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Abstract It is still unclear what drives progression of childhood tumors. During Drosophila larval

development, asymmetrically-dividing neural stem cells, called neuroblasts, progress through an

intrinsic temporal patterning program that ensures cessation of divisions before adulthood. We

previously showed that temporal patterning also delineates an early developmental window during

which neuroblasts are susceptible to tumor initiation (Narbonne-Reveau et al., 2016). Using single-

cell transcriptomics, clonal analysis and numerical modeling, we now identify a network of twenty

larval temporal patterning genes that are redeployed within neuroblast tumors to trigger a robust

hierarchical division scheme that perpetuates growth while inducing predictable cell heterogeneity.

Along the hierarchy, temporal patterning genes define a differentiation trajectory that regulates

glucose metabolism genes to determine the proliferative properties of tumor cells. Thus, partial

redeployment of the temporal patterning program encoded in the cell of origin may govern the

hierarchy, heterogeneity and growth properties of neural tumors with a developmental origin.

DOI: https://doi.org/10.7554/eLife.50375.001

Introduction
Central nervous system (CNS) tumors are rare and constitute less than 2% of all cancers in adults. In

contrast, they represent more than 25% of cancer cases in children (including medulloblastoma, reti-

noblastoma, rhabdoid tumors (AT/RT), gliomas etc), suggesting that the developing CNS is particu-

larly sensitive to malignant transformation (Arora et al., 2009; Curado et al., 2007). Moreover,

unlike most adult tumors, pediatric tumors are often genetically stable and their initiation and pro-

gression do not necessarily require the accumulation of mutations in multiple genes. For example,

the biallelic inactivation of a single gene is sometimes sufficient to trigger malignant growth as illus-

trated by mutations in the RB1 and SMARCB1 genes in retinoblastoma and rhabdoid tumors respec-

tively (Biswas et al., 2016; Gröbner et al., 2018; Marshall et al., 2014; Puisieux et al., 2018;

Scotting et al., 2005; Vogelstein et al., 2013). Recent studies suggest that CNS pediatric tumors

such as medulloblastomas recapitulate the fetal transcription program that was active in the cell of

origin (Vladoiu et al., 2019). However, it remains unclear how the invalidation of single genes during

fetal stages can disrupt on-going developmental programs to trigger malignant growth, and

whether these fetal/developmental programs influence the heterogeneity, composition, and prolifer-

ative properties of cells composing CNS tumors.
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Faced with the complexity of brain development and neural tumors in mammals, simple animal

models can represent a powerful alternative to investigate basic and evolutionary conserved princi-

ples. The development of the CNS is undoubtedly best understood in Drosophila (Homem and Kno-

blich, 2012). The Drosophila CNS arises from a small pool of asymmetrically-dividing neural stem

cells (NSCs), called neuroblasts (NBs). NBs possess a limited self-renewing potential. They divide all

along development (embryonic and larval stages) to self-renew while generating daughter cells

named Ganglion Mother Cells (GMCs) (Maurange and Gould, 2005). GMCs then usually divide

once to produce two post-mitotic neurons or glia. NBs are the fastest cycling cells during develop-

ment, able to divide every hour during larval stages when most of the neurons are produced

(Truman and Bate, 1988). However, all NBs terminate during metamorphosis and are absent in

adults. Two antagonistic RNA-binding proteins, IGF-II mRNA-binding protein (Imp) and Syncrip (Syp)

are essential to first promote and then conclude this formidable period of activity. During early larval

development (L1/L2), NBs express Imp that promotes NB self-renewal. Around late L2/early L3, NBs

silence Imp to express Syp that remains expressed until NB decommissioning during metamorphosis

(Yang et al., 2017). This Imp-to-Syp transition is essential to render NBs competent to respond to

subsequent pupal pulses of the steroid hormone ecdysone and initiate a last differentiative division

(Homem et al., 2014; Yang et al., 2017). Failure to trigger the transition results in NBs permanently

dividing in adults (Maurange et al., 2008; Narbonne-Reveau et al., 2016; Yang et al., 2017). The

Imp-to-Syp transition appears to be mainly regulated by a NB intrinsic timing mechanism driven by

the sequential expression of transcription factors (Narbonne-Reveau et al., 2016; Ren et al., 2017;

Syed et al., 2017). This series of factors, also known as temporal transcription factors, has been first

identified for its ability to specify different neuronal fates produced by NBs as they divide

(Bayraktar and Doe, 2013; Isshiki et al., 2001; Li et al., 2013). In addition, temporal transcription

factors also schedule the Imp-to-Syp transition to ensure that NBs will not continue cycling in adults.

