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INTRODUCTION
The past decade has witnessed rapid advancements in data- 
driven technologies that have influenced virtually every 
field in medicine including treatment response modeling 
and outcomes prediction in radiation oncology.1–10 
Advanced big- data analytics have facilitated the integra-
tion of information- rich multiomics data with the tradi-
tional clinical and dosimetric information for modeling 
radiotherapy (RT) treatment responses.11,12 Inclusion of 
such multiomics information, which is the aggregation 
of genomics, proteomics, transcriptomics, metabolomics, 
epigenomics, and radiomics, among others, as prognostic 
or predictive biomarkers has improved the potential of 
such outcome models in personalizing treatment manage-
ment and achieving the promise of precision medicine in 
radiation oncology.13–16 These improvements in data and 
algorithmic modeling performances can be attributed to 
the enhanced ability to capture underlying cancer hetero-
geneity caused by subtle interhuman genetic and physio-
logical differences. The inclusion of multiomics data can 
effectively improve the representation of patient- specific 
radiosensitivity beyond traditional dose–volume metrics 

used for modeling the observed tumor control proba-
bility (TCP) and/or normal tissue complication proba-
bility (NTCP), which have dominated the field of radiation 
oncology over the past decades.17

Traditionally, outcome prediction models (OPMs) in RT 
have relied on a simplistic representation of dose response 
using analytical models such as the linear quadratic (LQ) 
model. Though such models are useful for understanding 
the dose–volume effect at a population level and has been 
used for fractionation conversion purposes in RT treat-
ment planning, they have limited ability to address treat-
ment management requirement at the patient level. In the 
modern era of precision medicine such one- hat- fits- all 
approach is not acceptable anymore.18

Towards meeting the requirements of precision medicine, 
modern OPMs are envisioned to be utilized in constructing 
semi- or fully automated clinical decision support systems 
(CDSS) that could be applied for personalized and adap-
tive radiotherapy (ART).19,20 Such a CDSS is depicted in 
Figure  1. In this case, the CDSS evaluates patient’s dose 
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ABSTRACT

Advancements in data- driven technologies and the inclusion of information- rich multiomics features have significantly 
improved the performance of outcomes modeling in radiation oncology. For this current trend to be sustainable, chal-
lenges related to robust data modeling such as small sample size, low size to feature ratio, noisy data, as well as 
issues related to algorithmic modeling such as complexity, uncertainty, and interpretability, need to be mitigated if not 
resolved. Emerging computational technologies and new paradigms such as federated learning, human- in- the- loop, 
quantum computing, and novel interpretability methods show great potential in overcoming these challenges and 
bridging the gap towards precision outcome modeling in radiotherapy. Examples of these promising technologies will 
be presented and their potential role in improving outcome modeling will be discussed.
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response by analyzing trends in patients’ multiomics biomarkers 
measured before and during treatment, which are fed into an 
appropriate OPM for projecting outcome estimates. The CDSS 
then can recommend an optimal dose adaptation value for the 
remaining treatment period that will maximize the observed 
TCP and minimize the observed NTCP. This recommendation 
could be made via a sequential decision- making algorithm such 
as deep reinforcement learning. Note that in modern era of 
OPMs, the notion of TCP/NTCP is generalized from simplistic 
dose–volume metrics into more comprehensive multiomics 
patient- specific approach that utilizes artificial intelligence (AI) 
as its computational vehicle.21,22

It is recognized that advanced data- driven approaches fueled by 
AI- based machine and deep learning (ML/DL) techniques have 
significantly improved the predictive power of OPMs. However, 
researchers have been actively working on overcoming two main 
impending challenges related to data and algorithmic modeling. 
This will further enhance OPM’s utilization and crossing the 
bridge of so called the ‘AI chasm’ that separates development 
from clinical implementation.23 Figure  2 summarizes the data 
modeling related challenges of interpatient heterogeneity, 
limited data set, and high level of uncertainty in data, and the 
algorithmic modeling related challenges of model performance, 
uncertainty, and model interpretability.

Figure 1. CDSS for ART.19 CDSS is composed of OPM and ODM. Given a patient’s before and during treatment multiomics, clinical, 
and dosimetry information, the OPM outputs corresponding TCP and NTCP. ODM recommends an optimal dose adaptation value 
for the remaining treatment course. ART, adaptive radiotherapy; CDSS, clinical decision support systems; NTCP, normal tissue 
complication probability; ODM, optimal decision maker; OPM, outcome prediction model; TCP, tumor control probability.

