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Event‑driven proto‑object based 
saliency in 3D space to attract 
a robot’s attention
Suman Ghosh1,4,5, Giulia D’Angelo1,2,5, Arren Glover1, Massimiliano Iacono1, Ernst Niebur3 & 
Chiara Bartolozzi1*

To interact with its environment, a robot working in 3D space needs to organise its visual input in 
terms of objects or their perceptual precursors, proto‑objects. Among other visual cues, depth is a 
submodality used to direct attention to visual features and objects. Current depth‑based proto‑object 
attention models have been implemented for standard RGB‑D cameras that produce synchronous 
frames. In contrast, event cameras are neuromorphic sensors that loosely mimic the function of 
the human retina by asynchronously encoding per‑pixel brightness changes at very high temporal 
resolution, thereby providing advantages like high dynamic range, efficiency (thanks to their high 
degree of signal compression), and low latency. We propose a bio‑inspired bottom‑up attention 
model that exploits event‑driven sensing to generate depth‑based saliency maps that allow a 
robot to interact with complex visual input. We use event‑cameras mounted in the eyes of the iCub 
humanoid robot to directly extract edge, disparity and motion information. Real‑world experiments 
demonstrate that our system robustly selects salient objects near the robot in the presence of clutter 
and dynamic scene changes, for the benefit of downstream applications like object segmentation, 
tracking and robot interaction with external objects.

Every agent, whether animal or robotic, needs to process its sensory input in an efficient way, to allow under-
standing of, and interaction with, the environment. Since the agent’s computational capabilities are limited, 
careful allocation of perceptual and cognitive resources is  required1. The process of filtering relevant informa-
tion out of the continuous bombardment of complex sensory data is called selective attention. This process not 
only occurs in animals, where the selection of the most ecologically important stimuli like the presence of a 
predator is required but also in complex machinery with a rich array of sensors, like robots. The large amount of 
information arriving in the information processing stages at all times from sensors that are needed only at some 
times cannot be processed economically in its entirety. Selective attention mechanisms are used to analyse only 
the most important subset of the sensory stream. A number of visual attention algorithms have been proposed 
in robotics exploiting selective attention  mechanisms2–6.

Visual attention is the result of the complex interplay between the physical characteristics of the scene (stim-
ulus-driven, bottom-up mechanisms) and the goals of the agent (task-dependent, top-down mechanisms)7. 
Bottom-up models of selective attention rely both on feature  extraction8–10 and perceptual organisation of the 
 scene11. Mechanisms of perceptual organisation have been formalised in the form of “Gestalt laws” (e.g. conti-
nuity, proximity, figure-ground segmentation) that contribute to the grouping of visual features into coherent 
 objects12. These principles can be integrated into feature based bottom-up  models13,14 to identify so-called proto-
objects11, by adding a layer of  Gabor8, or curved Von Mises  filters11, loosely similar to neuronal responses in 
primate visual  cortex15. Such models use biological inspiration by emulating the cells that extract visual features 
and combine them using border ownership and grouping mechanisms, to produce a robust saliency map of the 
scene that increases perceptual saliency of regions with object-like stimuli.

We are interested in the bridge between biologically plausible models, bio-inspired hardware, and embodied 
agents (robots) to further understand the role of the hardware and the environment in selective attention pro-
cesses. Our previous  work16 implemented the proto-object model proposed by Russell et.al.11 using bio-inspired 
artificial visual sensors, called event-driven  cameras17. The event-driven cameras function more similarly to 
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biological eyes than frame-based cameras. Instead of scanning each pixel in order to measure the incident light 
level as in a traditional camera, each pixel in an event camera is independent and produces a spike when the 
incident light changes beyond a threshold. These “pixel spikes” are similar in function to the action potentials 
that the retina sends to the brain. The output of the event-camera is asynchronous, sparse, and occurs only where 
there is a differential between dark and light regions of the scene detected as an illumination change of each 
pixel over time, functioning de facto as a dynamic edge extractor. The integration of the event-camera into the 
proto-object processing pipeline inherently performs some of the lower-level processing that the model requires 
(detecting illumination change), opening interesting questions on the role of the hardware, as well as the brain, 
in sensory processing.

Relative depth and apparent object size provide important cues to guide bottom-up attention mechanisms 
during physical scene  interpretation18–20. Depth cues from binocular disparity have been shown to modify eye 
movements of participants when shown 3D  images21 and  videos22. Directed attention to local features have also 
been shown to aid in the interpretation of three-dimensional  cues23. To explore the role of depth in event-driven 
attention, in this paper, we extend our previously developed event-driven proto-object model (evProto)16 by 
combining it with a biologically inspired stereo disparity estimation  algorithm24, resulting in a depth-based 
attention model. Furthermore, our implementation runs online on a robotic platform (the neuromorphic  iCub25).

In two previous studies, a proto-object based model of selective  attention11 was extended to include depth in 
the saliency map  computation26,27. Our model goes beyond those studies mainly in two ways. First, both of these 
models are frame-based while we use input from neuromorphic event cameras. Second, both models require 
supplementary information in addition to the two input images. A full depth map obtained by an RGB-D sensor 
is needed for the Hu et al.  model26. The Mancinelli et al.  model27 does obtain depth information from stereoscopic 
cameras but it assumes that a certain number of known correspondence points are available. Instead, our model 
solves the correspondence problem directly, using only visual input streams from two event-driven cameras by 
making use of the precise signal timing at the pixel level, as is described in Methods.).

An important concept for all agents interacting with their physical environment, be it humans, animals or 
robots, is the implicit, underlying interpretation of the environment imposed by object  affordance28; the object 
features that define their possible uses and/or make clear how they can or should be  used29. It seems reasonable 
to expect that there is a bi-directional relationship between affordances and salience: Affordances are important 
for interacting with objects, so they need to be attended to make this interaction possible. On the other hand, 
features related to affordances may be salient by themselves, either by their inherent visual properties (shape etc.) 
or by their design (e.g. painting a handle red). There is evidence for a bidirectional relationship between atten-
tion and  affordance30,31, while other studies have shown that the correlation may not be particularly  strong32–34. 
The relationship may be more nuanced and be affected by additional neurological systems, which would require 
additional study. We note, however, that even though we do not include any explicit consideration of affordances 
in our study, we direct the robot’s attention towards objects in a certain size range, according to its grasping 
 capabilities16. Furthermore, in our implementation of the depth channel we increase the saliency of closer objects, 
which are therefore easier to reach by the robot, which is an affordance of elementary importance.