Recent transcriptomic analyses indicate that other genes are dynamically transcribed in NBs through-

out larval stages, although their function and epistatic relationship with temporal transcription fac-

tors and the Imp/Syp module are unclear (Liu et al., 2015; Ren et al., 2017; Syed et al., 2017) All

together, these studies highlight a complex, but still relatively unexplored, temporal patterning sys-

tem in larval NBs.

Perturbation of the asymmetric division process during early development can lead to NB expo-

nential amplification. In such conditions, the NB-intrinsic temporal program limiting self-renewal

appears to become inoperant, and uncontrolled NB amplification is observed. Serial transplantations

of asymmetric division-defective NBs have revealed an ability to proliferate for months, if not years,

demonstrating tumorigenic characteristics (Caussinus and Gonzalez, 2005). Perturbation of asym-

metric divisions can be induced by the inactivation of the transcription factor Prospero (Pros) in type

I NB lineages (most lineages in the ventral nerve cord (VNC) and central brain (CB)). During develop-

ment, Pros is strongly expressed in GMCs where it accumulates to induce cell cycle-exit and neuro-

nal or glial differentiation (Choksi et al., 2006; Hirata et al., 1995; Matsuzaki et al., 1992). GMCs

that lack pros fail to differentiate and revert to a NB-like state. This triggers rapid NB amplification

at the expense of neuron production (Bello et al., 2006; Caussinus and Gonzalez, 2005). We have

previously shown that inactivation of pros in NBs, and their subsequent GMCs, before mid-L3 (L3

being the last larval stage) leads to aggressive NB tumors that persist growing in adults. In contrast,

inactivation of pros after mid-L3 leads to transient NB amplification and most supernumerary NB

properly differentiate during metamorphosis, leading to an absence of growing tumors in adults

(Narbonne-Reveau et al., 2016). Interestingly, propagation of NB tumor growth beyond normal

developmental stages is caused by the aberrant maintenance of Imp and the transcription factor

Chinmo from early-born GMCs, the latter representing the cells of origin of such aggressive tumors

(Narbonne-Reveau et al., 2016). Chinmo and Imp positively cross-regulate and inactivation of either

in NB tumors stops tumorigenic growth. Because pros-/- NB tumors can only be induced during an

early window of development, and are caused by the biallelic inactivation of a single gene, they rep-

resent an exciting and simple model to investigate the basic mechanisms driving the growth of

tumors with an early developmental origin, such as in the case of pediatric CNS cancers.
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NB tumors can also be induced from type II NBs (a small subset of NBs in the central brain) or

from neurons upon inactivation of the NHL-domain family protein Brat or Nerfin-1 respectively

(Bello et al., 2006; Betschinger et al., 2006; Lee et al., 2006) (Froldi et al., 2015). In both cases,

tumor growth appears to rely on the aberrant expression of the Chinmo/Imp module arguing for a

general tumor-driving mechanism in the developing Drosophila CNS (Narbonne-Reveau et al.,

2016). Interestingly, in the different types of NB tumors, Chinmo and Imp are only expressed in a

subpopulation of cells, demonstrating heterogeneity in the population of tumor NBs (tNBs). How-

ever, the full repertoire of cells composing the tumor, the rules governing the cellular heterogeneity

and the mechanisms determining the proliferative potential of each cell type remain to be

investigated.

Here, we use single-cell RNA-seq, clonal analysis and numerical modeling to investigate these

questions. We identify a subset of genes involved in the temporal patterning of larval NBs that are

redeployed in tumors to generate a differentiation trajectory responsible for creating tumor cell het-

erogeneity. This cellular heterogeneity results in NBs with different types of metabolism and differ-

ent proliferative properties. We also decipher a robust hierarchical scheme that drives reproducible

heterogeneity through the dysregulated but fine-tuned transition between the two RNA-binding

proteins Imp and Syp. This work thus identifies a core larval NB temporal patterning program, the

disruption of which not only causes unlimited growth but has an overarching role in governing the

cellular hierarchy, heterogeneity and metabolism of NB tumors.

