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Protein design usually involves sequence search process and evaluation criteria. Commonly used meth-
ods primarily implement the Monte Carlo or simulated annealing algorithm with a single-energy func-
tion to obtain ideal solutions, which is often highly time-consuming and limited by the accuracy of the
energy function. In this report, we introduce a multiobjective algorithm named Hydra for protein design,
which employs two different energy functions to optimize solutions simultaneously and makes use of the
latent quantitative relationship between different amino acid types to facilitate the search process. The
framework uses two kinds of prior information to transform the original disordered discrete sequence
space into a relatively ordered space, and decoy sequences are searched in this ordered space through
a multiobjective swarm intelligence algorithm. This algorithm features high accuracy and a high-speed
search process. Our method was tested on 40 targets covering different fold classes, which were compu-
tationally verified to be well folded, and it experimentally solved the 1UBQ fold by NMR in excellent
agreement with the native structure with a backbone RMSD deviation of 1.074 Å. The Hydra software
package can be downloaded from: http://www.csbio.sjtu.edu.cn/bioinf/HYDRA/ for academic use.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Proteins play a critical role in biological activities, serving as, for
instance, energy producers, structural bricks, sensors, and catalysts
[1]. In recent years, de novo protein design has become an emerg-
ing technology with a significant impact on the development of
medicine, nanoscience, catalytic chemistry and other fields. Com-
putational protein design (CPD) is used to calculate the appropriate
protein sequence given the target protein scaffold by computer
algorithms, and it can be regarded as the inverse procedure of pro-
tein structure prediction [2]. For fixed backbone protein design,
there are at least two fundamental questions: the sequence search-
ing algorithm in the large sequence space; sequence evaluation
methods or energy function. Large deviations of the designed
sequences and long search processes in the disordered discrete
sequence space are among the primary issues facing current pro-
tein design methods.

Recently, several different protein design methods have been
developed, most of which have used the Replica-Exchange Monte
Carlo (REMC) or simulated annealing (SA) algorithms minimizing
a single energy function, such as Rosetta [3], SEF_V [4], and etc.
These methods use many iterations (more than 105) to obtain an
ideal solution. How to evaluate the designed sequence is an impor-
tant issue, which is usually formed as an energy function in the
optimization protocol. For instance, in the protein structure predic-
tion area, many energy functions have been proposed and widely
used, i.e., the CHARMM [5], Rosetta [6], DFIRE [7], UNRES [8], and
Amber [9], and etc. Some of them are derived from the point of
physics atomic interactions, and some are from the statistical
knowledge-based descriptions. Previous studies have shown that
there is not a general better energy function for all proteins and
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how to choose an appropriate energy function has become a diffi-
cult problem.

In current protein design area, most programs have applied a
single energy function to evaluate the designed sequences, which
could also face the same difficulty of the applicability on different
proteins. Although many versions of energy functions have been
published, it is still difficult to determine which one is the best.
It is reasonable for a multiobjective evaluation to combine the
advantages of different energy functions, potentially increasing
the performance of each iteration. In recent years, some heuristic
multi-objective protein design algorithms have been reported
and show promising results [10]. One of the major merits of the
multi-objective optimization-based protein design is we can eval-
uate the searched potential sequences from different point of view
through the parallelly optimized objectives or energies, which will
result in the so-called non-dominated solutions in the high-
dimensional space composed by the applied energy functions. This
is quite different from optimizing a single energy function in the
1D space, which is usually composed by weighed sum of multiple
terms.

In terms of searching algorithms implemented in the original
disordered discrete sequence space, it would be difficult to take
advantage of the latent quantitative relationship of different amino
acid types to simplify the search process. Since the chemical prop-
erties of amino acids are relative, their chemical relationship can
be used as a guideline in the searching process between iterations,
as well as to minimize the searching space in each iteration. There-
fore, instead of searching in the original sequence space, it would
be better to transform the original discrete sequence space into
an ordered continuous space. The REMC or SA algorithm is gener-
ally difficult for implementation in continuous space, since the ran-
dom mutation operation is difficult to guide according to the
previous iteration. Searching in continuous space would decrease
the total iterations dramatically. Thus, we can use fewer iterations
to complete the whole searching process, and multiple energy
functions or more complex evaluation methods can be imple-
mented into each iteration.

Thus, we developed de novo a new computational fixed back-
bone protein design method named Hydra. In Hydra, we used the
fused prior information collected from the PDB and DSSP databases
to transform the original discrete sequence space into a continuous
space. A particle swarm optimization [11] (PSO)-based biobjective
(double objective functions) swarm intelligence algorithm was
implemented in the continuous space to search sequences. Two
different energy functions, the FoldX energy function [12] and a
function describing local structural properties similar to EvoDesign
[13], were used to evaluate the decoy sequences.

We demonstrated that two energy functions could restrain and
complement each other to increase the robustness of the selected
solutions, and the space transformation could facilitate the search
process. We compared the performance of Hydra with two estab-
lished methods, Rosetta fixed backbone design [3] and ABACUS
[4], and the results suggested that the multiobjective optimization
algorithm was superior to single objective optimization in protein
design, while the space transformation procedure can shorten the
search process. The sequences designed by Hydra could be well
folded with high accuracy and fewer iterations, as confirmed by
the experimentally solved structure of target 1UBQ.

2. Methods

The Hydra tries to solve the fixed backbone protein design prob-
lem, so the choice of conformational space is not needed to be con-
sidered here. Its overall procedure consists of four steps:
construction of prior information, sequence space transformation,
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iterative biobjective optimization and selection of output
sequences. The outline of Hydra is shown in Fig. 1a. We first col-
lected the prior information (fused by the structural and statistical
information) from two databases and then transformed the origi-
nal disordered discrete sequence space into an ordered continuous
space (Fig. 1b), where algorithm optimization was implemented.
After a certain number of such iterations, several Pareto solutions
would be stored in the Pareto archive set. Finally, reliable solutions
would be selected from the Pareto archive set as output sequences.

2.1. Structure and statistical information construction

Inspired by EvoDesign [14], the input target scaffold’s structural
information was obtained from a nonredundant set of the PDB
library by the protein structure alignment program TM-align
[15], and the target scaffold was used as the probe in the alignment
procedure. For each alignment, the TM-align program will return a
TM-score [16] value to assess the structure similarity of one pro-
tein from the PDB library to the target protein. The TM-score
ranges from 0 to 1, with a higher value indicating a higher struc-
tural similarity, and a TM-score > 0.5 roughly means that two
structures belong to the same fold according to the database anal-
ysis [17]. In our method, the PDB database was built from the RCSB
PDB database [18] on the basis of several filter conditions:

[1] Proteins are from Homo sapiens, [2] candidate structures are
determined by X-ray diffraction, [3] resolution is better than 2.5 Å,
[4] sequence identity cut-off is 40%. The target scaffold was aligned
with all the protein structures in the PDB database, and they were
ranked according to their TM-score values relative to the target
from highest to lowest.