Figure 2. The current challenges and actively researched solutions in OPM in Radiation Oncology. OPM, OPM, outcome prediction 
model.
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Accessibility of sufficiently large data sets and availability of 
noise- free data required for clinical- grade robust model devel-
opment and evaluation are currently lacking. While the under-
lying reasons are not mutually exclusive, the former issue, which 
creates a barrier for implementing ML/DL big- data analytics, is 
associated with a set of privacy laws established for protecting 
patient’s rights.24 The latter issue arises from several reasons 
including missing data, measurement error, and interpatient 
heterogeneity. Currently, researchers have been actively involved 
with federated learning (FL) to tackle the sample size require-
ments issues, and application of human- in- the- loop (HITL) 
learning & quantum computing to overcome the uncertainty 
issues. Additionally, preventive measures such as standard-
izing the data acquisition and data harmonization methods are 
other actively ongoing efforts for improving the data quality for 
outcome modeling.25

FL26 is an emerging paradigm in the fields of ML/DL algorithm 
development in which OPMs are trained across multiple decen-
tralized servers, located in multiple institutes. The advantage of 
FL is that at one hand the data doesn’t need to leave the premise 
of the institution. On the other hand, this paradigm provides 
the necessary sample size for accurate and robust statistical 
modeling while protecting the data privacy.27,28 While there 
are numerous works on FL in other fields, it is an active area of 
research and development in radiation oncology29 and in the 
medical field in general,30–34 mainly because, unlike ML/DL plat-
forms (e.g. pytorch or tensorflow),35 the infrastructures for FL 
are still lacking. Jochems et al,36 in their proof- of- concept study, 
developed a tool for survival prediction of non- small cell lung 
cancer (NSCLC) patients treated with chemoradiation or RT that 

was trained in data set located in two different cancer institu-
tions and then further validated the model in another institu-
tion. Those institutions were located in three different countries 
in two different continents.

HITL37–39 is a hybrid of data- and knowledge- driven approaches 
that integrates prior expert knowledge into ML frameworks. The 
synergy between machine and human intelligence helps to alle-
viate model uncertainty, improve model trust level (credibility), 
and build upon current understanding as opposed to starting 
from scratch. Luo et al40 have implemented HITL for NSCLC 
OPM, where a Bayesian network architecture was applied to a 
multi omics dataset for making predictions of local control (LC) 
and radiation induced lung inflammation (pneumonitis (RP)) 
as shown in Figure  3. The study integrated known biophysical 
interaction between the patient features into modeling without 
which the task would have been extremely difficult and prone 
to uncertainty given the limited sample size and a large feature 
size. Similarly, Sun et al41 have designed a new framework for 
integrating expert human knowledge with AI recommendations 
for optimizing clinical decision- making in ART in lung cancer.

Quantum computing and quantum information theory42,43 
are a natural fit for dealing with data uncertainty, stochasticity, 
and noise. In addition, application of quantum information can 
significantly speed up computation compared to its classical 
counterpart. Because of its advantages, quantum computing has 
been applied to ML algorithms44 and with the rapid development 
of quantum computing platforms, quantum ML algorithms are 
actively being researched.45–48 Niraula et al20 have modeled clin-
ical decisions as quantum states to represent the uncertainty 

Figure 3. Multiobjective Bayesian Network prediction reproduced from Luo et al.40 Pre- treatment (a) and during (b) treatment 
HITL- BNs for joint prediction of LC and radiation pneumonitis Grade two or above (RP2) are shown in this figure. The is an exam-
ple of OPM that takes in multiomics data from before and during treatment. HITL, human- in- the- loop; LC, local control.

http://birpublications.org/bjr


4 of 11 birpublications.org/bjr Br J Radiol;95:20220239

BJR Niraula et al

faced by physicians in decision- making during RT treatment. 
The uncertainty in decision- making mainly arises due to the 
availability of partial information on patient’s state and due to the 
uncertainty in treatment outcomes. In another example of appli-
cation of quantum computing, Pakela et al49 demonstrated that 
quantum tunneling based annealing optimization techniques 
can optimize intensity- modulated radiotherapy treatment plan 
much faster than the traditional simulated annealing optimiza-
tion method. A faster optimization algorithm would permit in 
reoptimizing a treatment plan in a shorter time frame during the 
treatment course to account for changes such as tumor shrinkage 
and organ deformation to optimize the treatment outcome.