Our motivation is to understand the benefits of combining biologically inspired algorithms with neuromor-
phic hardware on embodied agents, as opposed to improving the precision and performance of the object selec-
tion or eye fixation prediction. The objective we pursue with our attention model is to produce saliency maps 
that are robust to noise, quickly adapt to dynamic changes in the visual scene, and remain close to important 
biological processing mechanisms. As the system produces saliency estimation using event-driven cameras 
based on depth information, we will refer to it as the evProtoDepth (event-driven Proto-object 3D) model. It is 
able to cope both with dynamic scenes (with motion) and with static images. In order to process the latter, small 
periodic stereotyped ocular movements are performed by the robot to generate stimulus dependent activity from 
event-driven cameras to generate pixel motion, akin to microsaccades in biological  vision35.

Since we want the robot to be more attentive to nearby objects that are within its reach, our saliency model 
design puts a higher importance on stimuli with higher disparity. This allows nearby objects to inherently appear 
more salient. Besides the affordance of reachability, our design choice is also based on ecological evidence which 
suggests that attention in insects, mice and humans is drawn towards looming  stimuli36–38, wherein nearby 
approaching objects are deemed especially important. Whereas other features also contribute to salience in full 
attention systems, here we focus on depth alone and leave the integration with other submodalities for future 
work. Thus, the evProtoDepth model selects the nearest potential object (proto-object) that the robot could reach 
and interact with as the most important item in the scene (see Fig. 1). To fully explore the influence of depth 
on the event-driven saliency model, we propose a depth-only implementation as the base for a more complex 
saliency based attention system in the future, in which multiple features are weighted based on top-down mecha-
nisms to adapt the detection of salient regions of the scene to the task at  hand39.

In the next section, we demonstrate the performance and suitability of the event-driven stereo depth algo-
rithm as an input to the proposed attention model. A comparison of the proposed evProtoDepth and the non-
event-based proto-object attention model is made on publicly available attention-based datasets, and a series of 
tests on the iCub robot are made to demonstrate the attention to nearby objects, as opposed to nearby non-objects 
and far away objects.

Results
The evProtoDepth model is biased to select the closest object in the scene, and to decrease the saliency of near 
stimuli that do not fulfil the continuity and proximity conditions that define the presence of a proto-object, as 
shown in Fig. 2. We evaluate the evProtoDepth model against the standard frame-based proto-object model 
(fbProtoDepth)26 on a subset of the NUS3D publicly available  dataset44, comparing also to ground truth fixation 
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maps captured from human eye tracking data. We validate the accuracy of the on-line event-based depth esti-
mation model and on the neuromorphic iCub  robot25 with live visual data from stereo ATIS  cameras17, and 
evaluate the response of the full evProtoDepth pipeline on the iCub robot to identify salient regions produced 
by nearby objects in the scene.

The model takes ≈ 170 ms to compute saliency of one frame on a laptop with Nvidia GTX 1650 GPU and 
Intel Core i7-9750H CPU @ 2.60 GHz × 12. The parameters used to run the model are specified in the supple-
mentary material (Supplementary Tables S1 and S2). An accompanying video (https:// zenodo. org/ record/ 50915 
39) supports an intuitive understanding of the experiments.

Saliency benchmarking with NUS3D saliency dataset. The NUS3D dataset 44 is used to quantita-
tively compare event-based evProtoDepth with frame-based fbProtoDepth against a ground-truth saliency map. 
The goal of the analysis is to understand how close we are to the real fixation maps in cases where humans fixate 

Figure 1.  Event-driven proto-object saliency estimation in 3D. Left: Cluttered table top with objects of different 
sizes and textures placed at varying depths (only for visualisation). Middle: Events produced from the ATIS 
camera using circular robot eye motion. The event stream is plotted in spatio-temporal coordinates. The green 
and purple colours represent whether the pixel witnessed a brightness increase or decrease. Events from the 
stereo cameras serve as input to our model. Right: Saliency map computed using the proposed evProtoDepth 
model, with the closest object (black bottle) selected. The saliency map is overlaid on the event image generated 
by accumulating events generated within a 100 ms time window.

Figure 2.  Interplay between depth (disparity) and Gestalt cues in evProtoDepth saliency. The disparity maps 
(Row 1) have two possible depths: near (dark red) and far (light orange), and the evProtoDepth saliency (Row 2) 
is shown from strong (red) to weak (blue). Arranging the angle features in a convex shape generates a perceptual 
(proto-)object that contributes to saliency in our model. Turning any of the angles in a different orientation 
destroys object perception. This contribution to saliency is integrated with that resulting from differences in 
depth. The salience of the synthetic proto-object pattern increases as it moves closer to the camera. However, 
even when the proto-object moves further away in the background, it produces a strong response compared 
to the non-object pattern in the foreground. This demonstrates the advantage of using a proto-object model 
instead of directly relying on raw scene depth for nearest “object” selection by the robot. The selectivity is the 
strongest when the proto-object is placed closer to the camera while the non-object pattern is in the background 
(Column 2).

https://zenodo.org/record/5091539
https://zenodo.org/record/5091539
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mostly on the closest object. To this aim, we algorithmically selected a subset of 19 images from the dataset in 
which the highest salient region should be the closest object, i.e. images in which the cross-correlation between 
the ground truth fixation map and the inverse of ground truth depth is ≥ 0.5.

The dataset provides colour RGB input stimuli, depth maps as well as locations of fixations when humans 
fixated on either the 2D or 3D images. To produce simulated “micro-saccades” (see above), the still images were 
shifted by 1 pixel in the cardinal directions (right, left, top and bottom) to simulate random small eye  motion45 
and a video of 50 frames (25 fps) was created for each input image. Events were generated from the video using 
the Open Event Camera  Simulator46. Depth was assigned to each event using the ground-truth depth map for 
each pixel and smoothed by 1 pixel in each direction to account for the eye-motion. The evProtoDepth saliency 
map is computed from the simulated events whereas the fbProtoDepth is computed from the static RGB and 
depth images in the dataset. Fig. 3 shows that both models detect the objects in the scene focusing the attention 
on the closest one. The fbProtoDepth shows a wider and centre-biased response, whereas the evProtoDepth 
shows a more localised response which is useful in a robotic context. It allows the robot to pinpoint the loca-
tion of most salient parts of the scene with higher precision and confidence, which is important for subsequent 
physical interaction.