In general, we collected all the proteins in database with a TM-
score > 0.7 to extract the information for the target’s homologous
structural family. If the number of proteins with a TM-score > 0.7
was less than ten, the cut-off value would gradually decrease to
ensure sufficient analogues of the target scaffold. The sequences
of the collected proteins will be used to construct a L� 20
position-specific scoring matrix by multiple sequence alignment
[19,20] (MSA), where L is the number of input target residues
and 20 is the number of amino acid types. This matrix specifies
the distribution of different amino acids at each residue position
of the target scaffold, which indicates the conservation and varia-
tion information for the target’s homologous protein family. For
residue r at residue position p, the element of this matrix can be

formulated as M p; rð Þ ¼ P20
x¼1f p; xð Þ � B x; rð Þ. In this equation,

f p; xð Þ is residue x’s appearance frequency at position p in the
MSA, and Bðx; rÞ is the BLOSUM62 [21] matrix value of residue pair
r and x. It has been demonstrated that the structural information
obtained from the target scaffold’s homologous protein family is
more accurate and robust than the conventional homologous pro-
tein information deduced from sequence-based searches, such as
PSI-BLAST [22,23].

The statistical information was obtained from the distribution
of all the different kinds of amino acid types given certain struc-
tural properties of each residue position [4]. This distribution
was derived from a DSSP database built with the DSSP files
assigned from the PDB database by DSSP standalone software
[24], except that some incomplete proteins were excluded. A sta-
tistical information matrix will be generated, and one element of
this matrix S r; pð Þ means the value of amino acid r at position p.
S r; pð Þ is determined by the probability distribution of amino acid
type r conditioned on the structural properties associated with
the corresponding position along the target scaffold. It can be rep-
resented as follows:

Sðr;pÞ ¼ �lnpðrjstructure properties at position pÞ ð1Þ



Fig. 1. Flowchart of the Hydra Design, where f1 and f2 are the two energy functions of this algorithm. a, Flowchart of Hydra. b, Diagram of the space transformation. The left
side is the original discrete sequence space. The right side is the quantified continuous space. After space transformation, the ideal solutions (blue orbs) will be clustered in a
small area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Rui-Xiang Li, Ning-Ning Zhang, B. Wu et al. Computational and Structural Biotechnology Journal 19 (2021) 2575–2587
Each scaffold position’s structural properties include backbone
torsional angles, secondary structure (SS) and solvent accessibility
surface area (SASA). These structural properties should be met
simultaneously when counting the numbers of different amino
acid types in the DSSP database given a residue position of the tar-
get, and the conditional probability distribution in Eq. (1) was cal-
culated from these counted numbers. To obtain the distribution of
different amino acid types associated with certain structural prop-
erties, every target residue position was mapped to a target point
into an abstract space spanned by different structural properties,
and the same procedure was performed for the training proteins
in the DSSP database. Neighboring training data points relative to
the target data point within the threshold value would be col-
lected. The threshold value was a key point in the accuracy of
the statistical information. A higher threshold value would gener-
ate more data samples, which could make the statistics more
robust and stable. Additionally, the probability distribution was
more accurate with a lower threshold value, but the statistical data
samples might not be sufficient to construct a reliable probability
distribution in such a situation. In this paper, we set the threshold
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value of the torsional angle difference and solvent accessibility sur-
face area difference as 15 and 20 Å, respectively, according to the
empirical data.

2.2. Sequence space transformation

The original sequence space was an L dimensional discrete
space, where L was the target protein’s sequence length, and there
were 20 amino acid types in each dimension. No numerical rela-
tionship appeared to exist between these amino acid types, which
indicated that they could not be compared in a quantitative man-
ner. Thus, the original sequence space was a high-dimensional and
disordered discrete space. In prevalent protein design methods, the
sequence search process is directly conducted in the original
sequence space [25], which makes it a complex and difficult prob-
lem. In our method, the search process will be conducted in a
transformed space.

Before transformation, we should normalize the structure infor-
mation matrix and statistical informationmatrix obtained from the
previous step as follows:
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Mðr;pÞ0 ¼
Mðr;pÞ �min

r
Mðr;pÞ

max
r

Mðr; pÞ �min
r

Mðr;pÞ ; Sðr;pÞ0

¼
Sðr; pÞ �min

r
Sðr;pÞ

max
r

Sðr;pÞ �min
r

Sðr;pÞ ð2Þ

With the normalized information matrix, we obtain

Fðr; pÞ ¼ k1Mðr;pÞ0 þ k2Sðr; pÞ0 ð3Þ
Mðr; pÞ0 and Sðr; pÞ0 respectively are elements of the structure

information matrix and statistical information matrix, and k1 and
k2 are the coefficients to control the contribution weight of the
two information matrices. In our method, the coefficients will vary
at regular intervals, which could oscillate the sequence space grad-
ually during the search process. Generally, we do not know the
absolute accurate quantitative relationship between the twenty
different amino acids, which means that the most ideal distribu-
tion of good solutions may not be achieved in the transformed
space. Thus, this oscillation will allow more opportunities to dis-
cover the desired protein sequences and prevent the search pro-
cess from stagnating in local minima.

In Eq. (3), F r; pð Þ is amino acid r’s fusion value at sequence posi-
tion p. In general, a larger fusion value means a greater possibility
of being the appropriate amino acid type for its residue position of
the target. Thus, in each residue position, we obtain a quantified
relationship between the twenty amino acid types. As a result,
the original discrete and disordered sequence space is transformed
into a continuous and ordered sequence space. For each residue
position of the target scaffold, the twenty different amino acids
will be sorted by their fusion values. Then, in the transformed
sequence space, each amino acid will be assigned a transformed
value (T value) according to its fusion value rank, e.g., the amino
acid with the largest fusion value will be assigned a value of 20,
and the smallest fusion value will be denoted as 1. The transformed
sequence space can be written as:

Rn ¼ R� R � � � � R ¼ fðx1; x2; � � � ; xnÞjxk 2 R; k ¼ 1;2; � � � ;ng ð4Þ
n is the target protein’s sequence length. The transformed value

is:

Tðr;pÞ ¼ rankðFðr;pÞÞ; rank 2 f1;2; � � � ;20g ð5Þ
As mentioned previously, the sorting of the fusion value is from

small to large. Thus,

Tðrk;pÞ ¼ rankðFðrk;pÞÞ ¼ 1; when Fðrk;pÞ ¼ minðFðr; pÞÞ
Tðrk; pÞ ¼ rankðFðrk; pÞÞ ¼ 20; when Fðrk;pÞ ¼ maxðFðr;pÞÞ

�

ð6Þ
2.3. Biobjective directional sequence space search

A. Energy functions
In this paper, the sequence search process was guided by two

energy functions, making it a biobjective optimization problem.
Two energy functions were used to evaluate the fitness of the
decoy sequences with different criteria, and both could play impor-
tant roles in the structural packing of decoy sequences.