Aside from data- related issues, the interpretability of advanced 
predictive ML/DL models is also a concern to the medical 
community.50–53 DL models, in particular, are popular for their 
high degree of accuracy. However, because they are complex 
non- linear models composed of up to billions of parameters 
with non- convex objective functions, interpreting DL models is 
not always easy. In general, complex models trade- off accuracy 
for interpretability. Usually, complex models are regarded as a 
black box, whose architecture (hyperparameters) are optimized 
with respect to the task in hand and are utilized without delving 
deeper into the how’s and why’s. While such practices are usually 
acceptable in non- medical fields, medical conservatism empha-
sizes the need for interpretable models as an acceptable clinical 
tool due to safety issues and legal compliances. Researchers in 
radiation oncology are integrating interpretability methods 
into their predictive models. Wei et al54 implemented an inte-
grated gradient method for identifying the important radiomics 
features from a DL model trained for risk prediction of overall 
survival in hepatocellular carcinoma patients.

We begin this review with an overview of the traditional mech-
anistic predictive outcome models, primarily based on the 
linear quadratic model for estimating TCP and NTCP. Then, 
we present the current status of predictive modeling, which is 
mainly focused on the inclusion of multiomics patient- specific 
information followed by a CDSS framework that leverages such 
multiomics based OPM for optimizing RT treatment plans. We 
finish with a discussion on the current challenges and limitations 
of predictive modeling associated specifically with the AI data- 
driven technologies and actively sought out solutions that could 
potentially overcome the current gap (AI chasm) that separates 
development from clinical implementation.

BASIC OVERVIEW
Two major types of clinical end points considered in outcome 
modeling are TCP55 and NCTP.56 TCP is defined as the prob-
ability that a tumor is eradicated or controlled after receiving a 
certain amount of dosage and NTCP is defined as the probability 
of radiation- induced normal tissue toxicities that an organ of 
interest may exhibit after exposure to unwanted radiation. TCP- 
related end points may include LC, regional control, etc. NTCP- 
related end points are more diverse and may vary among disease 
sites.57–61 Note, in our description, below we are using TCP/
NTCP in their generalized sense as comprehensive OPM with 
multiomics patient- specific input data.

Conventional analytical outcome models are mainly based on 
dosimetric and volumetric information. These models may 
formulate the outcomes according to simplified radiobiology 
theory or available dosimetric data to a parametric model. Many 
analytical (mechanistic and/or phenomenological) models 
have been proposed in the literature.62 Here, we present a brief 
description of the common analytical outcome models used in 
the clinical treatment planning software.18 For the interested 
reader, more in- depth analysis of these models and their applica-
tion can be found in62

TCP modeling: The well- known linear- quadratic (LQ) model 
and its variants are based on irradiation effects observed from 
in vitro cell culture experiments. In a LQ model, the logarithm 
of survival fraction (SF) of cells is composed of both linear and 
quadratic terms of the physical dose, relating to lethal damage 
caused by the ‘single- hit’ and ‘multiple hit’ events, respectively. 
It is possible to use the LQ model to convert the size of fraction-
ation dose while keeping an iso- effect of the biological response 
for the end point of interest. The biologically effective dose 
(BED) concept could be used to convert dose under different 
fractionation schemes to a standard fractionation scheme. For 
instance, a quantity called EQD2 is a special case where dose 
under different fractionation schemes is converted into equiv-
alent total dose given in 2 Gy per fractions. TCP models can be 
also built by fitting empirical data, for instance, logistic regres-
sion can be adopted to associate dosimetric variables to TCP.63

NTCP model: The Lyman model56 is a well- known NTCP model, 
which uses a cumulative Gaussian distribution to fit the toxicity 
events of interest,
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Here, D  could be represented by the generalized equivalent 
uniform dose (gEUD),  D50  is a dose uniformly irradiating the 
whole organ that relates to 50% NTCP, and m is a parameter that 
controls the slope of NTCP. Additional parameters regarding the 
volume effect can be further incorporated if the dose distribution 
is inhomogeneous. Other sigmoidal functions, e.g. logistic func-
tion, log- logistic cumulative distribution have also been applied 
to model NTCP.64

Note that the TCP and NTCP models differentiate between 
tissue types via a radiosensitivity parameter denoted as the  α/β  
ratio. This ratio is central to BED and EQD2 estimation and to 
subsequent calculation of both TCP and NTCP models. In prac-
tice, the  α/β  ratio is not well characterized for all tissue types, 
including organs at risk (OARs), which can introduce additional 
uncertainty in the TCP and NTCP modelling process.65

Predictability of the conventional analytical OPM is limited to 
the dosimetric information. OPM can be improved by basing it 
on other information such as imaging and multiomics data.66 
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However, due to the sheer number of feature size, hand crafting 
an analytical model is very difficult, if not impossible. Thus, data- 
driven techniques such as statistical and ML have been utilized 
for OPM.