Results

Single-cell RNA-seq reveals that a subset of larval NB temporal
patterning genes are major contributors of cellular heterogeneity
within NB tumors
To investigate the cellular heterogeneity existing in a given type of NB tumor, we performed single-

cell RNA-seq experiments. To minimize inter-tumor heterogeneity that could result from inducing

tumors with different NBs of origin, tumors were induced from the early L2 stage, when NBs exit qui-

escence, by knocking down pros in the six homologous poxn NBs of the VNC (one per hemisegment)

using the poxn-Gal4, UAS-prosRNAi, UAS-GFP, UAS-dicer2 system - thereafter referred to as

poxn > prosRNAi. We had previously demonstrated that early NB amplification triggered during early

larval stages by the poxn > prosRNAi system led to tumors that persist and expand in adults (Nar-

bonne-Reveau et al., 2016). Single-cell RNA-seq was performed on dissociated and FACS-sorted

GFP+ tNBs obtained from 56 poxn > prosRNAi tumors dissected and pooled from adults aged

between 4 to 6 days (tumors were therefore induced 11 to 13 days earlier).

Using the Chromium (10x Genomics) approach, we sequenced 5740 cells with a median number

of 1806 genes/cell (Figure 1—figure supplement 1A). Filtering, normalization, variable gene identi-

fication, regression of cell-cycle genes, linear dimensional reduction, and principal component analy-

sis (PCA) were performed with the R package Seurat (Butler et al., 2018) (Figure 1—figure

supplement 1A,B). PC3, PC4 and PC7 in particular caught our attention, as they all identify the early

and late larval NB temporal markers, Imp and Eip93F (E93) (Syed et al., 2017), being expressed in

different subsets of tNBs (Figure 1A and Figure 1—figure supplement 1C). This indicates that early

and late larval NB markers are major components defining cellular heterogeneity in NB tumors.

We next proceeded to graph-based clustering. This led to a UMAP representation composed of

five main clusters and two smaller ones (Figure 1B). Although tNBs poxn > prosRNAi tumors may

occasionally differentiate in neurons (Narbonne-Reveau et al., 2016), poxn-GAL4 is only active in

the tNB population. Therefore, we expected the population of GFP+ cells after FACS sorting to be

exclusively composed of tNBs. Consistently, NB identity genes like miranda (mira) or deadpan (dpn),

appeared homogeneously distributed on the UMAP representation while genes defining cholinergic

(VAChT), GABAergic (Gad1) and glutamatergic (VGlut) neurons were absent (Figure 1C and Fig-

ure 1—figure supplement 2A). Similarly, pan-glial genes (repo) were not detected (Figure 1—fig-

ure supplement 2A). The two smaller clusters appear to be composed of tNBs expressing stress or

growth arrest factors such as Gadd45, Irbp18, Xrp1 and GstE6 possibly composing a sub-population

of tNBs under cellular stress (Figure 1—figure supplement 2B) (Akdemir et al., 2007;

Francis et al., 2016; Lee et al., 2018). Differential expression analysis identifies ‘cluster 2’ (1268 out
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Figure 1. Single-cell RNA-seq identifies a subset of temporal patterning genes that are redeployed in NB tumors defining heterogeneity in NB states.

(A) PCA was performed on single-cell tNB transcriptomes to reduce the dimensions of the data for further analysis. Genes (rows) and cells (columns) are

ordered by their PCA scores, and the 500 most extreme cells and 30 most extreme genes on both sides of the distribution are shown in the heatmap.

PC4 reveals that tNBs can be discriminated by the expression of early (light red asterisks) vs late (light blue asterisks) larval NB temporal patterning

Figure 1 continued on next page
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of 5740 cells (22%)) as being strongly defined by the expression of the early NB temporal marker

Imp (Figure 1C and Figure 1—figure supplement 2C). In contrast, E93 expression inversely corre-

lates with Imp expression on the UMAP representation, being strongly expressed throughout all

other clusters (Figure 1C). The presence of 4 large clusters (clusters 0, 1, 3, 4) within the E93 expres-

sion domain on the UMAP representation implies further cellular heterogeneity within the E93+ tNB

population (Figure 1B and Figure 1—figure supplement 2C). We then crossed the list of genes

that discriminates the Imp+ cluster 2 from the E93+ clusters (0, 1, 3, 4) with the lists of genes that are

temporally regulated in either the mushroom body NBs, antennal lobe NBs or the type II NBs during

larval development (Liu et al., 2015; Ren et al., 2017) (Figure 1—figure supplement 3). We found

that the genes encoding for the transmembrane transporters Oatp74D and SP1173, the Ig-super-

family transmembrane protein Plum, the glucose metabolism protein Gapdh2, the cytoskeleton pro-

tein Chd64, as well as CG10939, CG44325, CG10512 and CG5953 distinguish the Imp+ identity in

both NBs during development and tNBs in tumors. In contrast, the CDC25 gene string (stg),