The first energy function was a physics-based force field from
FoldX [12], which provided a rapid and quantitative estimation
of the interactions that contributed to the stability of proteins.
The predictive power of FoldX has been tested on a very large scale
of protein structures [12]. FoldX consists of many different force
field terms that can be written as follows:

f 1 ¼ w1Evdw þw2EsolvH þw3EsolvP þ Ewb þ Ehbond þ Eel þ EKon

þw4ESmc þw5ESsc ð7Þ
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where Evdw is the sum of the van der Waals contributions of all
atoms; EsolvH and EsolvP are the solvation energy for apolar and
polar groups; Ewb is the extra stabilizing free energy provided by
a water molecule; Ehbond is the free energy difference between
the formation of an intramolecular hydrogen bond compared with
intermolecular hydrogen bond formation; Eel accounts for the elec-
trostatic contribution of charged groups; EKon reflects the effect of
electrostatic interactions on the association constant kon; and ESmc

and ESsc are deduced from the theoretical estimate. The detailed
description of the FoldX force field can be found in the corre-
sponding papers [12]. We used the default parameter setting for
the calculation in our method. Since FoldX is a full-atomic based
software, to calculate the FoldX value, we should build the corre-
sponding side chain atoms to the target scaffold according to the
candidate sequence. In this study, we used SCWRL4.0 [26], a
user-friendly protein side chain conformation building software
with its own rotamer library, to reconstruct the input target scaf-
fold according to the generated decoy sequences before FoldX cal-
culation. Thus, the protein sequences could be evaluated
quantitatively to estimate whether they were appropriate
sequences for the target structure.

The second energy function was based on local structural prop-
erties inspired from EvoDesign [13]. It is composed of several
terms as follows:

f 2 ¼
X

w1DSSðpÞ þw2DSAðpÞ þw3ðD/ðpÞ þ DwðpÞÞ ð8Þ
where DSS pð Þ is the secondary structure difference between the tar-
get scaffold and decoy sequence at position p, which can be formu-
lated as:

DSS ¼ 1; different SS type

0; identical SS type

�
ð9Þ

DSA is the difference in solvent accessibility, and D/ pð Þ and
DwðpÞ are the differences of torsional angles. These three terms
are all normalized by:

normðDxÞ ¼ Dx� Dxmin

Dxmax � Dxmin
ð10Þ

where Dxmax and Dxmin respectively are the maximum and min-
imum value of Dx. The decoy sequence’s local structural proper-
ties were obtained through prediction in each iteration of our
algorithm, applying the SPIDER3-Single [27] to fulfil this task,
which is a fast secondary structure prediction software based
on a single sequence only. It can consistently achieve Q3 accu-
racy of 72.5% with considerably less running time. The structural
properties of the target scaffold were assigned by the DSSP pro-
gram. The weights x1, x2 and x3 are decided by the relative
accuracy of the individual feature predictions, ie.
x1 ¼ C � Ass;x2 ¼ C � Asa;x3 ¼ C � Ata;where Ass, Asa and Ata are
the number of correctly predicted residues on secondary struc-
ture (ss), solvent accessibility (sa) and torsion angles (ta),
respectively, divided by the total number of the residues on
the training proteins. C is the parameter to balance the average
magnitude of feature predictions, it was optimized by local
experiment samples. In this work, the weighting factors w1, w2

and w3 were set as 3/7, 2/7 and 2/7, respectively.

B. Multiobjective optimization problem

As mentioned above, the sequence search process in this paper
can be regarded as a biobjective optimization problem with two
analytically unknown fitness functions. In this study, we propose
to use a swarm intelligence algorithm to solve this problem.

With two energy functions, the problem can be treated as an
optimization process of minimizing two objective functions simul-
taneously, which can be formulated as:
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minFðXÞ
X2X

¼ ðf 1ðXÞ; f 2ðXÞÞT

X ¼ ðx1; x2; � � � ; xnÞT
F : X ! H2

f i : X ! H ði ¼ 1;2Þ

8><
>:

ð11Þ

where X denotes the decision vector, the objective function vector
FðXÞ includes two objective functions, X is the feasible domain,
H2 denotes the decision space, and f i : X ! H is the objective
function.

In contrast to the single-objective optimization problem, the fit-
ness evaluation is determined by two objective functions; there-
fore, the fitness value is no longer a one-dimensional value that
can be compared in a straightforward manner, and more than
one optimal solution may exist. The fitness evaluation for multiob-
jective optimization problems is usually based on the Pareto dom-
inance criterion [28], the detailed definition of which is as Fig. S4.

For multiobjective optimization problems, a decision vector
with a minimum value of one objective function may perform rel-
atively poorly in another objective, which makes sense owing to
the different characteristics of the objective functions. Different
energy functions focus on different aspects of principles of protein
folding; thus, protein design methods based on single-objective
optimization may have some deficiencies in accurately construct-
ing the model of protein folding. Many heuristic search algorithms
can be applied to realize the multi-objective optimization, and in
this study, we have designed the particle swarm optimization
(PSO) algorithm [28]-based protein design pipeline. The particles
representation, initialization, particle position and velocity update,
update of the archive and best position, and selection of the final
solution can be referred in Algorithm S1 in the supplementary file.

C. Complete process of PSO-driven multi-objective protein
design algorithm Hydra

The above sections have introduced the main components of
Hydra, including the construction of prior information, sequence
space transformation and the biobjective PSO optimization algo-
rithm. To present the detailed and complete flow of our method,
the pseudocode of Hydra is provided in the supporting information.

