 30.33, 21.76, 21.76, 20.42,
13.89. MS (ESI) m/z: 593 (M + H)+. Anal. Calcd. for C36H36N2O6 (%): C 72.95; H 6.12; N 4.73. Found: C
72.79; H 6.25; N 4.82.

3.5.4. [(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)imino]diethane-2,1-diyl
bis(4-chlorobenzoate) (3d)

Yield 33.7%, yellow solid, m.p. 88–90 ◦C; IR (KBr, v/cm−1) 2957-2871 (C-H), 1718, 1690, 1664 (C=O).
1H-NMR (400 MHz, CDCl3) δ (ppm) 8.56–7.28 (m, 13H) 4.52–4.49 (t, J = 5.4 Hz, 4H), 4.19–4.11 (m, 2H),
3.88–3.84 (t, J = 5.4 Hz, 4H), 1.74–1.68 (m, 2H), 1.51–1.41 (m, 2H), 1.01–0.96 (t, J = 7.2 Hz, 3H). 13C-NMR
(100 MHz, CDCl3) δ (ppm) 165.35, 164.25, 163.62, 153.73, 139.80, 139.80, 131.72, 131.35, 130.82, 130.82,
130.82, 130.82, 130.09, 129.97, 128.71, 128.71, 128.71, 128.71, 127.93, 127.93, 127.70, 126.09, 126.09, 123.34,
118.90, 117.99, 62.25, 62.25, 52.82, 52.82, 40.21, 30.33, 20.46, 13.91. MS (ESI) m/z: 633 (M + H)+. Anal.
Calcd. for C34H30Cl2N2O6 (%): C 64.46; H 4.77; N 4.42. Found: C 64.55; H 4.71; N 4.38.

3.5.5. [(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)imino]diethane-2,1-diyl
bis[4-(trifluoromethyl)benzoate] (3e)

Yield 20.8%, yellow solid, m.p. 100–101 ◦C; IR (KBr, v/cm−1) 2960-2926 (C-H), 1731 (C=O). 1H-NMR
(400 MHz, CDCl3) δ (ppm) 8.58–8.46 (m, 2H), 7.91–7.89 (t, J = 4.0 Hz, 3H), 7.62–7.48 (m, 5H), 4.58–4.55
(t, J = 5.6 Hz, 3H), 4.18–4.15 (t, J = 7.6 Hz, 2H), 3.92–3.89 (t, J = 5.2 Hz, 3H), 1.49–1.28 (m, 4H), 1.01–0.98
(m, 8H). 13C-NMR (100 MHz, CDCl3) δ (ppm) 164.97, 164.97, 164.13, 163.54, 163.54, 153.51, 153.51,
134.89, 134.57, 132.70, 132.70, 131.65, 131.65, 131.37, 129.82, 129.82, 129.82, 129.82, 127.79, 126.14, 126.14,
125.38, 125.38, 125.34, 125.34, 123.39, 119.01, 118.20, 62.54, 62.54, 52.82, 52.82, 40.11, 30.21, 20.39, 13.80.
MS (ESI) m/z: 701 (M + H)+. Anal. Calcd. for C36H30F6N2O6 (%): C 61.71; H 4.32; N 4.00. Found:
C 61.65; H 4.44; N 4.08.

3.5.6. [(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)imino]diethane-2,1-diyl
bis(2,4-dichlorobenzoate) (3f)

Yield, 65.0%, yellow solid, m.p. 87–88 ◦C; IR (KBr, v/cm−1): 2961-2866 (C-H), 1731, 1710, 1652
(C=O). 1H-NMR (300 MHz, CDCl3) δ (ppm) 8.58–7.15 (m, 11H) 4.54–4.5 (t, J = 5.4 Hz, 4H), 4.20–4.15
(t, J = 7.5 Hz, 2H), 3.91–3.87 (t, J = 5.4 Hz, 4H), 1.77–1.67 (m, 2H), 1.50–1.42 (m, 2H), 1.02–0.97 (m,
J = 7.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ (ppm) 164.28, 164.28, 163.61, 163.61, 153.58, 138.80,
135.05, 135.05, 132.44, 132.44, 132.44, 131.67, 131.39, 131.15, 131.15, 131.15, 130.12, 129.95, 12.95, 127.58,
127.40, 126.92, 126.15, 123.34, 118.82, 117.95, 62.57, 62.57, 52.62, 52.62, 40.19, 30.33, 20.45, 13.91. MS
(ESI) m/z: 703 (M + H)+. Anal. Calcd. for C34H28Cl4N2O6 (%): C 58.14; H 4.02; N 3.99. Found: C 58.26;
H 3.95; N 3.89.