CG15628, CG15646 and the long non-coding RNA noe constitute a subset of genes whose tran-

scription distinguishes the E93+ identity in both NBs during development and tNBs in tumors

(Figure 1C, Figure 1—figure supplement 3 and Figure 1—figure supplement 2D). Thus, a subset

of larval NB temporal patterning genes is redeployed in tumors defining various tNB states.

Of note, chinmo mRNA is globally strongly expressed throughout all clusters (Figure 1C). This is

reminiscent of its known post-transcriptional regulation in NBs throughout development

(Dillard et al., 2018; Zhu et al., 2006). Consistent with a post-transcriptional regulation of chinmo in

tumors, we found that forced transcription of a UAS-mCherrychinmoUTRs transgene, in which the

mCherry ORF is flanked by the 5’ and 3’ UTRs of chinmo (Dillard et al., 2018), in the tumor led to

mCherry expression only in the tNBs that express the endogenous Chinmo (Figure 1—figure sup-

plement 4). Chinmo+ tNBs also co-express Imp (Figure 1D). Thus, as in NBs during development,

chinmo is regulated at the post-transcriptional level in tumors. During development, chinmo is post-

transcriptionally silenced by Syp whose expression is activated in late NBs (Liu et al., 2015;

Ren et al., 2017; Syed et al., 2017). Surprisingly, in tumors, Syp mRNA is not restricted to E93+

tNBs, as it is also highly transcribed in the Imp+ tNBs of cluster 2 (Figure 1C). However, when Syp

expression was assessed by immunostaining in 6 days-old adult tumors, Syp was absent from

Figure 1 continued

genes. Other larval temporal genes are found in PC3 and PC7 (Figure 1—figure supplement 1C). (B) The UMAP representation of all single cells

included in our analysis shows the separation of different clusters. We used a k-nearest neighbor algorithm to call seven clusters, which are shown in

different colors on the UMAP plot. (C) Expression of Mira, early and late temporal markers on the UMAP map shown in B. (D) Cartoon representing a

ventral view of an adult CNS containing a NB tumor induced during larval stages in the VNC. Green circles are tNBs. Green circles colored in red

represent Chinmo+Imp+ tNBs. Immunostainings with anti-Chinmo, anti-Imp and anti-Syp, indicating that Imp/Chinmo and Syp are expressed in a

complementary pattern in poxn > prosRNAi tumors found in 4-day-old adults. tNBs are labeled with Mira. Scale bar 20 mm. (E) Immunostainings with

anti-Chinmo and anti-E93 indicating that these two transcription factors are expressed in a complementary pattern in poxn > prosRNAi tumors found in

4-day-old adults. tNBs are marked with anti-Mira. Scale bar 20 mm. (F) The light red and blue colors respectively designate ‘early’ and ‘late’ larval NB

genes as determined by Liu et al. (2015), Syed et al. (2017) and Ren et al. (2017). A subset of these genes are redeployed in tumors to define

distinct tNB states. Asterisks mark temporal patterning genes regulated at the post-transcriptional level in tNBs. Note that cas and svp transcription is

associated with early Imp+ NBs, while br transcription is associated with late E93+ NBs during larval stages. In contrast, cas, svp and br transcription do

not distinguish Imp+ and E93+ tNBs.

DOI: https://doi.org/10.7554/eLife.50375.002

The following figure supplements are available for figure 1:

Figure supplement 1. Seurat analysis of the single-cell transcriptomic data, with regression of cell-cycle genes.

DOI: https://doi.org/10.7554/eLife.50375.003

Figure supplement 2. Characterizing tNBs by their transcriptome.

DOI: https://doi.org/10.7554/eLife.50375.004

Figure supplement 3. Comparison of genes that are temporally regulated genes in various larval NBs with genes defining clusters in the UMAP

representation of the NB tumor.

DOI: https://doi.org/10.7554/eLife.50375.005

Figure supplement 4. Post-transcriptional regulation of chinmo in poxn > prosRNAi NB tumors.

DOI: https://doi.org/10.7554/eLife.50375.006

Figure supplement 5. Grh is expressed in all tNBs.