As shown in the pseudocode of Hydra in Algorithm B, it is a de
novo fixed backbone-based protein design algorithm; therefore, its
input should be a protein structure file in PDB format. Before the
search process, some necessary preparations should be performed,
such as the calculation of the target protein’s structural properties,
generation of the filtered set (Table S1) for each residue position of
the target scaffold, construction and normalization of the struc-
tural and statistical information, and sequence space transforma-
tion. Then, in the initialization step, all the particles in the PSO
are initialized as described in the above sections, the external
archive is initialized as the collection of nondominated solutions
of all the particles, and the best position is selected according to
Eq. (S5). N in line 10 of Algorithm B in the supporting information
is the population of particles, and for each particle, L � muterate
residue positions will be selected randomly along the target scaf-
fold to update the positions and velocities of these positions. The
value of muterate will decrease gradually as the iteration increases,
which will facilitate the decoy sequence’s large-scale variation in
the early stage of the search process and maintain the stability
and convergence of the decoy sequences in the last stage. This
mechanism is critical for the performance of our algorithm. If all
residue positions are updated simultaneously in each iteration,
the particles will converge prematurely very rapidly, thus not thor-
oughly exploring the promising area; in contrast, since only a few
residue positions are updated in each iteration, as applied in state-
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of-the-art protein design algorithms, a tremendous number of iter-
ations will be needed to obtain an acceptable solution. Generally,
the REMC (Replica Exchange Monte Carlo)-based protein design
algorithm normally takes 104 ~ 105 orders of magnitude steps to
obtain a good solution, while our algorithm only requires
1500 ~ 2000 iterations to obtain the desired solutions. The position
and velocity values of the selected residue positions are then calcu-
lated by Eq. (S6) -(S10). After the calculation, the updated position
values are projected to the corresponding filtered sets, which maps
the value of the transformed sequence space to a real amino acid
type. Subsequently, the updated decoy sequences will be evaluated
by two objective functions f 1 and f 2. Then, the update of the posi-
tion and velocity will be accepted or rejected by Eq. (S12). When
the inner loop of lines 11–15 ends, the ideal point formulated by
Eq. (S13) will be updated. Next, the external archive and best posi-
tion are updated by the method described in the above section.
Every DKT iterations, swaps of decoy sequences will take place
between adjacent particles that are ranked by their KT values. Sim-
ilarly, every Dk iterations, the sequence space transformation
parameters k1 and k2 are tuned according to Eq. (S18), and then
the sequence space is retransformed with the newly tuned param-
eters. The above iteration continues until the preset maximum of
iteration number Itmax is achieved. The final good solutions will
be selected from the pareto set.

2.4. Rosetta calculation commands

Protein sequences designed by RosettaDesign in the comparison
experiment were obtained from its online server Rosetta.design:

http://rosettadesign.med.unc.edu/. The Rosetta 3.10 package can

be obtained from https://www.rosettacommons.org/. The Rosetta

ab initio has been obtained from https://www.rosettacommons.

org/. Ab initio structure predictions were performed by running
‘AbinitioRelax.linuxgccrelease’ with the commands script listed in
Table S10.

To evaluate the Rosetta energy of a protein sequence for a given
target structure, we can run ‘fixbb.linuxgccrelease’ with the pro-
tein sequence fixed to obtain a structure with optimized side chain
conformations. We then relax the structure by running ‘relax.linu
xgccrelease’. The final structure is used to calculate the Rosetta
energy value.

2.5. Protein expression and purification

The DNA sequences of the designed proteins were synthesized
by Shanghai Generay Biotech Company. Expression constructs
were created by linking an N-terminal 8 � His-tag, a GST solubility
protein tag, and a 3C protease site to the designed sequences in
pET-28a vector. Fusion proteins were expressed in Escherichia coli
BL21 (DE3) by induction with 0.2 mM IPTG at OD600 ~ 0.8 in M9
minimal medium. Different isotope labels were introduced into
the growth medium according to the NMR experimental require-
ments. Cells were harvested and resuspended in lysis buffer
(150 mM NaCl, 50 mM Tris-HCl, pH 8.0) and then lysed by high-
pressure homogenizer (Union-Biotech Company). The supernatant
was collected by centrifugation at 20 � 000 g and loaded onto the
Ni-NTA affinity chromatography column. The fusion protein was
eluted with lysis buffer containing 500 mM imidazole. The elution
was then cleaved overnight by 3C protease and dialyzed for 4 h
with dialysis buffer (150 mM NaCl, 20 mM HEPES, pH 7.5) to
remove the imidazole. The target protein was further purified
using a second Ni-NTA affinity column to remove the cleaved N-
terminal tag followed by gel filtration in a Superdex75 10/300 GL
column (GE Healthcare) with GF buffer (50 mM NaCl, 20 mM
MES, pH 6.5). Protein fractions were analyzed by SDS-PAGE and

http://rosettadesign.med.unc.edu/
https://www.rosettacommons.org/
https://www.rosettacommons.org/
https://www.rosettacommons.org/
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concentrated using 3.5 K MWCO concentrators. The final NMR
sample included ~ 0.6 mM Hydra-1ubq or Hydra-1r26, 0.5% cock-
tail protease inhibitor, 0.02% NaN3, and 10% D2O. To prepare a sam-
ple in 100% D2O, the regular NMR sample was lyophilized and
resolubilized in 100% D2O. For the CD sample, the size exclusion
buffer was replaced with 50 mM KCl, 10 mM K-PO4, pH 7.5.

2.6. Circular dichroism spectroscopy

The designed proteins were first characterized by circular
dichroism spectroscopy. A J-715 circular dichroism spectropo-
larimeter was used for all experiments. Wavelength scans from
190 to 260 nm were conducted. Experimental conditions were
50 mM NaCl, 10 mM K-PO4, pH 7.5 at 298 K. Protein concentra-
tions were approximately 2–4 lM.

2.7. NMR spectroscopy

The NMR experiments were carried out at 25 �C on Agilent DD2
600 MHz or 800 MHz spectrometers equipped with cryogenic
probes. The backbone assignments were obtained using the triple
resonance experiments, including HNCO, HNCACO, CBCA(CO)NH,
HNCACB, HNCA, HN(CO)CA and 15N-edited NOESY-HSQC spectra.
These spectra were employed in a nonuniform sampling scheme
in the indirect dimensions, and they were reconstructed using
the multidimensional decomposition software MDDNMR [29,30]
interfaced with NMRPipe [31]. Aliphatic side chain assignments
relied on (H)CCH-TOCSY and H(C)CH-TOCSY spectra [32,33]. Aro-
matic ring resonances were assigned using 3D 13C-edited NOESY
spectra. Stereospecific valine and leucine methyl assignments were
obtained as described [34] on the basis of the 13C–13C one-bond
couplings in a high-resolution 2D 1H–13C HSQC spectrum of
10%-13C, 100%-15N Hydra-1ubq. Complete assignments were
obtained for all resonances that appeared in the 1H/15N-HSQC
spectrum. A total of 99% of the C and H resonances for all side
chains have been assigned.