The Normalized Scanpath Saliency (NSS), Area under the ROC Curve (AUC-Borji), Kullback-Leibler Diver-
gence (KLDiv), Pearson’s Correlation Coefficient (CC) and Similarity (SIM) are computed as metrics to compare 
the saliency maps to the ground-truth, following standard analysis methods in the  literature40–43. A single saliency 
map cannot perform well in all the metrics since they judge different aspects of the similarity between ground 
truth and predicted saliency  map47.

The fbProtoDepth model has better performance than evProtoDepth on three of the five metrics (NSS, AUC-
Borji, and KLDiv), while evProtoDepth achieves a better result for the CC and SIM metrics as shown in Table 1. 
The fbProtoDepth model uses intensity, colour, and opponency channels, while evProtoDepth uses only the 
depth channel, and as such saliency patterns are not expected to be identical between methods.

The response of both models and the ground truth all peak on the closest objects, as shown in Fig. 3. While 
there is not a large amount of clutter in the dataset, it is clear from the second column of Fig. 3 that the inten-
sity gradient of the background (curtain) is non-negligible and produces many background events. The signal 
from the background does not conform to the proto-object pattern and therefore is correctly suppressed by the 
models. In cases in which there is a large difference between the object depth, all models successfully produce 
a stronger response to the closest object.

Even in scenes where the ground truth 3D eye fixations were not necessarily confined to the nearest “proto-
object”, the event-driven evProtoDepth model may produce saliency maps concentrated on the nearest object 
following Gestalt principles, because it relies on depth information. By contrast, fbProtoDepth, which relies on 
multiple information channels besides depth, better predicts eye fixations. Some examples of such scenes are 
shown in Supplementary Fig. S9.

Disparity estimation for the neuromorphic iCub. The accuracy of the disparity estimation model 
is demonstrated online (50 microseconds latency per event) on the robot by moving a high-contrast fiducial 
marker, a circle shape, at different distances (within a 30–210 cm range) from the stereo cameras and compar-
ing the computed disparity to the ground truth. The ground truth is computed by tracking the circle  shape48 
independently in each camera and computing the horizontal distance between the circle centres in the left and 
right cameras.

The ground truth is compared to the mean and mode of estimated disparity values within a Region of Inter-
est (ROI) placed around the tracked circle centre. Figure 4 shows accuracy of disparity estimation qualitatively 
and quantitatively. The histogram peaks position in Fig. 4b corresponds to the depth of the stimulus shown in 
Fig. 4a. Figure 4c shows quantitatively that the estimated disparity is accurate with respect to the ground truth 
throughout the sequence. The jitter is due to imperfect time correspondence in the asynchronous system.

Further experiments with more complex multi-object stimuli are presented in the supplementary material 
(Supplementary Fig. S7). We observe that even the noisy disparity map manages to reflect the real scene depth to 
accurately represent the dynamic environment. The network simultaneously encodes different levels of disparity 
information, solving the correspondence problem, at different spatial locations and times, consistent with real 
world depth. The model is capable of resolving the depth of complex stimuli like the human body, with multiple 
non-rigid moving parts.

Table 1.  Consolidated MIT saliency metrics Normalized Scanpath Saliency (NSS), Area under the ROC 
Curve (AUC-Borji), Kullback–Leibler Divergence (KLDiv), Pearson’s Correlation Coefficent (CC) and 
Similarity (SIM)40–43 on the closest-object subset of the NUS3D dataset. A higher score is better for all metrics, 
excluding the KLDiv. Bold font indicates the model with the better performance. Some of the corresponding 
scenes and saliency maps are depicted in Fig. 3. The metrics for each individual image in this subset are 
presented in Supplementary Fig. S8.

NSS AUC_Borji KLDiv CC SIM

Mean, median Mean, median Mean, median Mean, median Mean, median

fbProtoDepth26 0.936, 0.917 0.737, 0.747 1.603, 1.501 0.386, 0.386 0.283, 0.296

evProtoDepth 0.769, 0.888 0.606, 0.592 2.971, 2.249 0.417, 0.417 0.401, 0.420
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Figure 3.  Comparison of saliency maps generated by  fbProtoDepth26 and evProtoDepth on samples from a 
subset of the NUS3D dataset where ground truth fixation was concentrated on the nearest object in the scene. 
The subset comprises all cases where the cross-correlation between the ground truth 3D fixation and inverse 
of ground truth depth ≥ 0.5 . These scenes depict scenarios relevant to a robot application where the goal is to 
select the nearest “object”. This benchmarking experiment investigates how depth contributes to event-based 
proto-object saliency for predicting human eye fixations in such scenarios. evProtoDepth uses a single depth 
channel for saliency prediction whereas fbProtoDepth combines information from parallel depth, colour 
opponency, intensity and orientation channels at the final stage. This causes the former to generate sparser 
saliency maps highly localised on the nearest object which are suitable for robot applications like segmentation 
and grasping.
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Robot application of 3D proto object model. To validate the evProtoDepth model, we implemented a 
robot application where iCub uses its movable stereo event-driven cameras to observe static and moving stimuli 
and selects the nearest proto-object with the goal of further physical interaction. Specifically, we tested whether 
the evProtoDepth implementation consistently selects the nearest object in the scene as the most salient, when 
the depth of objects changes dynamically. At the same time, an important aspect of our evaluation is the stability 
of object selection when the scene configuration remains constant, and the model’s robustness to noise both in 
the background and foreground.

Figure 5 shows how the addition of depth information improves object selection stability. The 2D histogram 
of saliency maps (bottom two rows) obtained during each object configuration shows that both models can select 
plausible objects in the scene. The addition of the disparity information in the evProtoDepth model, however, 
enhances the salience of the object which is closer to the observer. While the 2D evProto model assigns overall 
similar saliency values to the bottle and the mug. The development of saliency over time is shown for both models 
in Fig. 6. The comparison between Fig. 6d and its evProto counterpart (Fig. 6e) shows that the peak response of 
the evProto model jumps from one object to the other even when the scene configuration remains unchanged. 
Furthermore, the peak of the saliency map obtained from the evProto model often occurs outside the annotated 
object boundaries (green dots, “No selection”). As an example, in Fig. 5 Row 3 shows that the evProto model 
finds the ray of the sunlight on the top-right corner of the wall (as seen in the colour image in Row 1) as highly 
salient. Object disparity therefore stabilises object selection (see Fig. 6b). The selection does not depend on the 
number of events generated by the object, as plotted in Fig. 6c: during the “Bottle + Mug (near)” configuration, 

Figure 4.  Evaluation of estimated disparity accuracy of a circular paddle moving to and fro along the depth 
axis. (a) Colour-coded (red = near, blue = far) event disparity maps (time window 100 ms) of the paddle at three 
time instances: far (left), intermediate (centre) and close (right). (b) The corresponding disparity distribution 
histograms. (c) Variation of ground truth and computed disparity (mean and mode within manually annotated 
ROI) over time, and an image of the input stimulus.
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the evProtoDepth selects the mug which is closer to the camera, even though both objects generate similar 
number of events.