In the general sense, outcome modeling can be typically defined 
as a supervised learning problem in the context of ML.67 A 
mapping function from patient- specific information to the end 
points of interest can be learned using the training data. Then, 
this function can be applied to an unseen data set to infer clin-
ical end points for a given input, patient- specific data. Outcome 
modeling could be presented as a classification problem when a 
pre- set of cut- off thresholds is used to determine the end point. 
Otherwise, an outcome model can apply to predict the proba-
bility of events directly using regression techniques. The combi-
nation of growth in patient- specific multiomics data, complexity 
of radiation response process, and advances in ML algorithms, 
particularly the success that DL algorithms that have demon-
strated in the field,68 have led to the burgeoning interest in 
applying ML/DL methods to outcome modeling in RT.62

Current status of outcome modeling in 
radiotherapy
Currently, many treatment planning systems still utilize analyt-
ical models based on the LQ models and its variants as add- 
ons which may or may not be consulted during planning. The 
focus remains on meeting dose–volume physical constraints 
rather than achieving desired outcomes based on radiobiolog-
ical models. This is primarily due to uncertainties associated with 
these models, their population- based nature, and the scarcity of 
proper optimization methods that could utilize such models.

Recently, there has been extensive efforts and advances made 
in personalizing outcome modeling for RT. It is recognized that 
outcome prediction in radiation oncology is multifactorial and 
involves correctly identifying patients’ radiosensitivity of tumor 
cells and surrounding healthy cells. Identifying radiosensitivity,69 
however, is not an easy feat, because it depends on many dynamic 
factors such as tumor heterogeneity, tumor volume, hypoxia, cell 
damage repair, cell cycle, etc., that can change over the treatment 
period. Moreover, radiosensitivity differs from patient to patient. 
A possible way to include patient- specific radiosensitivity in 
outcome modeling is by integrating patient- specific multiomics 
information.

Advancements in imaging acquisition technologies have gifted 
us the field of radiomics in which large- scale imaging informa-
tion can be incorporated into modeling RT responses. Currently, 
there are two areas associated with radiomics, one is based on 
hand crafted features (e.g. morphology and texture) and the other 
utilizes raw images directly using DL.70 Moreover, measuring 
and quantifying molecular biomarkers, such as gene expression 
microarrays and RNA sequencing methods, and data- driven 
techniques that can process large amount of genetic data, have 
transformed the predictive modeling landscape from a popula-
tion based one with limited predictive power into a data- driven 
one that allows for individualized treatment management with 
ML modeling.

Advanced ML/DL models can now leverage before and during 
radiation treatment information on patient’s relevant radioge-
nomics biomarkers that are extracted from tumor biopsy, blood 
work, and imaging radiomics, to capture the intrinsic heteroge-
neity and accurately incorporate patient- specific radiosensitivity 
in OPM. For instance, Luo et al14,15,71 showed improvement in 
prediction accuracy by including multiomics information of 
NSCLC patients as predictive biomarkers for LC and RP. They 
analyzed hundreds of biophysical features including dosimetry, 
clinical, pre- and during treatment cytokines, miRNAs, as well as 
single nucleotide polymorphisms (SNPs), and selected the most 
important features for predicting the outcomes. They then devel-
oped an OPM based on Bayesian Networks that presented the 
causal relationship between the features and the outcome. Simi-
larly, Cui et al13 developed a DL- based prediction model that 
jointly predicted LC and RP in NSCLC patients. Patient- specific 
information including differential dose–volume histograms, 
PET tumor radiomics, and biological information were input 
into a composite deep neural network. The composite architec-
ture was able to learn the representation of features and perform 
the prediction task simultaneously.