2.8. Structure calculations

Distance restraints for the structure calculations were derived
from cross-peaks in a simultaneous 15N and 13C-NOESY-HSQC
(sm = 120ms) [35] and 13C-edited aromatic NOESY-HSQC (sm = 120-
ms), respectively. The NOE cross-peak assignment was obtained
using a combination of manual and automatic procedures. An ini-
tial fold of the protein was calculated based on unambiguously
assigned NOEs, with subsequent refinement using the NOEassign
module implemented in the program CYANA, version 2.1 [36]. Peak
analysis of the NOESY spectra was performed by interactive peak
picking with the program SPARKY. A total of 136 phi and psi tor-
sion angle restraints were derived from the program TALOS+
[37]. Hydrogen bond restraints were applied only for residues that
were clearly in the secondary structure regions as judged by the
NOE patterns and chemical shifts and supported by TALOS + .
The best 20 of 100 CYANA structures were subjected to molecular
dynamics simulation in explicit water using the program CNS
[38,39]. The final structures were inspected by PROCHECK [40]
and MolProbity [41] using the PSVS software suite [42]. Structures
were visualized using the program MOLMOL [43] and Pymol
(http://pymol.sourceforge.net, Delano Scientific).
3. Results

The protein targets tested by Hydra in this paper contained 40
proteins downloaded from the RCSB PDB base (https://www.rcsb.
org), of which 38 targets were the same as those tested in ABACUS
2580
[4]. Forty targets could be divided into 4 groups according to their
folding types: all a, all b, a/b and a + b. All the targets were
inspected visually in case of irregular shapes and loss of residues.
The lengths of the target scaffolds ranged from 75 ~ 191, and their
resolutions were better than 1.6 Å. All the target PDB IDs are listed
in Table S2.

In this work, we tested designed sequences by computational
and wet-lab experiment respectively. For the computational part,
we first use Rosetta ab initio structure prediction program to pre-
dict the protein structures in a PDB format from the designed and
native sequences. Then we compare the predicted structure mod-
els using TMscore and R.M.S.D as the metrics. The fast computa-
tional tool of Rosetta ab initio structure prediction could provide
a rapid initial evaluation of the designed sequences.
3.1. Performance of the biobjective optimization algorithm in Hydra

We first tested the characteristics of our algorithm from the
perspective of multiobjective optimization. As a simplification cri-
terion, 4 targets (PDB ID: 2PVB, 1 V05, 1R26, 1UBQ) were selected
to be tested as representatives of 4 folding classes, which could
show the characteristics of our algorithm comprehensively. The
maximum number of iterations of each target was set to 2000,
and the population of particles was 8. The remaining detailed set-
tings of the parameters used in Hydra are listed in Table S3.

Fig. 2a illustrates the final Pareto front of 4 targets. The non-
dominated solutions of 4 targets were widely distributed, and a
considerable amount of the solution was close to the ideal point,
which demonstrated that our external archive update mechanism
could promote the archive solutions’ diverse distribution and con-
vergence to the ideal point. Fig. 2b shows the variation of the best
position’s objective values during the search process. Generally,
the best position of particles varied with the iterations and gradu-
ally converged to a stable point. For any target scaffold, both
energy function values of the best position were rapidly minimized
during the first 300 iterations, owing to the guidance of the offset
component in Eq. (S6) (algorithm details in supporting informa-
tion). Then, the objective values decreased slightly with tiny oscil-
lations due to the attractions of different velocity components, and
this process was continued for 900–1200 iterations. At the last
stage of the search process, the swarm particles were almost con-
vergent, the distribution of archive solutions tended to be stable;
consequently, the best position converged to a notably small area
of objective space.

The convergence process of our algorithm is illustrated in Fig. 2c.
Without loss of generality, we randomly picked a target (PDB ID:
1UBQ) from 40 targets to show this process. The whole population
of particles clearly gradually converged to a stable point despite
being diversely initialized. To verify this kind of convergence, all
the final sequences of the swarm particles were aligned together,
and then we calculated the average entropy of each residue posi-

tion, which can be formulated as
PL

i¼1pilgpi, where L denotes the
length of the protein sequence, and pi is the alignment score at
the ith position. If the average entropy value is very low, the
sequences of the particles can be regarded as converged. For target
1UBQ, the average entropy value of the final sequences of particles
was 0.026, which indicated a very high sequence identity between
the final sequences of particles. The convergence of sequences was
thus verified in the form of the sequence composition.
3.2. Comparison between multi-objective method and single-objective
methods with the same energy functions

To verify the superiority of multiobjective optimization in pro-
tein design problem, we designed the sequences of 40 targets by
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Fig. 2. Performance of the optimization algorithm in Hydra. f 1 is the FoldX energy function, and f 2 is the structure energy function. a, Pareto Front of 4 targets in four different
folds. (i) Pareto Front of 2PVB. (ii) Pareto Front of 1 V05. (iii) Pareto Front of 1R26. (iv) Pareto Front of 1UBQ. b, Variation of the values of the best positions. (i) Variation of the
value of the best position for 2PVB. (ii) Variation of the value of the best position for 1 V05. (iii) Variation of the value of the best position for 1R26. (iv) Variation of the value of
the best position for1UBQ. c, Convergence process of particles in the form of objective values for target 1UBQ.
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two methods based on single-objective optimization separately,
and these designed sequences were tested by comparison to those
designed by Hydra. In this section, we primarily want to show the
difference between multi-objective optimization and single-
objective optimization, so the energy function should be invariant
in the compared methods. Thus, the energy function used in the
single-objective methods was as the same as those used in Hydra.
The energy function used in the two single-objective methods was
the FoldX energy function and structure energy function, respec-
tively. The single-objective optimization algorithm’s architecture
was almost the same as Hydra, except that the decoy sequences
were evaluated by a single energy function, and the external
archive mechanism was therefore abandoned. All the parameters
of the algorithm and experiment were identical to those of Hydra.

Fig. 3a shows that the results of Hydra were slightly better than
those of two single-objective based methods in terms of secondary
structure assignment and sequence identity, which fulfils our
expectations considering the cooperation of three kinds of infor-
mation in Hydra. To further test the foldability of sequences
designed by single-objective methods, we also applied the Rosetta
ab initio structure prediction to obtain the corresponding struc-
tures of the designed sequences for the same 40 targets. As illus-
trated in Fig. 3b, compared with the Single FoldX and Single
Structure, the sequences designed by Hydra achieved the best per-
formance in terms of the fraction of highly target-like models and
average highest TM-score. Especially in all a and all b fold classes,
the correct foldability of sequences designed by Hydra significantly
surpassed that of sequences designed using single-objective based
methods significantly. From Fig. 3b, it is clear that Hydra possessed
the best performance in all fold classes, which indicated that the
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multiobjective mechanism could enhance the correct foldability
of the designed sequences.

We also have compared Hydra with the single energy function
method that composed by weighted sum of FoldX and structure
energy terms. The weighted energy function is formulated as
E ¼ EFoldX þ gEStructure. The weight g is adjusted to make the two
energy terms have comparable contributions, in this work it is
set to 1.37 according to local tests. All the other parameters are
kept the same for the two methods. From the results, Hydra has
achieved better performance than the standard weighted single
energy function. The results can be referred in Fig. S5 in Supple-
mentary file.

Since Hydra outperformed single-objective methods which
applied FoldX, Structure energy function, and the weighted sum
of the two energy functions respectively. And the mechanism of
the three single-objective methods was almost as same as that of
Hydra, suggesting that the multi-objective method has brought
the improvement. The reason for this improvement may be that
optimizing two energy functions simultaneously can help reducing
the local minimal solutions, and two energy functions can make
the result more robust.