The experiment of Fig. 7 investigates the response of the system to continuously changing stimuli, in the 
example shown, a person alternately moving the left and right hand towards and away from the iCub. The location 
of attention quickly and reliably shifts to the nearest proto-object as soon as the relative position of the hands 
change sign. The rightmost column shows the location of maximum salience over time, confirming the switch 
of attention from the left hand to the right one while the hands were moving, even when the eyes of the robot 
are moving. In this second scenario, events are generated by the moving cameras from static objects, leading to 
high saliency at intermediate depth locations as well (e.g. the face of the person standing in front of the camera). 
However, most of the time the closest objects are selected. This experiment demonstrates that the evProtoDepth 
model can in real-time track the closest object in a dynamic scene with eyes fixed and in motion.

To obtain a fair comparison between our implementation and the fbProtoDepth model, we recorded RGB-D 
frames from a Real-Sense D435 depth camera that uses active IR stereo technology to record depth information 
along with visual images. The depth maps were post-processed with hole-filling filters provided in the Real-Sense 
library. These holes are 0 value pixels which would otherwise be erroneously treated as the nearest stimuli by 
the attention models.

The direct comparison between the evProtoDepth and the fbProtoDepth qualitatively on hands dataset 
depicts that the fbProtoDepth shows a wider and centre-biased response, whereas the evProtoDepth shows 
a more localised response because event-driven cameras only respond to motion and high contrast changes 
and generate sparse features. The fbProtoDepth takes the entire human as single object due to the presence of 
additional orientation and colour opponency channels, whereas in case of evProtoDepth, the event cameras 
produce sparse and disjointed features leading to the detection of multiple smaller objects. This can be observed 
in Supplementary Fig. S10.

Figure 5.  Static objects at changing depth (bottle-mug) dataset. The columns show snapshots from the 
4 different configurations in the dataset. Row 1 depicts the scene from a third perspective. Row 2 shows the 
event images accumulated over 100 ms. Row 3 and 4 illustrate the output generated by the evProto and the 
evProtoDepth models respectively. Each plot shows the 2D histogram of saliency maps accumulated over all 
frames in a single input configuration. Object selection is more stable with the 3D model in the presence of 
multiple objects.
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The evProtoDepth model is able to focus the attention towards the target which is closer to the robot, making 
it more suitable for behavioural decisions and interaction within its proximity. The system shows reliable response 
in cluttered scenarios and dynamic scenes. The Disparity Extractor alone provides a disparity map without any 
higher level filtering of “objects” in the scene. Therefore, the integration of the evProto model with the disparity 
extractor informs the system about salient regions which are not only nearby but also follow Gestalt laws. The 
proto-object model helps select a proto-object following Gestalt laws while discarding noise from the disparity 
map, whereas the additional disparity information improves selection precision in evProtoDepth. For evidence 
we point the reader to the Supplementary Fig. S11 which depicts 2D histograms of peak responses for evProto, 
Disparity and evProtoDepth saliency maps.

Discussion
We introduce a model that combines disparity computations based on neuromorphic event-driven algorithms 
and hardware with a bio-inspired attention model. It improves upon the 2D model (the evProto model) which 
assigns perceptual saliency to (moving) edges that enclose a region (not necessarily completely) and can hence 
form the contour of an object. Adding the disparity information results in our 3D evProtoDepth model which, 
in addition to the salience imparted by evProto, assigns additional saliency to regions that are also closer to the 
cameras compared to those at larger distance. Adding depth information provides more stable object selection 
and robustness to noise, as demonstrated in Figs. 5 and  6.

From the results presented about disparity estimation (see Fig. 4 and Supplementary Fig. S7), the event-based 
disparity estimation is robust and reliable in different scenarios with dynamic objects of increasing complexity. It 
can solve the correspondence problem for multiple objects simultaneously, distinguishing their relative distance 
from the robot. When the stream of events increases because of clutter and/or eyes movements, the accuracy of 

Figure 6.  The disparity channel stabilises object selection in the bottle-mug dataset, during which the object 
positions are moved on a table. (a) Sample event frame with manually annotated object boundaries—at this 
particular time, the mug is closer to the camera. (b) Mean disparity within each object boundary in both object 
frames. (c) Number of events generated within each object boundary in both event frames. (d,e) x co-ordinates 
of the peak response in each frame for the evProtoDepth and evProto attention models. For each frame, an 
object is “selected” if the peak saliency pixel lies within its annotated boundaries, otherwise “No selection” 
occurs. There is only one unique object selection at each time stamp (frame). This means that for evProto in (e), 
the saliency peak jumps from one object to another frequently. Thus the orange, blue and green dots occur at 
(different) timestamps very close to each other.
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the disparity estimation is traded-off with latency, increasing the level of noise. Typically, the disparity informa-
tion successfully enables the attentive system to select the nearest proto-object. The online evaluation imple-
mented on a robot using real-world data proves the capabilities of the model in a realistic scenario. The system 
is robust to clutter and it demonstrates robust selection of the nearest proto-object in a noisy background. The 
robot is responsive to motion, giving preference to closer moving objects. When we enable eyes motion, it can 
also select the nearby static object. The model tolerates motion of the cameras and of scene objects and usually 
determines as salient those areas that are closest to the cameras. The use of a biologically inspired event-driven 
disparity extractor distinguishes the evProtoDepth model from its frame-based counterpart fbProtoDepth. While 
the latter requires a pre-computed depth map from RGB-D sensor and computes feature maps representing local 
intensity, colour opponency and orientations, the only input required by our new evProtoDepth are raw streams 
of events from two neuromorphic cameras. Disparity information is extracted directly from these event streams 
using a bio-inspired cooperative matching algorithm. Benchmarking on the NUS3D dataset shows that despite 

Figure 7.  Saliency prediction from evProtoDepth in a dynamic scene (data set hands) containing hands 
moving towards the cameras and away from them, with and without the iCub eye motion. The events from 
the stereo cameras are the only input to our model. RGB (Row 1) frames at different instances of the sequence 
are shown for visualisation. The two leftmost columns of Rows 2 and 3 depict corresponding saliency outputs 
overlaid on input events while the robot eyes were fixed (Row 2), and moving (Row 3). With fixed eyes, only the 
moving hands trigger events, whereas with moving eyes, events are generated by static as well as moving features 
in the scene, thus both static (e.g. the face) and moving objects (hands) appear salient. The rightmost column 
shows the x co-ordinates (along the axis between the person and the cameras) of peak saliency plotted against 
time (frame number) for both datasets. The true locations of the hands are marked with coloured bands. For 
static cameras (Row 2), the peak saliency pixel consistently alternates between the left and right hand locations 
as they move towards and away from the camera, i.e., it follows the hand closest to the camera. For moving eyes, 
(Row 3), excess events caused by micro-saccades result in some spurious saliency peaks at objects like the face 
despite them being farther away from the camera.
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those differences both models achieve similar performance, with the event-driven one being more easily appli-
cable to online robotic applications, thanks to a more localised response over the selected objects.