Tseng et al19 designed a deep reinforcement learning- based 
framework for CDSS in ART. By inputting patient’s state infor-
mation, comprised of important multiomics features, the CDSS 
can recommend an optimal dose fractionation. In that work, for 
a given state and an amount of dose fractionation, an artificial 
radiotherapy environment that was constructed out of OPM 
could predict a patient’s resulting state and corresponding treat-
ment outcome. By using that environment, a deep reinforce-
ment learning network was trained to recommend optimal dose 
fractionation that would maximize TCP and minimize NTCP. 
Niraula et al20 have further advanced the work by improving the 
model of artificial radiotherapy environment. They integrated 
prior knowledge on dosimetric features into the OPM and 
combined neural networks with mechanistic models to ensure 
that the dosimetric features respected the radiological physical 
requirements, i.e. the gEUD values increased with increasing 
dose fractionation and both TCP and NTCP values increased 
with increasing gEUDs. Future modeling processes will witness 
increase in data types as well as integration of prior expert 
knowledge into data- driven methods. Additionally, deep rein-
forcement learning methods have also been used for precision 
oncology,72 2D tumor growth simulation- based dose fraction-
ation,73 and beam reshaping via multileaf collimation for real- 
time adaptive RT.74

FUTURE DEVELOPMENT
In addition to prospective evaluation, the following challenges 
needs to be addressed.

1.Overcoming limited data

1A. Federated Learning

The curse of dimensionality, as coined by Richard E. Bellman, 
demands an exponentially large sample size for a high dimen-
sional data set.75 This occurs since the volume of the feature space 
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expands rapidly with the increase of the feature dimensions, 
which means that to be able to gain from high- dimensional data 
sets such as multiomics, we will need information from expo-
nentially more patients. The small sample size to feature size 
ratio is even more pronounced in the medical field where data 
points are sparsely distributed and limited due to ethical and 
legal issues associated with human experimentation. To make 
the matter worse, data- sharing in healthcare is strictly regulated 
due to privacy and patient protection concerns. FL can aid in 
overcoming these data access limitation issues and has been 
actively pursued by the medical community including radiation 
oncology.

In FL, data do not leave the secure confinement of the data 
owner’s firewall but let a foreign model securely access the 
data and learn from it. Several network topologies have been 
proposed for FL, such as centralized, decentralized, hierarchical, 
hybrid hierarchal, etc.27 For instance, in a centralized topology, 
a central server broadcasts multiple identical models to distant 
data servers which allows the models to access their local data 
set. The local models then calculate local loss function and send 
it back to the central server. The central server then collects the 
local loss functions and then aggregates it in a weighted fashion 
where the weights are selected according to the characteristics of 
the respective data sets. Then, the model is updated in the central 
server and the updated models are again broadcasted for another 
iteration. Models trained under FL have shown to achieve 
comparable performance to the ones trained under traditional 
centralized ML.76–78

FL has many other benefits such as overcoming selection bias due 
to accessibility of data from a wide range of regions and demog-
raphy, the ability to perform comparative studies of subgroups of 
patients that might have different radiosensitivity, high quality 
ML aided tool for diagnoses and outcome predictions, etc. There 
are also concerns and challenges, such as having to deal with 
heterogenous data sets that are not independently and identi-
cally distributed (non- iid) due to interinstitutional differences in 
RT clinical protocols, data acquisition methods, and differences 
in computing hardware resources. However, considering the 
current momentum and early success of the ongoing research, it 
is safe to be optimistic about the prospects of FL.

2. Overcoming uncertainty issues

In the domain of radiation oncology, data are usually collected 
under heterogenous conditions that lead to a noisy data set. There 
can be many sources of data noise such as interference, calibration 
error, sparse data set, small data set, measurement error, discret-
ization, batch effect, intrinsic heterogeneity in humans, etc.79 A 
significant degree of uncertainty can arise from record- keeping 
related issues, such as inconsistencies and difficulty in classi-
fying radiation induced toxicities and reporting outcomes, even 
with a standard Patient- Reported Outcome Measures (PROM’s) 
questionnaire. Any data- driven outcome model based on a noisy 
data set will have larger prediction uncertainty. Another source 
of uncertainty in RT comes from clinical decisions. Since physi-
cians must prescribe decisions without a complete knowledge of 

confounding patient’s dose response factors, their decisions may 
have a high degree of uncertainty which gets propagated into 
the recorded clinical data. Currently, there are ongoing research 
efforts in the following two areas for dealing with data noise and 
modeling uncertainty.