DOI: https://doi.org/10.7554/eLife.50375.007
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Chinmo+Imp+ tNBs. Instead anti-Syp immunostaining labeled most if not all other tNBs, that were

also positive for anti-E93 (Figure 1D,E). Thus, unlike in larval NBs where Syp is transcriptionally con-

trolled along development, its expression in tNBs appears to be regulated mainly at the post-tran-

scriptional level. We also find that the temporal transcription factors cas and svp that are expressed

in Imp+ NBs during early larval stages (Maurange et al., 2008; Ren et al., 2017; Syed et al., 2017)

are not enriched in cluster 2 indicating further differences between Imp+ NBs during development

and tumorigenesis (Figure 1—figure supplement 3). In addition, while the transcription factor

Broad (Br) is a pan-NB marker of late temporal identity during larval development (Liu et al., 2015;

Maurange et al., 2008; Ren et al., 2017; Syed et al., 2017) (Figure 1—figure supplement 3), it is

not enriched in E93+ tNBs demonstrating differences with late larval NBs (Figure 1—figure supple-

ment 3). Lastly, single-cell RNA-seq and immunostainings also showed that all tNBs express the late

embryonic and larval temporal transcription factors Grh (Figure 1—figure supplement 5)

(Brody and Odenwald, 2000). This suggests that tNBs do not reverse to an early embryonic tempo-

ral identity.

Although lin-28 is known to be expressed in early larval NBs and in Chinmo+Imp+ tNBs (Nar-

bonne-Reveau et al., 2016), mRNA levels appear to stand below the detection limit of the 10x tech-

nology, a current limitation of droplet-based assays, as it is hardly detected and not enriched in

‘cluster 2’ containing Imp+ tNBs (Figure 1C and Figure 1—figure supplement 3). Low cellular levels

of lin-28 mRNA are consistent with a previous RNA-seq experiment on bulk tumors performed by

the lab (about 120 times lower than levels of Imp mRNAs) (Narbonne-Reveau et al., 2016).

In conclusion, single cell transcriptomics identify a number of larval NB temporal patterning genes

that are redeployed in tumors to define distinct tNB subpopulations (Figure 1F). Of these, Chinmo+-

Imp+ tNBs and Syp+E93+ tNBs, as defined by immunostainings, compose two exclusive subpopula-

tions encompassing most if not all tNBs.

poxn > prosRNAi NB tumors progress to reproducible heterogeneity
To investigate how tumor heterogeneity emerges and is regulated during the course of tumor

growth, we co-stained tumors for Chinmo and Syp (respective markers for the Chinmo+Imp+ and

Syp+E93+ tNBs) as they grow from their initiation during early larval to adult stages. Immuno-stain-

ings performed about 24 hours after pros knockdown (late L2 stage) indicated that poxn+ NBs ini-

tially amplify to form small pools of Chinmo+Imp+ tNBs (Figure 2A).

No Syp+ tNBs are present at this stage. However, from early to late L3, a distinct population of

Syp+ tNBs emerges within tumors (Figure 2B). Thus, Syp+ tNBs appear in tumors at about the time

when normal NBs undergo the Imp-to-Syp switch regulated by the progression of temporal tran-

scription factors (Maurange et al., 2008; Narbonne-Reveau et al., 2016; Ren et al., 2017;

Syed et al., 2017). In adults, Chinmo+Imp+ tNBs are encountered in small clusters surrounded by

large fields of Syp+ tNBs (Figure 1D). Thus, the initial pool of Chinmo+Imp+ tNBs evolves to gener-

ate tumors with two distinct compartments. Both the Chinmo+Imp+ and Syp+E93+ compartments

show mitotic activity (Figure 2C), although the mitotic index is globally lower in the Syp+E93+ com-

partment (Figure 2D).

Then, following immunostaining, confocal imaging and 3D reconstruction, we quantified the pro-

portion of Chinmo+Imp+ and Syp+E93+ tNBs within tumors aged of 8, 10, 11 and 15 days (induced

in L2 and dissected in 1, 3, 4, and 8-day-old adults respectively). In total, more than 20 tumors were

dissected and we reproducibly found a relatively invariant proportion of 20% of Chinmo+Imp+ tNBs

(±10) at the different time-points (Figure 2E). This proportion is consistent with the proportion of

Imp+ tNBs composing ‘cluster 2’ identified with the single-cell RNA-seq analysis performed from

tumors of 4-to-6-day-old adults (tumors induced 11 to 13 days earlier) (Figure 1C,D). Thus,