Both models, fbProtoDepth and evProtoDepth, have strict bottom-up (data-driven) architectures and achieve 
mediocre results on the MIT metrics when directly compared with the eye fixation maps. This is expected due 
to the presence of complex attention mechanisms which include influences that are not captured by either of the 
models. These influences include cognitive top-down (goal driven) mechanisms, previous stimuli or  priming49 
among others. As such, the quantitative comparison with the ground truth fixations of the NUS3D dataset, 
needed for a formal evaluation of the model, does not capture the system’s true merit, that is, the robust selection 
of nearby objects in dynamic environments within 170 ms.

Although the saliency maps from the model can thus not be directly compared with fixation maps, the model 
still reasonably represents interesting regions of the scene. In general, the evProtoDepth model shows a more 
localised response to near-objects when compared with the fbProtoDepth model (see Fig. 3). We believe this is 
mainly due to the sequential nature of processing in the event-based model. The simulated events used in this 
case first extract contrast information from the scene. Subsequently, only the depth information at event locations 
is used to inform the proto-object model. Therefore, the evProtoDepth model, having only one channel (depth), 
inherently prioritises the closer objects. In contrast, the frame-based model combines information from multiple 
channels (depth, colour opponency, intensity, orientations) at the latter stage of the pipeline, causing multiple 
features to contribute to predict the salient regions. The combination of cues from multiple channels produces a 
more dispersed overall saliency response. This may also lead to the fbProtoDepth model selecting objects with 
high contrast edges possibly located far away from the camera. We believe that prioritisation of close objects, at 
the cost of decreased attention to distant objects, is of high importance for a robotic agent because of its need for 
interactions with physical objects. Nevertheless, on the long run information from different sub-modalities and 
from different distances needs to be integrated and weighted appropriately. The proposed model acts as a first 
milestone towards more complex robotic attentive systems that can include other important cues such as contrast, 
motion, colour and orientation. Furthermore, in future developments, such an entirely data-driven system could 
be enriched with top-down mechanisms, enabling the machine to switch priorities between extracted features 
depending on the robot’s behavioural goals.

Additionally, in a more complete robotic pipeline, the saliency map could drive the robot’s gaze in a more 
natural way. In fact, humans continuously gaze in order to bring the region of interest onto the fovea. In another 
 work50, we proposed an eccentricity model for sub-sampling the input visual space similar to that performed 
by a biological retina. In brief, the periphery of the field of view has coarser resolution than the middle (fovea). 
Combining such a model with an attentive system could be used in a pipeline that exploits saliency to drive 
the robot’s eyes towards the most interesting regions, thereby giving salient regions a higher sensory resolution 
required for higher-level processing. This mechanism would both bestow the robot with a natural behaviour 
similar to that found in biology, and would also lead to savings in computational resources, since only salient 
regions are processed at the full resolution.

This work attempts to bridge the gap between biologically plausible saliency models and bio-inspired hard-
ware. We demonstrated the model running online on a humanoid robot in different scenarios proving how 
event-driven cameras are well-suited for saliency detection in embodied agents. Stereo event cameras allowed 
the easy extraction of moving edges, solving the correspondence problem using precise spiking times, and the 
removal of layers of processing from the fbProtoDepth. The long term goal would be to implement such a com-
plex algorithm onto neuromorphic specialised  platforms51,52 to better exploit the event-driven pipeline aiming 
to further decrease the computational cost of the system in terms of latency and power consumption.

Methods
Traditional frame-based cameras generate frames synchronously at a fixed rate regardless of changes in the scene. 
For this reason the output contains great amounts of redundant data, especially in case of static scenes. Unlike 
regular cameras, event-driven sensors overcome the data redundancy providing data-driven output. This is 
particularly suitable for online robotic  applications53–56 given the need for low latency and high  speed57,58. Event-
driven cameras react to illumination changes at the pixel level, generating an asynchronous stream of events. 
Each event is defined as a tuple (x, y, p, t), where x and y are the spatial coordinates of the instantaneously active 
pixel, p the polarity bit encoding the direction of the illumination change (dark-to-light or light-to-dark), and t 
timestamp when the event occurs at microsecond resolution. An example of an event stream plotted in spatio-
temporal coordinates is shown in the middle column of Fig. 1.

In this study, we combine  evProto16, a previously developed event-based model for attentional selection with 
fbProtoDepth, a frame-based proto-object model that incorporates depth  information26 to develop the first ver-
sion of an event-driven based saliency model in 3D which we call evProtoDepth. The current model uses depth 
as the primary channel for computing saliency. Depth perception is introduced via scene disparity extracted from 
stereo event cameras. Disparity is extracted using an asynchronous event-based bio-inspired cooperative neural 
network able to solve the correspondence  problem24 in a scenario with multiple objects. The disparity-encoded 
events from the disparity extractor are accumulated into non-overlapping disparity frames of 100 ms duration, 
and are processed by the Border Ownership and Grouping Pyramids mechanisms in evProto to form proto-
objects in the disparity map. An overview of the processing pipeline of the evProtoDepth model is presented in 
Supplementary Fig. S1. We designed and implemented the model for real-time usage on the iCub robot.

Event‑driven disparity extraction. In robotics, depth cues are important to select reachable objects 
upon which the robot can act, in addition to providing input for other tasks. The fbProtoDepth model uses 
depth from an RGB-D sensor. In order to implement a fully bio-inspired pipeline, we use disparity estimation 
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techniques using stereo event-driven cameras as input for the evProtoDepth model. Binocular disparity of a 
3D point relays information about its distance from the plane of fixation, but suffers from the problem of false 
correspondences. It is now widely accepted that mammalian brains solve this problem relying on a competitive 
process in disparity-sensitive neuron populations to encode and detect horizontal  disparity59. Neurons compete 
with each other to represent the disparity of the scene, by removing false matching to reach a global solution. 
In particular, a disparity Cooperative  Network60 employs correspondence between a stereo event-pair, and it 
imposes disparity uniqueness and continuity conditions to construct a map representing the level of belief/
confidence of corresponding points.