2A. Human in the loop

Being rooted in reinforcement learning, preference learning, 
and active learning, HITL is a hybrid of data- driven and 
knowledge- driven approach that overcomes model uncertainty 
by integrating prior expert knowledge into ML frameworks.80 
Holzinger et al defined HITL as ‘‘algorithms that can interact with 
both computational agents and human agents to optimize their 
learning behavior through these interactions.81’’ HITL approach 
can reduce the complexity of a hardest decision- making problem 
(NP- Hard) through assistance of a human agent in the learning 
phase.81 Furthermore, experimental evidence for the utilization 
of HITL algorithm has demonstrated that human intelligence 
can positively augment machine intelligence.82

The concept of HITL has been intensively used to tackle obstacles 
created by data- related limitations. By exploring human–ma-
chine partnership with AI, Patel et al demonstrated that AI- based 
technology achieved superior accuracy than the human experts 
alone in chest radiograph diagnosis.83 In other study of HITL for 
interplaying between digital image analysis (DIA) and pathol-
ogists, Boden et al found that HITL corrections could address 
major DIA errors in terms of poor thresholding of faint staining 
and incorrect tumor- stroma separation for individual cases.84 
In OPM for NSCLC, Luo et al implemented HITL learning for 
creating a causal graph of feature and end points via Bayesian 
network architecture. The OPM took in multiomics data set for 
making predictions on LC and RP as shown in Figure 3.

As ML/DL plays an increasingly important role in medical 
image analysis, the integration of HITL and ML/DL becomes 
even more necessary for designing CDSS. Budd et al evalu-
ated four key areas to improve the integration in clinical prac-
tice: active learning for the best data selection, interaction with 
model outputs for models steering, full- scale applications before 
deployment, and the evolvement of knowledge gaps to benefit 
HITL computing.80 However, it is still unclear how to design 
optimized relationships between people and machines in a scal-
able manner, how to design triggers for proactive engagement 
and disengagement, and how to handle the consequences of 
implied interventions. The verification of treatments in a large 
HITL machine medical system can be very complex due to its 
evolving nature from both patients’ aspects and the clinical envi-
ronment. Therefore, it is critical to understand human–machine 
interaction semantics and control for the behavioral context in 
designing OPM with HITL.85

2B. Quantum computing and information theory

Quantum computation, built on quantum information theory, 
is intrinsically indeterministic, making it a natural medium for 
modeling noise and uncertainty. Unlike digital computers, where 
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a value is deterministically represented by a collection of bits, a 
quantum system represents a value as the mode of a probability 
distribution. By representing the data as a quantum state, we are 
modeling the noise by the spread of the distribution. Further-
more, by carefully designing quantum ML algorithms,86 we can 
model the interaction between the patient’s state and the radia-
tion dose, which would automatically encapsulate the propaga-
tion of uncertainty and naturally present the outcome prediction 
with an uncertainty metric. Researchers are working on such a 
complete quantum model.

Recently, Pakela et al87 designed a hybrid quantum deep recur-
rent neural network (RNN)- based OPM for predicting tumor 
volume and daily setup changes in head and neck cancer patients. 
Just as it is impossible to predict the behavior of a quantum 
system with absolute certainty, there are inherent uncertain-
ties in knowing a patient’s “state” during RT due to physiolog-
ical changes such as tumor response and anatomical motion as 
well as limitations in cone beam CT (CBCT) image quality. The 
OPM modeled the combined patient tumor volume and daily 
setup changes as a stationary quantum state whose time points 
were discretized by the number of fractions. The authors demon-
strated that such a hybrid model could perform almost as well as 
the classical Markov- based model. The performance, measured 
in AUC scores, of the predictive Markov model compared to 
the hybrid quantum model, evaluated in an external validation 
data set, were 0.707 vs 0.623, 0.687 vs 0.608, 0.723 vs 0.669, and 
0.697 vs 0.609 for patient’s discrete states sizes of 4, 6, 8, and 10, 
respectively.

Hybrid quantum algorithms have also been explored for beamlet- 
weight optimization in intensity modulated radiotherapy (IMRT) 
treatment planning. Pakela et al49 developed a hybrid optimiza-
tion algorithm by merging annealing and quantum tunneling. 
The quantum tunneling annealing optimization schedule 
reached convergence up to 46.6% faster than traditional simu-
lated annealing algorithm for beamlet intensity optimization and 
up to 26.8% faster for direct aperture optimization.