3.5.7. 2-[(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-(2-hydroxy-ethyl)-amino]-ethyl
Ester (4a)

Yield 61.4%, yellow solid, m.p. 158–159 ◦C; IR (KBr, v/cm−1) 3396 (O-H), 2965-2820 (C-H), 1720 (C=O).
1H-NMR (400 MHz, CDCl3) δ (ppm) 8.55–7.45 (m, 10H), 6.71 (d, J = 8.4 Hz, 1H), 6.01 (s, 1H), 4.78
(t, J = 10.4 Hz, 2H), 4.14 (t, J = 11.2 Hz, 4H), 3.78 (t, J = 10.4 Hz, 2H), 2.03 (s, 2H), 1.69 (t, J = 15.2 Hz,
2H), 1.24 (s, 2H), 0.95 (t, J = 14.8 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ (ppm) 167.83, 164.64, 164.13,
164.13, 149.04, 149.04, 134.24, 133.62, 131.14, 131.14, 129.81, 129.35, 128.58, 128.58, 126.07, 125.03, 123.19,
120.41, 111.06, 63.17, 60.40, 60.16, 43.98, 40.02, 30.33, 20.45, 13.89. MS (ESI) m/z: 461 (M + H)+. Anal.
Calcd. for C27H28N2O5 (%): C 70.42; H 6.13; N 6.08. Found: C 70.34; H 6.25; N 6.03.
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3.5.8. 2-[(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)(2-hydroxyethyl)amino]ethyl-2-
methylbenzoate (4b)

Yield 57.6%, yellow solid, m.p. 179–180 ◦C; IR (KBr, v/cm−1) 3367 (OH), 2957-2927 (C-H), 1717 (C=O).
1H-NMR (400 MHz, CDCl3) δ (ppm) 8.60–7.37 (m, 9H), 6.76–6.74 (d, J = 8.0 Hz, 1H), 5.31 (s, 1H), 4.80
(t, 2H), 4.18–4.16 (t, J = 6.8 Hz, 4H), 3.81 (t, 2H), 2.42 (d, J = 8.4 Hz, 3H), 1.73–1.71 (d, J = 6.8 Hz, 2H),
1.47–1.45 (m, 2H), 1.27 (t, 3H), 0.98 (t, 3H). 13C-NMR (100 MHz, CDCl3) δ (ppm) 171.66, 168.02, 164.68,
164.17, 149.13, 138.44, 138.29, 134.48, 131.16, 131.16, 130.69, 128.37, 126.95, 126.17, 125.00, 123.16, 120.42,
110.98, 104.11, 63.12, 43.96, 43.96, 40.04, 30.33, 29.72, 21.27, 20.45, 13.90. MS (ESI) m/z: 475 (M + H)+.
Anal. Calcd. for C28H30N2O5 (%): C 70.87; H 6.37; N 5.90. Found: C 70.75; H 6.44; N 5.92.

3.5.9. 2-[(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)(2-hydroxyethyl)amino]ethyl-4-
methylbenzoate (4c)

Yield 61.2%, yellow solid, m.p. 168–169 ◦C; IR (KBr, v/cm−1) 3362 (O-H), 2957-2825 (C-H), 1704
(C=O). 1H-NMR (400 MHz, CDCl3) δ (ppm) 8.59–7.25 (m, 9H), 4.81–4.78 (t, J = 5.2 Hz, 2H), 4.20–4.13
(t, J = 7.6 Hz, 3H), 3.81–3.79 (t, J = 5.2 Hz, 2H), 2.45–2.43 (d, J = 8.8 Hz, 3H), 2.07 (s, 1H), 1.75–1.74 (m,
2H), 1.45 (m, 2H, CH2), 0.95 (t, J = 14.8 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ (ppm) 171.28, 167.94,
164.67, 164.17, 149.13, 144.49, 134.30, 131.14, 131.14, 130.23, 130.23, 129.85, 129.29, 126.15, 125.00, 123.16,
120.41, 110.96, 104.06, 63.01, 60.42, 60.42, 44.03, 40.03, 30.37, 21.72, 20.46, 13.90. MS (ESI) m/z: 475
(M + H)+. Anal. Calcd. for C28H30N2O5 (%): C 70.87; H 6.37; N 5.90. Found: C 70.72; H 6.48; N 5.95.