3.3. Tests of protein sequences designed by Hydra and other methods

We have tested the sequences of 40 targets designed by our
method Hydra. All the parameter settings were the same as those
mentioned in the above section (2000 iterations, 8 particles), and
the details can be found in Table S3. For comparison, we also col-
lected the sequences designed by the ABACUS [4] and Rosetta fixed
backbone design [3], of which the sequences designed by ABACUS



Fig. 3. Comparison with single-objective methods. a, Performance in terms of secondary structure and sequence identity. b, Results of the structure models ab initio predicted
from sequences designed by single-objective methods. (i) Fraction of highly target-like (TM-score > 0.5) models in structures predicted from native sequences and sequences
designed by single-objective methods. (ii) Average highest TM-score values of structures predicted from native sequences and sequences designed by single-objective
methods.
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were directly selected from the supplementary file of its paper,
except the sequences of two newly added targets that were
obtained by ABACUS standalone software, and the sequences
designed by Rosetta were obtained from its online server http://
rosettadesign.med.unc.edu/login.php. All the designed protein
sequences of 40 targets using the three methods are listed in
Table S4–S6.

Sequence identity values of the average of 40 targets are com-
pared in Fig. 4a. Overall, the sequence identity of our method rel-
ative to the respective native sequence was 0.3080, which was
slightly higher than ABACUS’s 0.2936 and Rosetta’s 0.2916. Inter-
estingly, the sequence identity between sequences designed by
Hydra and Rosetta was notably low; therefore, our method and
Rosetta could complement each other. The sequence identities of
core (solvent less exposed) positions and conserved (residue posi-
tions with low entropy in the multiple sequence alignment based
on PSI_BLAST) positions of Hydra respectively were 0.4219 and
0.3817, both of which were higher than ABACUS’s 0.4083 and
0.3233 and Rosetta’s 0.3559 and 0.3233 (Fig. 4b). A high sequence
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identity in core and conserved positions is of great significance
because these positions contribute more to folding. We also calcu-
lated the ratio of highly homologous residues, which are the resi-
dues of the designed sequence with a Blosum62 mutation score
higher than 1 relative to the respective residues of the native
sequence in this study, and the ratio of Hydra, ABACUS and Rosetta
respectively was 0.4727, 0.4319 and 0.3112 (Fig. 4b).

To go a step further, we also use CLUSTALW to do sequence
alignment to explore the similarity between native sequences
and designed sequences. The result shows that the average align-
ment score between native sequences and designed sequences is
39.4745 for Hydra, 28.9474 for ABACUS and 32.8947 for Rosetta.
It seems that on our tested proteins, sequences designed by Hydra
prefer to have more similarities with native sequences. According
to the designed 1UBQ sequences, the maximum sequence identity
observed to native sequence is 0.4079. For other experimented
proteins, the maximum sequence identity observed to native
sequence is 0.55 for 1R26. Our experimental results indicate inter-
estingly that even different sequences with no >0.5 sequence iden-
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Fig. 4. Computational performance of Hydra, ABACUS and Rosetta. a, Sequence identities between native sequences, protein sequences designed by Hydra, ABACUS, and
Rosetta fixed backbone design. b, Evaluation of designed sequences. c, Results of the structure models ab initio predicted from native sequences and designed sequences. (i)
Fraction of highly target-like (TM-score > 0.5) models in structures predicted from native sequences and sequences designed by different methods. (ii) Average highest TM-
score values of structures predicted from native sequences and sequences designed by different methods. d, Average energies of designed sequences relative to corresponding
native sequences for 40 targets. (i) Average FoldX energies of designed sequences relative to corresponding native sequences. (ii) Average structure energies of designed
sequences relative to corresponding native sequences. (iii) Average Rosetta energies of designed sequences relative to corresponding native sequences. e, Illustration of
structures predicted from different designed sequences by three methods for target 1R26. (i) Native structure of 1R26 (green) and best predicted structure model from the
sequence designed by Hydra (purple). (ii) Native structure of 1R26 (green) and best predicted structure model from the sequence designed by Rosetta (purple). (iii) Native
structure of 1R26 (green) and best predicted structure model from the sequence designed by ABACUS (purple). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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tity could fold to very similar structure. Combining these results,
we could find that the similarity of designed sequence to some
extent could provide a clue for the following folding. We have also
provided the amino acid composition of native sequences and
sequences designed by Hydra, ABACUS and Rosetta as a reference
(Table S8).

To further test our method, we examined the accuracy of the
secondary structure of the designed sequences and compared them
with the native sequences. The secondary structures of the
designed sequences were predicted by PSIPRED [44], and those of
the native sequences were assigned by Stride [24]. To account for
the inherent error induced by the inaccuracy of PSIPRED, we
applied the previously proposed definition of the normalized sec-
ondary structure error (NSSE) [13], which is formulated as
NSSE ¼ ðEDS - ETSÞ=ETS, where EDS is the secondary structure error
of the designed sequence relative to the Stride file of the native
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sequence, and ETS is that of the native sequence. NSSE of designed
sequence by Hydra was 0.20, whereas that of ABACUS and Rosetta
was considerably higher at 0.56 and 1.18, respectively (Fig. 4b). We
have used the Spider3 to compute the solvent accessibility (SA) of
2PVB sequence designed by Hydra (refer to Table S4) and native
sequence respectively. The results show that Hydra sequence
has ~ 9% more core residues (SA < 25) than native sequences.
And we also have used I-TASSER [13] to compute the structure
model of 2PVB sequence designed by Hydra. Then we have used
STRIDE to calculate the SA of the native and computed structure
models, the results show that computed Hydra structure
has ~ 2% more core residues than the target structure, which indi-
cates that Hydra structure is slightly better packed than the native
structure from the computational point of view. Clearly, full use of
different kinds of information in our method could promote the
interaction between the secondary structure propensity and over-
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all foldability of the designed sequences. In our local experiments,
we have observed that accurate secondary structure is the basis of
accurate tertiary structure. As it is shown in the next part,
sequences designed by Hydra have good secondary structure accu-
racy, which makes a good foundation for packing. These results
potentially indicate that Hydra can successfully make full use of
the overall and local information of the target structure.