Quantum computing can also be used to model decision- 
making. Niraula et al20 designed a hybrid quantum deep rein-
forcement learning algorithm that modeled human decisions 
as an indeterministic quantum state. By training the framework 
in IBMQ quantum computer, they demonstrated the feasibility 
of the quantum framework as a CDSS which can potentially 
aid physicians in the clinic. Following a self- evaluation metric 
based on the retrospective clinical outcome, they showed that a 
decision- support system based on their framework can poten-
tially improve the clinical decision by 10%.

3. Model interpretability

Making accurate prediction requires utilization of complex 
models with many parameters. However, complex models are 
difficult to interpret precisely. This trade- off between accuracy 
and interpretability is troublesome especially in high- risk fields 
such as radiation oncology. On the other hand, without fully 
understanding the relationship between the features and the 

outcome prediction, it is very hard to differentiate authentic 
relations from artifacts. Therefore, currently, extra effort is being 
put into developing interpretable models and tools for model 
interpretation/explanation. Interpretable graph networks such 
as Bayesian networks are being actively applied for outcome 
modeling which can trace the internal relationships between the 
features and their combined relationship with the outcome. Inter-
pretability tools are also being actively developed and incorpo-
rated into outcome prediction models that are built on black- box 
type models such as tree- based and deep learning models.

Several methods are available for interpretation that can be cate-
gorized into model- agnostic methods such as feature importance, 
sensitivity analysis via input perturbation, local attention mech-
anisms, Shapely values, etc., and model- specific methods such 
as feature visualization, saliency maps, adversarial examples, 
etc.88 Model- agnostic methods are especially desirable because 
they can help in comparing different models based on the feature 
to outcome relationship. Model- specific methods, especially in 
the context of neural networks, are desirable to extract learned 
features from the hidden layers and are usually much faster than 
the model- agnostic methods. Saliency mapping tools such as 
Decovnet, Grad- CAM, Guided Grad- CAM, and SmoothGrad 
are popular interpretation tools for CNNs and have been applied 
in radiomics and imaging in radiation oncology.

Liang et al89 developed a CNN- based prediction model for RP 
that utilized dose distribution as an input feature. There, the 
authors used Grad- CAM90 to locate regions of the dose distri-
bution that strongly correlated with the positive and negative 
cases of RP. Similarly, Cui et al13 applied Grad- CAM method to 
provide insight into what was learned by the composite model 
and thereby increased their model’s interpretability.

Wei et al54 applied a combination of variational autoencoders 
(VAEs) and CNN to identify a new radiomics signature using 
imaging phenotypes and clinical variables for risk prediction of 
overall survival in hepatocellular carcinoma patients. The model 
included two VAE survival components for the clinical and 
radiomics features and a CNN survival network for the contrast- 
enhanced image input. For model interpretation, integrated 
gradients methods were applied which helped in identifying 
the clinical liver function and liver exclusive of tumor radio-
mics features as the top- ranked features for risk prediction. An 
example image showing the interpreted outputs using integrated 
gradients is shown in Figure 4. Normal liver tissues were given 
more attention by the model for high- risk patients, which is 
consistent with the fact that top- ranked features were liver- GTV 
texture features.

CONCLUSION
Currently, predictive modeling in radiation oncology utilizes 
patients’ multiomics information along with the traditional 
dosimetry and clinical information. Automated decision- 
support systems for adaptive RT have been developed utilizing 
multiomics- based predictive modeling. The current data- driven 
OPMs performs better than their traditional mechanistic models 
due to enriched patient- specific information. However, data 
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modeling- related issues have been hindering the deployment 
of these models to achieve their full potential. Significant effort 
is being made to overcome these issues with a combination of 
emerging technologies such as FL, HITL, quantum computing, 
and novel model interpretation tools that were highlighted in 

this review. Prospective evaluation of OPM is necessary for clin-
ical application.
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Figure 4. Liver- GTV images marked with blue patches from integrated gradient methods. Top row shows the images for a patient 
with GLN 0.756, died in 264 days. Bottom row shows the images for a patient with GLN 0.154, survived 760 days (right censored). 
The blue dots are the output of integrated gradients method that shows the critical pixels for the prediction of the neural network 
which provides a direct explanation on how the deep learning- based outcome prediction model classified the images.
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