Chinmo+Imp+ tNBs globally exhibit a higher mitotic index but, counterintuitively, they rapidly

become a minority compared to Syp+E93+ tNBs (Figure 2E,F). Note that neurons deriving from

tNBs are rare in the bulk of the tumor and only mildly contribute to the tumor mass (Figure 2—fig-

ure supplement 1). In conclusion, poxn > prosRNAi tumors rapidly evolve from a homogenous popu-

lation of Chinmo+Imp+ tNBs in early larvae to a heterogeneous population of Chinmo+Imp+ and

Syp+E93+ tNBs in adults. In adults, tNB populations appear to reach a relatively stable equilibrium

where Chinmo+Imp+ tNBs are in minority despite an apparent higher mitotic index. The intertumoral

reproducibility of this population dynamics suggests the existence of robust intratumoral constraints.
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Figure 2. Dynamics of cell heterogeneity in poxn > prosRNAi NB tumors. (A,B) Cartoons represent a ventral view of the Drosophila CNS at late L2 and

late L3. Gray circles represent normal NBs. Green circles are prosRNAi tNBs. Red tNBs express chinmo. Tumors were induced by knocking down pros in

six NBs located in the VNC, throughout larval development, using the poxn-Gal4, UAS-prosRNAi, UAS-GFP, UAS-dicer2 system (poxn > prosRNAi).

Because chinmo is always co-expressed with Imp in NBs, we use either anti-Chinmo or anti-Imp to label Chinmo+Imp+ tNBs. We also used Syp to label

Syp+E93+ tNBs. (A) poxn > prosRNAi initially induces pools of tNBs all expressing Chinmo in early larvae (L2). tNBs are marked with anti-Mira and anti-

Figure 2 continued on next page
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poxn > prosRNAi NB tumors follow a rigid hierarchical scheme
To investigate in details the rules governing the population dynamics of Chinmo+Imp+ and

Syp+E93+ tNBs, we designed lineage analysis experiments in vivo. We used the Flybow technique

combined with our poxn > prosRNAi system to generate random mCherry-labeled clones in otherwise

GFP+ tumors (Hadjieconomou et al., 2011). Clones were randomly induced at low frequency (in

about 1% to 2% of tNBs) in 2-day-old adults containing poxn > prosRNAi tumors, and examined along

a time course. Of note, even 12 days after clonal induction (ACI), clones could be easily delineated,

with mCherry+ cells depicted no or little dispersion denoting no active migration (Figure 3—figure

supplement 1). This allowed us to characterize individual mCherry+ clones 8 hours, 2 days, 4 days

and 8 days ACI (Figure 3A). We used Chinmo as a marker for Chinmo+Imp+ tNBs and its absence as

a marker for Syp+E93+ tNBs. Along this time lapse, we could observe three categories of clones:

clones exclusively composed of Chinmo+Imp+ tNBs (further termed CI clones), MIXED clones com-

posed of both Chinmo+Imp+ and Syp+E93+ tNBs (they therefore contain at least two tNBs), and

clones exclusively composed of Syp+E93+ tNBs (further termed SYP clones) (Figure 3C). The exis-

tence of clones exclusively composed of either Chinmo+Imp+ or Syp+E93+ tNBs is consistent with

the ability of both types of tNBs to undergo self-renewing divisions. In addition, the existence of a

subset of MIXED clones implies that Chinmo+Imp+ or Syp+E93+ tNBs may derive from a common

precursor of either identity. In addition, clones display a large heterogeneity in their size at 8 days

ACI (Figure 3A,B), indicating that all tumor cells do not possess the same proliferation potential.

Interestingly, we observed that the proportion of the different categories of clones is dynamic over

the period of 8 days. The proportion of CI clones exhibits a rapid decrease that is paralleled with an

increase in the proportion of MIXED clones and a slight increase in the proportion of SYP clones

(Figure 3D). We sought to investigate whether these clonal dynamics could reflect hierarchical rules

within the tumor.