We applied Rosetta ab initio structure prediction to test the
foldability of the sequences designed using different methods,
and as a reference, the native sequence of each target was also used
to predict its structures by Rosetta ab initio structure prediction. In
the Rosetta ab initio structure prediction, none of the homologous
native protein structures was used as template, which ensured the
rationality of this test method. For each sequence, 200 tertiary
structures were predicted. Usually, higher accuracy will be
achieved with more models generated. From our local tests, 200
models could result in relatively reliable result just as similar
observation in the work of Xiong, P.et al [4]. Considering the bal-
ance between the performance and computation time, we gener-
ated 200 models in this work and will test more in the future on
more powerful computer system. The similarity of the predicted
structures with corresponding target scaffolds was evaluated by
the TM-score. The structures could be regarded as the same folds
with their respective targets if the TM-score was higher than 0.5.
For each target, we calculated the fraction of highly target-like
(TM-score > 0.5) models among 200 predicted ones, and the high-
est TM-score value among 200 predicted structures was also
counted. All the results for 40 targets are listed in Table S7. The
average results of the targets of different fold classes are shown
in Fig. 4c.

As expected, we found that the native sequences achieved the
best performance in both highly target-like fraction and average
highest TM-score, which verified the rationality of the test method
based on Rosetta ab initio prediction. From Fig. 4c(i), the sequences
designed by Hydra generally led to high fractional target-like mod-
els as native sequences, significantly surpassing the sequences
designed by ABACUS and Rosetta. Especially for all a and a/b fold
classes, the score of Hydra was almost as high as that of native
sequences, indicating a remarkable foldability in these fold classes.
Although the sequences designed using Hydra did not achieve the
same high fraction of target-like models as the native sequences in
the a + b fold class, our method still outperformed ABACUS and
Rosetta. For all b targets, the sequences designed by the three
methods led to a highly target-like fraction lower than 10%, as
did the native sequences. This result may have been observed
because Rosetta ab initio structure prediction cannot predict the
structures of all b sequences accurately or because accurate struc-
ture prediction of all b sequences is rather difficult. Fig. 4c(ii)
shows the average highest TM-score of sequences designed by dif-
ferent methods and native sequences. Overall, the results using our
method were slightly better than those achieved with ABACUS and
surpassed those of Rosetta. For each fold class, Hydra possessed the
highest average TM-score compared with the other two methods,
especially for the a/b class, and Hydra achieved a comparable value
to that of the native sequences. The fraction of highly target-like
models denoted the probability that the sequence could be folded
into the target scaffold, and the average highest TM-score relative
to the target scaffold indicated the degree of similarity between the
folded structure and target scaffold, both of which were important
to evaluate the foldability of the designed sequences. Our method
surpassed ABACUS and Rosetta in both evaluation metrics. A
detailed analysis of the results of the designed sequences is listed
in Table S7.

To examine the complementarity and interactions between dif-
ferent kinds of energy functions, we employed the FoldX energy
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function, structure energy function and Rosetta energy function
to evaluate the sequences designed by Hydra, ABACUS and Rosetta
separately. The corresponding native sequences were also calcu-
lated with the same energy functions. As expected, the sequences
designed by Hydra had low FoldX values in all the fold classes,
and the values of the sequences designed by Rosetta overall were
also lower than those of corresponding native sequences, which
was due to the physics of the force field included in the Rosetta
energy function similar to FoldX (Fig. 4d(i)). The structure energy
values of the sequences designed by Hydra were lower than those
of the corresponding native sequences, while for sequences
designed by ABACUS and Rosetta, the values were higher. Espe-
cially for the sequences designed by Rosetta, the structure energy
values were notably higher compared with those of the corre-
sponding native sequences, primarily because no information
about the target’s homologous structures was included in the
Rosetta energy function. Considering that the native sequences
could be absolutely folded into the target scaffolds, since the struc-
ture energy function favored native sequences over the sequences
designed by Rosetta, the structure energy function captured some
criteria of foldability that were not included in the Rosetta energy
function. Intriguingly, Fig. 4d(iii) shows that the Rosetta energies of
the sequences designed by Hydra were lower than those of the
native sequences, validating the robustness and reliability of the
sequences designed by Hydra on the one hand and indicating that
homologous structure information can complement the Rosetta
energy function in the protein design on the other hand. From
Fig. 4d(i)-(iii), we found that all three energies of the sequences
designed by Hydra were lower than those of the corresponding
native sequences, revealing good performance and efficiency of
our biobjective optimization algorithm for sufficiently minimizing
the two energy functions with relatively few iterations. We have
also generated Energies vs RMSD over C-alpha atoms plot to show
the energy landscapes of Hydra. The plot and analysis are shown in
Fig. S6 in supplementary file.

For some targets, the average sequence identity between
sequences designed by Hydra and target sequences was very sim-
ilar to that of ABACUS and Rosetta, and our Hydra method still out-
performed ABACUS and Rosetta. An example showing the different
foldabilities of the sequences designed by three methods is shown
(Fig. 4e). The 1R26 is the thioredoxin from Trypanosoma brucei bru-
cei, and it is an a/b fold class protein with three alpha helices and
five beta strands, where one of the beta strands is very short and
connected by two segments of coil structure. The TM-score of the
predicted structures in Fig. 4e(i)–(iii) relative to 1R260s native
structure was 0.8511, 0.6441 and 0.8093, respectively. Comparison
of the structures in Fig. 4e(i) and e(ii) showed that the structure
predicted from the sequence designed by Hydra fit the target struc-
ture much better than that of Rosetta. Particularly, the two seg-
ments of the beta strand marked by black dotted lines were
mistakenly folded into coils in Fig. 4e(ii), while they were accu-
rately folded in the structure predicted from the sequence
designed by Hydra in Fig. 4e(i). Compared with Fig. 4e(iii), it can
be observed that the structure of Hydra fit the target scaffold better
than that of ABACUS, especially for the three alpha helices, poten-
tially due to the homologous structure information of the target
included in Hydra, which could capture the correlation between
different local structures to facilitate the packing of proteins.

Interestingly, the short beta strand marked by black dotted lines
was the only correctly folded structure in the sequence designed
by Hydra among the three methods. The difficulty of recognizing
the complex topology information related to the short beta strand
connected by two coil segments supported the accuracy and
robustness of the Hydra Design method. Through Rosetta ab initio
structure prediction verification, the foldabilities of the sequences
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designed by Hydra were demonstrated, since the Rosetta energy
function was not applied in our method, thereby ensuring the reli-
ability of the experimental results of Hydra.
3.4. Structural verification of the designed protein