3.5.10. 2-[(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)(2-hydroxyethyl)amino]ethyl-4-
chlorobenzoate (4d)

Yield 60.5%, yellow solid, m.p. 167–168 ◦C; IR (KBr, v/cm−1) 3361 (O-H), 2958-2927 (C-H), 1720 (C=O).
1H-NMR (400 MHz, CDCl3) δ (ppm) 8.53–7.41 (m, 9H), 6.71–6.69 (d, J = 8.4 Hz, 1H), 5.98 (s, 1H),
4.77–4.75 (t, J = 4.8 Hz, 2H), 4.14–4.11 (t, J = 8.4 Hz, 4H), 3.80–3.77 (t, J = 5.2 Hz, 2H), 2.03 (s, 1H),
1.70 (m, 2H), 1.42 (m, 2H), 0.95–0.91 (t, J = 6.4 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ (ppm) 166.84,
164.59, 164.08, 164.08, 149.00, 140.13, 134.18, 131.14, 131.14, 129.68, 128.92, 128.92, 127.78, 126.05, 125.01,
123.17, 120.40, 111.07, 104.08, 63.39, 60.41, 43.80, 40.02, 30.33, 20.45, 14.22, 13.89. MS (ESI) m/z: 451
((M + H)-CH3CH2OH)+. Anal. Calcd. for C27H27ClN2O5 (%): C 65.52; H 5.50; N 5.66. Found: C 65.59;
H 5.42; N 5.72.

3.5.11. 2-[(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)(2-hydroxyethyl)amino]ethyl-
4-(trifluoromethyl)benzoate (4e)

Yield 50.4%, yellow solid, m.p. 161–162 ◦C; IR (KBr, v/cm−1) 3389 (O-H), 2886–2775 (C-H), 1715 (C=O).
1H-NMR (400 MHz, CDCl3) δ (ppm) 8.56–7.62 (m, 9H), 6.75–6.73 (d, J = 4.8 Hz, 1H), 5.96–5.95 (m,
1H), 4.82–4.80 (t, J = 4.8 Hz, 2H), 4.16–4.12 (t, J = 7.2 Hz, 4H), 3.84–3.81 (t, J = 5.2 Hz, 2H), 2.03 (s, 1H),
1.71–1.67 (m, 2H), 1.45–1.39 (m, 2H), 1.26 (s, 1H), 0.97–0.93 (t, J = 7.2 Hz, 3H). 13C-NMR (100 MHz,
CDCl3) δ (ppm) 166.47, 164.58, 164.09, 164.09, 148.98, 134.17, 133.70, 133.14, 131.22, 131.12, 131.12,
129.69, 129.40, 126.82, 126.13, 125.00, 123.16, 120.47, 111.14, 104.20, 63.48, 63.48, 63.48, 43.39, 40.01, 30.34,
20.45, 13.90. MS (ESI) m/z: 529 (M + H)+. Anal. Calcd. for C28H27F3N2O5 (%): C 63.63; H 5.15; N 5.30.
Found: C 63.74; H 5.20; N 5.19.

3.5.12. 2-[(2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)(2-hydroxyethyl)amino]ethyl-
2,4-dichlorobenzoate (4f)

Yield 62.3%, yellow solid, m.p. 178–179 ◦C; IR (KBr, v/cm−1) 3377(O-H), 2959–2929 (C-H), 1725
(C=O). 1H-NMR (300 MHz, CDCl3) δ (ppm) 8.63–6.76 (m, 8H), 4.83–4.79 (t, J = 4.5 Hz, 2H), 4.20–4.15
(t, J = 7.5 Hz, 2H), 3.85–3.82 (t, J = 4.8 Hz, 2H), 2.07–2.06 (s, 1H), 1.73–1.72 (m, 2H), 1.49–1.42 (m, 2H),
1.27(s, 3H), 1.00–0.96 (t, J = 4.5 Hz, 3H), 0.86 (m, 1H). 13C-NMR (75 MHz, CDCl3) δ (ppm) 165.78,
164.61, 164.11, 148.78, 139.14, 134.94, 134.18, 132.77, 131.24, 131.22, 129.73, 127.56, 127.31, 125.91, 125.14,
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123.32, 120.47, 111.42, 104.25, 63.66, 43.42, 40.04, 40.40, 30.32, 29.72, 20.45, 13.90. Anal. Calcd. for
C27H26Cl2N2O5 (%): C 61.25; H 4.95; N 5.29. Found: C 61.28; H 4.90; N 5.25.

The spectra of synthesized compounds are available in supplementary material.

4. Conclusions

A series of novel N-n-butyl-1,8-naphthalimide derivatives with mono- and di-substitution at
position 4 were synthesized via direct arylation. Probe 3f exhibited an obvious quenched fluorescence
in the presence of Pb2+ over a range of metal cations. A titration of monomer with Pb2+ ion was
performed. When Pb2+ ion concentration increased from 0 to 10 eq., the fluorescent intensity of 3f
decreased from 199.97 to 48.21 and the absorbance of 3f decreased from 0.118 to 0.054. The results led
us to conclude that 3f could be an effective colorimetric and fluorescent probe for Pb2+. In addition,
the pH effect on 3f showed that this sensor should be valuable for Pb2+ analysis in environmental
samples and the biological systems.

Supplementary Materials: The supplementary materials are available online.
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