For this purpose, we designed a stochastic numerical model of clone growth (see Materials and

methods for details). The model follows a simple algorithm (Figure 4A). Each clone starts from a sin-

gle tNB. In the model, Chinmo+Imp+ tNBs are referred to as C cells while Syp+E93+ tNBs are

referred to as S cells. The initial tNB can either be Chinmo+Imp+ (probability pc) or Syp
+E93+ (proba-

bility 1� pc). At each numerical time step, each cell in the clone (initially one) has a given probability

to divide, set by its division time (Tc and Ts). Upon division, Chinmo+Imp+ tNBs can either duplicate

(CfiCC), generate two Syp+E93+ tNBs (CfiSS), or undergo fate asymmetric division (CfiCS). Simi-

larly, Syp+E93+ tNBs can either duplicate (SfiSS), generate two Chinmo+Imp+ tNBs (SfiCC), or

undergo fate asymmetric division (SfiCS). Each new tNB has a probability to exit the cell-cycle and

enter quiescence. In modeling terms, we asked whether hierarchical or plastic schemes of cell divi-

sions are compatible with the proportions of clone categories observed experimentally.

We first tested four simplified scenarios, in which we neglected quiescence and asymmetric divi-

sions, and assumed that C and S cells have the same division time. In each case, we simulated the

growth of 1000 clones and plotted the proportion of clones in each category. In the first scenario

(‘No hierarchy’), Chinmo+Imp+ tNBs have 50% chance to duplicate (symmetric self-renewing divi-

sions CfiCC), and 50% chance to divide into two Syp+E93+ tNBs (CfiSS). Similarly, Syp+E93+ tNBs

have 50% chance to duplicate (SfiSS), and 50% chance to divide into two Chinmo+Imp+ tNBs

(SfiCC). Unlike our experimental observations, this non-hierarchical scenario leads to a symmetric

Figure 2 continued

GFP. (B) In late larvae (L3), poxn > prosRNAi tumors are composed by two distinct populations of tNBs respectively expressing Chinmo and Syp. Tumors

are marked with anti-GFP and delineated by dashed lines. (C) Mitotic Imp+ tNBs and Syp+tNBs are marked with anti-PH3 in poxn > prosRNAi tumors

persisting in 4-day-old adults. (D) Quantification of the mitotic index of Chinmo+Imp+ tNBs (n = 7 VNCs) and Syp+E93+ tNBs (n = 7 VNCs) in

poxn > prosRNAi tumors of 4-day-old adults. p=0.0006. (E) Proportion of Chinmo+Imp+ tNBs over all tNBs composing tumors (volumes of each

population are measured) at 8 days (8d) (n = 5), 10d (n = 6), 11d (n = 6) and 15d (n = 6) after tumor induction. Each dot represents the % for one tumor.

(F) Scheme depicting the dynamics of tumor composition: from a homogeneous pool of Chinmo+Imp+ tNBs in early larvae to a heterogeneous tumor

with a minor population of Chinmo+Imp+ and a majority of Syp+E93+ tNBs. Scale bars, 20 mm.

DOI: https://doi.org/10.7554/eLife.50375.008

The following figure supplement is available for figure 2:

Figure supplement 1. poxn > prosRNAi tumors exhibit low levels of neuronal differentiation in adults.

DOI: https://doi.org/10.7554/eLife.50375.009
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Figure 3. Clonal analysis in poxn > prosRNAi NB tumors. (A) Clones are labeled with mCherry and observed 8 hours (8h), 2 days (2d), 4 days (4d) and 8

days (8d) after clonal induction (ACI) in poxn > prosRNAi tumors. mCherry- tNBs are GFP+. Images represent one confocal section. (B) 3D projections of

clones 8 hr, 2d, 4d and 8d ACI. The color-code labels clones according to their volume. (C) Three categories of clones can be identified in

poxn > prosRNAi tumors: clones composed of Chinmo+Imp+ tNBs only (CI clones), clones composed of both Chinmo+Imp+ and Syp+E93+ tNBs (MIXED

Figure 3 continued on next page
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outcome, in which all clones rapidly become mixed, while the proportion of CI and SYP clones rap-

idly decays to zero (Figure 4B). In the second scenario (‘Strict hierarchy #1’), Chinmo+Imp+ tNBs still

have 50% chance to duplicate (CfiCC), and 50% chance to divide into two Syp+E93+ tNBs (CfiSS)

but Syp+E93+ tNBs can only self-renew (SfiSS). This hierarchical scheme leads to a fully different

outcome, with a large proportion of clones remaining only composed of Syp+E93+ tNBs (SYP

clones), while the proportion of clones only composed of Chinmo+Imp+ tNBs (CI clones) rapidly

decays, which is consistent with our experimental observations (Figure 4B). In the third scenario, we

also tested the reverse hierarchical scheme (‘Strict hierarchy #2’) where Syp+E93+ tNBs still have

50% chance to duplicate (SfiSS), and 50% chance to divide into two Chinmo+Imp+ tNBs (SfiCC)

but Chinmo+Imp+ tNBs can only self-renew (CfiCC). Consistently, we observed results opposite to

the second scenario, with CI clones rapidly becoming dominant instead of SYP clones (Figure 4B).