Asynchronous cooperative matching processing is well-suited to exploit the output of event-driven cameras 
since the precise timing of event generation can be used to find correspondences efficiently at pixel-level without 
the need for patch or feature-based matching. This can produce disparity maps that can adapt to a dynamic input 
scene in real-time. Event-based cooperative matching algorithms have been efficiently implemented on neuro-
morphic platforms using Spiking Neural Networks (SNN)61,62 as well as on traditional computing  platforms24,63. 
Although specialised neuromorphic  hardware51,52 is well-adapted for spike-based computation due to its low 
latency and power consumption, these new generation devices have difficulty handling networks with hundreds 
of thousands of neurons working in real-time on robotic platforms which demand robustness. This model imple-
ments an array-based representation of a Spiking Neural Network (SNN) based on an Event-based Cooperative 
Stereo  Matching24, similar to the SNN proposed by  Osswald61. Our work implemented a real-time version of 
this algorithm on a standard CPU, prioritising its ease of deployment on the iCub and integration with the 
proto-object model over power consumption and efficiency afforded by neuromorphic hardware. It uses a 3D 
voxel-grid in x − y − d space (d=disparity), called an activity map, which is updated asynchronously with each 
incoming event. Each element (cell) of this array represents a computational neuron in the SNN, which spikes 
during simultaneous triggering of events in the left and right camera. To ensure that temporally close events 
have higher probability to correspond to each other, a simplified version of the Leaky Integrate and Fire (LIF) 
 model64 is used to model the internal dynamics of each activity cell.

The output disparity value d for each pixel corresponds to the layer with the highest activity (belief) for that 
pixel. Each incoming rectified event affects multiple cells in the activity map through excitatory and inhibitory 
connections. The excitatory connections enforce continuity constraints by ensuring that neighbouring pixels 
have similar disparity values, implementing the prior that most surfaces in the 3D environment are continuous 
and smooth. The inhibitory connections enforce uniqueness constraints by suppressing false correspondences 
between stereo-pairs along the line of sight. They ensure that each pixel is assigned only one disparity value. 
The strength of interaction is determined by the time difference between successive interactions, such that a 
cell affected by multiple events in close temporal proximity will be highly active. The activity generated by each 
incoming event on a particular voxel is inversely proportional to how far in the past that voxel was last affected. 
After several cycles of excitation and inhibition within the activity map, a disparity event is generated by the 
network by associating the incoming event with the disparity value of the layer that has the highest activity. The 
output of the network consists of estimates of the disparities of all events and collects them in a single channel 
of disparity events Ed in the reference view of the left camera frame. With the event-based cooperative matching 
algorithm, we gain improvements over frame-based processing algorithms in terms of processing time at the cost 
of accuracy of disparity. The resulting disparity maps are sparse and prone to noise, especially when the input 
event throughput is high, e.g. when the camera moves in a textured scene. However, this suits our needs as the 
downstream proto-object saliency model acts as a filter that suppresses noise in the disparity maps while selecting 
the nearest object (e.g. Fig. 7). A schematic illustration of the network architecture is shown in Supplementary 
Fig. S2. Further details about the disparity extraction algorithm is provided in the supplementary material.

Proto‑object based saliency with depth information. Variations and extensions of proto-object sali-
ency models using frame-based cameras include the addition of addtional features including  motion65,  texture66 
and  depth26,27 (we call the latter fbProtoDepth). Each information channel is separately processed by a “group-
ing” layer, that represents proto-objects in the final saliency map combining all channels.

A previous event-driven implementation of the proto-object  model16 (evProto) focused on the use of event-
driven cameras. The model exploits the inherent edge extraction capabilities of event-driven cameras, allowing 
it to omit the Gabor and center-surround filtering of the original frame-based  model11. The output from the 
cameras is directly fed into the Border Ownership layer and processed in the same way as in the original ver-
sion, detecting salient regions of the scene with a latency of ≈ 170 ms every time there is a change in the scene.

The fbProtoDepth  model26 uses intensity, orientation, colour opponency and depth channels in parallel 
to compute saliency. In the evProtoDepth model, we implemented a single depth information channel, in the 
form of disparity-weighted event frames, fed into the grouping layer of the evProto model. The disparity of each 
individual event (based on the input from both cameras) is computed using a cooperative network model. Each 
output disparity event Ed contains information about the pixel (x, y), generation time ts and disparity estimate 
d of the corresponding visual stimulus. Disparity events arriving within a time window δt are accumulated in 
a disparity frame D(x, y, t). Each of its pixels stores the disparity value d of the latest disparity event Ed emitted 
within that temporal window (t − δt, t) at pixel (x, y). The length of the time-window is selected based on the 
desired sparseness of the disparity map fed into the grouping layer of the evProto model. The disparity frames 
are subsequently normalised within [0, 1] and passed onto the evProto model. While the input map in the 
original evProto model accounted for the presence of edges, our implementation extends this representation by 
also encoding the depth of each edge. The key components of the evProto  model16 and proposed evProtoDepth 
models are shown in Supplementary Fig. S1.
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Consent statement. Informed consent has been obtained from the respective individual to publish images 
(Fig. 7 and Supplementary Fig. S10) in an online open access publication.
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reasonable request.

Received: 16 July 2021; Accepted: 25 April 2022

References
 1. Tsotsos, J. K. Analyzing vision at the complexity level. Behav. Brain Sci. 13, 423–445 (1990).
 2. Rea, F., Metta, G. & Bartolozzi, C. Event-driven visual attention for the humanoid robot icub. Front. Neurosci. 7, 234. https:// doi. 

org/ 10. 3389/ fnins. 2013. 00234 (2013).
 3. Clark, J. J. & Ferrier, N. J. Modal control of an attentive vision system. In ICCV, 514–523 (1988).
 4. Pahlavan, K., Uhlin, T. & Eklundh, J.-O. Integrating primary ocular processes. In European Conference on Computer Vision, 526–541 

(Springer, 1992).
 5. Bruce, N. D. & Tsotsos, J. K. An attentional framework for stereo vision. In The 2nd Canadian Conference on Computer and Robot 

Vision (CRV’05), 88–95 (IEEE, 2005).
 6. Pasquale, G., Mar, T., Ciliberto, C., Rosasco, L. & Natale, L. Enabling depth-driven visual attention on the icub humanoid robot: 

Instructions for use and new perspectives. Front. Robot. AI 3, 35. https:// doi. org/ 10. 3389/ frobt. 2016. 00035 (2016).
 7. Yarbus, A. Eye Movements and Vision (Plenum Press, 1967).
 8. Walther, D. & Koch, C. Modeling attention to salient proto-objects. Neural Netw. 19, 1395–1407 (2006).
 9. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. In Matters of Intelligence, 115–141 

(Springer, 1987).
 10. Walther, D., Itti, L., Riesenhuber, M., Poggio, T. & Koch, C. Attentional selection for object recognition-a gentle way. In International 

Workshop on Biologically Motivated Computer Vision, 472–479 (Springer, 2002).
 11. Russell, A. F., Mihalaş, S., von der Heydt, R., Niebur, E. & Etienne-Cummings, R. A model of proto-object based saliency. Vis. Res. 