To validate the designed proteins, we experimentally character-
ized two randomly selected proteins, thioredoxin (PDB ID: 1R26)
and ubiquitin (PDB ID: 1UBQ) (Fig. S1) [45,46]. For the designed
sequences Hydra-1r26 and Hydra-1ubq, constructs containing an
N-terminal 8 � His-tag and a GST tag were synthesized and cloned
into the expression vector pET-28a, which was then transformed
into Escherichia coli BL21 (DE3). The expressed proteins were fur-
ther purified by Ni-NTA affinity and size exclusion chromatogra-
phy and characterized by circular dichroism (CD) and solution
NMR spectroscopy. As shown in Fig. 5 and Fig. S2, the designed
proteins were successfully expressed and purified, generating good
CD spectra and 1H-15N heteronuclear single quantum coherence
(HSQC) spectra, indicating that the proteins were well folded. We
also have found that there does exist a cis-Pro (Table S4 in Supple-
mentary File) in our designed sequence for 1R26. Since structure is
the only input in Hydra, there is no native sequence composition
information used during the whole process, and the cis-Pro is not
specifically kept in the design of 1R26 using Hydra. Thus, the
remained feature in sequence indicates that Hydra relatively could
maintain the key functionality of protein. We chose Hydra-1ubq,
which showed better NMR spectrum quality (Fig. S2), to further
solve the NMR structure as an example of the protein design.
Fig. 5. Structural characterization of the designed protein Hydra-1ubq. a. The 1H-15N H
spectrometer operating at a 1H frequency of 600 MHz. b. Thin ribbon representation of
structure superposition of the NMR structure of Hydra-1ubq (plum) and the crystal stru
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The structure determination was carried out following standard
NMR protocols. Briefly, sequence specific backbone assignment
was accomplished using the triple resonance experiments
(Fig. 5a and Fig. S3), and the assigned chemical shift values were
used as input for the TALOS + program to obtain the secondary
structures [37]. Then, distance restraints derived from nuclear
Overhauser enhancements (NOEs) were used to determine the
structures (details in Methods). A total of 100 structures were cal-
culated, and the 20 structures with the lowest energy were
selected as the final structural ensemble (Fig. 5b). The 20 struc-
tures converged very well, with a root mean squared deviation
(backbone RMSD) of 0.3 Å and 0.7 Å for the backbone and all heavy
atoms, respectively. The structure alignment of the NMR structure
of Hydra-1ubq (PDB ID: 6L0L, BMRB ID: 36289) and the crystal
structure (PDB ID: 1UBQ) showed a 1.074 Å backbone RMSD
(Fig. 5c). Both structures possessed five beta-strands and one helix
packed in a sandwich fold (Fig. 5c). The high structural similarity
between the designed protein Hydra-1ubq and the original protein
ubiquitin demonstrated that the new protein sequence designed
from Hydra achieved the desired structure. The information used
for structural calculation and the detailed structure statistics are
listed in Tables S11 and S12.
4. Conclusion and discussions

In this paper, we proposed a new de novo protein design
method named Hydra. This method is based on multi-objective
PSO swarm intelligence algorithm, and the two energy functions
SQC spectrum of the 15N-13C labeled Hydra-1ubq sample recorded on an Agilent
the ensemble of 20 lowest energy structures of Hydra-1ubq. c. Three-dimensional
cture ubiquitin (PDB ID: 1UBQ, sandy brown).
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are the FoldX force field and a structure energy function containing
some local structural properties. Moreover, the statistical informa-
tion and information extracted from the target’s homologous
structure family were also applied to conduct the sequence space
transformation, an innovative method proposed in this paper to
reduce the search scope. Convergence analysis of our algorithm is
also presented and verified by our experiment results. This newly
developed protein design method demonstrates that a multiobjec-
tive optimization method could improve the foldability of the
designed sequences compared with single-objective based meth-
ods and that the latent quantitative information between different
amino acid types will improve the performance of the algorithm.

There are two features of the developed software as follows:

(1) In Hydra, two energy functions in our algorithm are mini-
mized simultaneously in a multiobjective manner during
the search process. The two energy functions belong to dif-
ferent categories based on the physics of the force field
and structural properties, respectively. In contrast to meth-
ods based on single-objective optimization, Hydra combines
the characteristics of two different energy functions and
thus can capture the mapping relationship between protein
structure and sequence more accurately. Conversely, Hydra
is more robust owing to the combination of multiple energy
functions that can promote and restrain each other to pre-
vent particles from falling into local minima during the
search process.

(2) We introduced a sequence space transformation procedure
in our algorithm to simplify the search process. The space
transformation procedure has two advantages: the scope
of the search space for good solutions is largely reduced,
and the original discrete optimization problem can be solved
as a continuous optimization problem in the transformed
sequence space.

In our design of the Hydra pipeline, we also systematically
tested the importance of the heuristic search step. If the optimiza-
tion search is optional, then when we randomly select the amino
acid type with high fusion value in Eq. (3) (Methods) for each resi-
due position, the generated sequence can be a good solution for the
target scaffold with high possibilities and without an extensive
search process. To test this possibility, we generated many
sequences using this random selection method. However, the
energy function values of almost all the generated sequences were
considerably higher than those of the sequences designed by
heuristic Hydra, and very few of the generated sequences were cor-
rectly folded into the corresponding target scaffolds with a TM-
score > 0.5 because a large amount of space must still be explored
in the transformed sequence space and the randomly generated
sequences do not account for the physical constraints. Clearly,
the search process is critical to our method because it guides the
particles in a smoothing way with the full cooperation of different
kinds of information, and it can predict the direction, possibly lead-
ing to better solutions in the continuous transformed space for
subsequent moves. Thus, our algorithm can prevent particles from
falling into local minima in a relative manner.

Compared with multiple sequence alignment-guided consensus
design methods, Hydra is a fixed backbone protein design method,
where the input is the target peptide, and the output is the
designed protein sequence. We do not consider the input peptide
is whether stable or not, at current stage, what this program con-
cerns about is to get the sequence that can fold to an expected
structure. To the best of our knowledge, most of the multiple
sequence alignment-guided consensus design methods solve this
problem from a relatively different point of view, whose input
can include the target peptide and the corresponding sequence. It
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exploits amino acid conservation in sets of homologous proteins
to identify likely beneficial mutations to stabilize the original pro-
tein. Actually, they solve relatively different problems, but these
two pipelines can be complementary. Hydra can produce reliable
sequence that could fold to a certain structure, while consensus
design could explore more stable peptides. We could combine
these two kinds of methods to perform them alternately, the much
more stable and accurate sequences could be produced. For exam-
ple, we could use Hydra to output a foldable sequence for a pep-
tide, then the consensus design could do some beneficial
mutations in this sequence to make the original peptide more
stable. After a certain number of iterations, we could get the
sequence that well folded to a more stable peptide compared to
the original one.

In future work, we will further dig out the potential relationship
between the number of particles in the algorithm and the conver-
gence stability of the searched sequence as our local tests have
shown the performance will be related to this parameter, which
would have impact on the search diversity (Fig. S7). We will also
try to apply more energy functions in the algorithm to make the
method more robust and accurate. Furtherly, we could also make
use of the recent protocols based on deep learning to coordinate
with Hydra, which makes a remarkable progress in protein design.
In the help of super computers, much more particles could be run
to produce better results. We will also try to do more experimental
tests on both designed and native sequence in order to explore the
differences in terms of expression, solubility and thermostability,
especially to see if the key sites of the protein are retained. Not
only the structure, but functionality will also be considered in
experiment.
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