94, 1–15 (2014).
 12. Köhler, W. Gestalt psychology. Psychol. Res. 31, XVIII–XXX (1967).
 13. Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. 

Intell. 20, 1254–1259 (1998).
 14. Itti, L. & Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).
 15. Williford, J. R. & von der Heydt, R. Border-ownership coding. Scholarpedia J. 8, 30040 (2013).
 16. Iacono, M. et al. Proto-object based saliency for event-driven cameras. In IROS, 805–812 (2019).
 17. Posch, C., Matolin, D. & Wohlgenannt, R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level 

video compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275. https:// doi. org/ 10. 1109/ JSSC. 2010. 20859 52 
(2011).

 18. Wolfe, J. M. & Horowitz, T. S. Five factors that guide attention in visual search. Nat. Hum. Behav. 1, 1–8 (2017).
 19. Wolfe, J. M. & Horowitz, T. S. What attributes guide the deployment of visual attention and how do they do it?. Nat. Rev. Neurosci. 

5, 495–501 (2004).
 20. Aks, D. J. & Enns, J. T. Visual search for size is influenced by a background texture gradient. J. Exp. Psychol. 22, 1467–1481 (1996).
 21. Jansen, L., Onat, S. & König, P. Influence of disparity on fixation and saccades in free viewing of natural scenes. J. Vis. 9, 29 (2009).
 22. Huynh-Thu, Q. & Schiatti, L. Examination of 3d visual attention in stereoscopic video content. In Human Vision and Electronic 

Imaging XVI, vol. 7865, 78650J (International Society for Optics and Photonics, 2011).
 23. Kawabata, N. Attention and depth perception. Perception 15, 563–572 (1986).
 24. Firouzi, M. & Conradt, J. Asynchronous event-based cooperative stereo matching using neuromorphic silicon retinas. Neural 

Process. Lett. 43, 311–326 (2016).
 25. Bartolozzi, C. et al. Embedded neuromorphic vision for humanoid robots. In CVPR 2011 Workshops, 129–135 (IEEE, 2011).
 26. Hu, B., Kane-Jackson, R. & Niebur, E. A proto-object based saliency model in three-dimensional space. Vis. Res. 119, 42–49 (2016).
 27. Mancinelli, E., Niebur, E. & Etienne-Cummings, R. Computational stereo-vision model of proto-object based saliency in three-

dimensional space. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–4 (IEEE, 2018).
 28. May, S., Klodt, M., Rome, E. & Breithaupt, R. Gpu-accelerated affordance cueing based on visual attention. In 2007 IEEE/RSJ 

International Conference on Intelligent Robots and Systems, 3385–3390 (IEEE, 2007).
 29. Jamone, L. et al. Affordances in psychology, neuroscience, and robotics: A survey. IEEE Trans. Cogn. Dev. Syst. 10, 4–25 (2016).
 30. Varadarajan, K. M. & Vincze, M. Afrob: The affordance network ontology for robots. In 2012 IEEE/RSJ International Conference 

on Intelligent Robots and Systems, 1343–1350 (IEEE, 2012).
 31. Gomez, M. A., Skiba, R. M. & Snow, J. C. Graspable objects grab attention more than images do. Psychol. Sci. 29, 206–218 (2018).
 32. Pavese, A. & Buxbaum, L. J. Action matters: The role of action plans and object affordances in selection for action. Vis. Cogn. 9, 

559–590 (2002).
 33. Xiong, A., Proctor, R. W. & Zelaznik, H. N. Visual salience, not the graspable part of a pictured eating utensil, grabs attention. 

Atten. Percept. Psychophys. 81, 1454–1463 (2019).
 34. Pellicano, A. & Binkofski, F. The prominent role of perceptual salience in object discrimination: Overt discrimination of graspable 

side does not activate grasping affordances. Psychol. Res. 85, 1234–1247 (2021).
 35. Ko, H.-K., Poletti, M. & Rucci, M. Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13, 1549–1553 

(2010).
 36. Gabbiani, F., Krapp, H. G., Koch, C. & Laurent, G. Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 

320–324. https:// doi. org/ 10. 1038/ natur e01190 (2002).
 37. Franconeri, S. L. & Simons, D. J. Moving and looming stimuli capture attention. Percept. Psychophys. 65, 999–1010. https:// doi. 

org/ 10. 3758/ BF031 94829 (2003).
 38. Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).
 39. Yu, Y., Mann, G. K. & Gosine, R. G. An object-based visual attention model for robotic applications. IEEE Trans. Syst. Man Cybern. 

Part B Cybern. 40, 1398–1412 (2010).
 40. Bylinskii, Z., Judd, T., Oliva, A., Torralba, A. & Durand, F. What do different evaluation metrics tell us about saliency models?. 

IEEE Trans. Pattern Anal. Mach. Intell. 41, 740–757. https:// doi. org/ 10. 1109/ TPAMI. 2018. 28156 01 (2019).
 41. Judd, T., Durand, F. & Torralba, A. A benchmark of computational models of saliency to predict human fixations. In MIT Technical 

Report (2012).

https://doi.org/10.3389/fnins.2013.00234
https://doi.org/10.3389/fnins.2013.00234
https://doi.org/10.3389/frobt.2016.00035
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1038/nature01190
https://doi.org/10.3758/BF03194829
https://doi.org/10.3758/BF03194829
https://doi.org/10.1109/TPAMI.2018.2815601


13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7645  | https://doi.org/10.1038/s41598-022-11723-6

www.nature.com/scientificreports/

 42. Borji, A., Sihite, D. N. & Itti, L. Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. 
Image Process. IEEE Trans. 22, 55–69 (2013).

 43. Borji, A. & Itti, L. Cat2000: A large scale fixation dataset for boosting saliency research. In CVPR 2015 workshop on Future of 
Datasets (2015). ArXiv preprint arXiv: 1505. 03581.

 44. Lang, C. et al. Depth matters: Influence of depth cues on visual saliency. In European Conference on Computer Vision, 101–115 
(Springer, 2012).

 45. Ko, H.-K., Snodderly, D. M. & Poletti, M. Eye movements between saccades: Measuring ocular drift and tremor. Vis. Res. 122, 
93–104 (2016).

 46. Rebecq, H., Gehrig, D. & Scaramuzza, D. ESIM: An open event camera simulator. In Conf. on Robotics Learning (CoRL) (2018).
 47. Kummerer, M., Wallis, T. S. & Bethge, M. Saliency benchmarking made easy: Separating models, maps and metrics. In Proceedings 

of the European Conference on Computer Vision (ECCV), 770–787 (2018).
 48. Glover, A., Vasco, V., Iacono, M. & Bartolozzi, C. The event-driven software library for YARP—With algorithms and iCub applica-

tions. Front. Robot. AI 4, 73. https:// doi. org/ 10. 3389/ frobt. 2017. 00073 (2018).
 49. Wykowska, A. & Schubö, A. On the temporal relation of top-down and bottom-up mechanisms during guidance of attention. J. 

Cogn. Neurosci. 22, 640–654 (2010).
 50. D’Angelo, G. et al. Event-based eccentric motion detection exploiting time difference encoding. Front. Neurosci. 14, 451 (2020).
 51. Furber, S. & Bogdan, P. Spinnaker-a spiking neural network architecture (2020).
 52. Davies, M. et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).
 53. Glover, A. & Bartolozzi, C. Robust visual tracking with a freely-moving event camera. In 2017 IEEE/RSJ International Conference 

on Intelligent Robots and Systems (IROS), 3769–3776 (IEEE, 2017).
 54. Monforte, M., Arriandiaga, A., Glover, A. & Bartolozzi, C. Exploiting event cameras for spatio-temporal prediction of fast-changing 

trajectories. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 108–112 (IEEE, 
2020).

 55. Vasco, V., Glover, A. & Bartolozzi, C. Fast event-based Harris corner detection exploiting the advantages of event-driven cameras. 
In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4144–4149 (IEEE, 2016).

 56. Iacono, M., Weber, S., Glover, A. & Bartolozzi, C. Towards event-driven object detection with off-the-shelf deep learning. In 2018 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1–9 (IEEE, 2018).

 57. Glover, A. & Bartolozzi, C. Event-driven ball detection and gaze fixation in clutter. In IEEE International Conference on Intelligent 
Robots and Systems, vol. 2016-Novem, 2203–2208. https:// doi. org/ 10. 1109/ IROS. 2016. 77593 45 (IEEE, 2016).

 58. Rebecq, H., Horstschaefer, T., Gallego, G. & Scaramuzza, D. EVO: A geometric approach to event-based 6-DOF parallel tracking 
and mapping in real time. IEEE Robot. Autom. Lett. 2, 593–600. https:// doi. org/ 10. 1109/ LRA. 2016. 26451 43 (2017).

 59. Zhu, Y.-D. & Qian, N. Binocular receptive field models, disparity tuning, and characteristic disparity. Neural Comput. 8, 1611–1641 
(1996).

 60. Marr, D. & Poggio, T. Cooperative computation of stereo disparity. Science 194, 283–287 (1976).
 61. Osswald, M., Ieng, S. H., Benosman, R. & Indiveri, G. A spiking neural network model of 3d perception for event-based neuro-

morphic stereo vision systems. Sci. Rep. 7, 1–12 (2017).
 62. Dikov, G., Firouzi, M., Röhrbein, F., Conradt, J. & Richter, C. Spiking cooperative stereo-matching at 2 ms latency with neuro-

morphic hardware. In Conference on Biomimetic and Biohybrid Systems, 119–137 (Springer, 2017).
 63. Piatkowska, E., Belbachir, A. & Gelautz, M. Asynchronous stereo vision for event-driven dynamic stereo sensor using an adaptive 

cooperative approach. In Proceedings of the IEEE International Conference on Computer Vision Workshops, 45–50 (2013).
 64. Knight, B. Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59, 734–766 (1972).
 65. Molin, J. L., Russell, A. F., Mihalas, S., Niebur, E. & Etienne-Cummings, R. Proto-object based visual saliency model with a motion-

sensitive channel. In 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), 25–28 (IEEE, 2013).
 66. Uejima, T., Niebur, E. & Etienne-Cummings, R. Proto-object based saliency model with second-order texture feature. In 2018 

IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–4 (IEEE, 2018).

Acknowledgements
EN is supported by NIH (R01DC020123) and NSF (1835202). We would like to show our gratitude to Jay Perrett 
for sharing his accurate review and support during the implementation of this work. This paper is the result of 
brainstorming on attention models at the Telluride Neuromorphic Cognition Engineering Workshop, supported 
by the National Science Foundation under grants BCS 1824198 and OISE 2020624.

Author contributions
C.B. conceived the main idea behind the work. S.G. and G.D. developed the theory for the disparity estimation 
and its integration with the event-driven proto-object model. S.G. developed the entire pipeline on the robot, 
with help from A.G. M.I. implemented the event-driven proto-object model in PyTorch used in this work. S.G. 
and G.D. designed the experiments with supervision from C.B.; S.G. and G.D. conducted experiments. S.G., 
G.D. and C.B. analysed the experimental results. S.G., G.D. and C.B. wrote the manuscript. A.G. and E.N. gave 
valuable feedback and helped edit the manuscript. G.D. made the supplementary video accompanying this work.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 11723-6.

Correspondence and requests for materials should be addressed to C.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/1505.03581
https://doi.org/10.3389/frobt.2017.00073
https://doi.org/10.1109/IROS.2016.7759345
https://doi.org/10.1109/LRA.2016.2645143
https://doi.org/10.1038/s41598-022-11723-6
https://doi.org/10.1038/s41598-022-11723-6
www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7645  | https://doi.org/10.1038/s41598-022-11723-6

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Event-driven proto-object based saliency in 3D space to attract a robot’s attention
	Results
	Saliency benchmarking with NUS3D saliency dataset. 
	Disparity estimation for the neuromorphic iCub. 
	Robot application of 3D proto object model. 

	Discussion
	Methods
	Event-driven disparity extraction. 
	Proto-object based saliency with depth information. 
	Consent statement. 

	References
	Acknowledgements