These scenarios therefore suggest that poxn > prosRNAi NB tumors follow a rather hierarchical

scheme with Chinmo+Imp+ tNBs at the top of the hierarchy. Finally, we tested a fourth ‘Plastic hier-

archy’ scenario for which we maintain this hierarchy, but also give Syp+E93+ tNBs a small probability

(1%) to generate Chinmo+Imp+ tNBs (SfiCC). This is sufficient to drastically change the outcome of

the simulations, as it prevents the long-term maintenance of SYP clones (Figure 4B, right panel).

These four model scenarios combined to our experimental observations therefore argue for a rigid,

unidirectional, Chinmo+Imp+fiSyp+E93+ hierarchy between tNBs.

The hierarchical division scheme that defines clonal growth and
composition demonstrates a cancer stem cell-like role for Chinmo+Imp+

tNBs
We then sought to use the hierarchical model #1 as a basis to investigate more quantitatively the

parameters that finetune tumor growth and heterogeneity. Interestingly, in vivo, significant differen-

ces in average clone size can be observed between the three categories at the different time points

(Figure 4C). SYP clones grow slower than MIXED clones, suggesting either that Syp+E93+ tNBs have

a slower cell-cycle speed or possess a limited self-renewing potential - similar to Syp+E93+ NBs dur-

ing development – and rapidly end up exiting the cell cycle. On the other hand, the few clones that

remain within the CI category at 8 days ACI tend to completely stop growing, suggesting that these

clones may be composed by quiescent Chinmo+Imp+ tNBs. Consequently, we considered non-zero

probabilities qs and qc for new S cells and C cells to enter quiescence. We also implemented a non-

zero probability for C cells to undergo fate asymmetric divisions (Figure 4—figure supplement 1),

and distinct division times for C and S cells. Thanks to a series of measurements, we could reduce

the number of independent parameters to two (see Materials and methods): the probability

P c ! ccð Þ, and the division time Ts for S cells. We used these as free parameters to fit the model to

the measurements of clone sizes and compositions at 8 hours, 2, 4 and 8 days ACI. To that end, we

computed error maps for clone composition and clone size in the Pc ! cc; Tsð Þ plane, and eventually

a combined error map (Figure 4—figure supplement 2). We found that the error is minimized for

P c ! ccð Þ ¼ 0:64 and Ts ¼ 1:3 days, from which we determine all the other parameters. Notably,

Syp+ tNBs have a much higher probability (47%) to enter quiescence than Chinmo+Imp+ tNBs (4%),

consistent with the slower growth of SYP clones. Using the set of parameters determined by the fit

(Figure 4F), we found an excellent agreement between experiments and simulations, for both clone

Figure 3 continued

clones), and clones composed of Syp+E93+ tNBs only (SYP clones). Chinmo+Imp+ tNBs are identified by the presence of Chinmo. Syp+ tNBs are

identified by the absence of Chinmo. (D) Proportion of CI (red), MIXED (gray) and SYP (blue) clones 8h, 2d, 4d and 8d ACI. Proportion of CI clones 8h

ACI (n = 117 clones from 4 VNCs); 2d ACI (n = 75 clones from 4 VNCs); 4d ACI (n = 13 clones from 5 VNCs); 8d ACI (n = 17 clones from 5 VNCs). P

between CI clones at 8h and 2d ACI -> PCI8h/2d = 0.2; PCI2d/4d = 0.016; PCI4d/8d = 0.88. Proportion of MIXED clones 8h ACI (n = 8 clones from 4 VNCs);

2d ACI (n = 28 clones from 4 VNCs); 4d ACI (n = 57 clones from 5 VNCs); 8d ACI (n = 66 clones from 5 VNCs). PMIXED8h/2d = 0.029; PMIXED2d/4d = 0.016;

PMIXED4d/8d = 0.31. Proportion of SYP clones 8h ACI (n = 181 clones from 4 VNCs); 2d ACI (n = 196 clones from 4 VNCs); 4d ACI (n = 200 clones from 5

VNCs); 8d ACI (n = 255 clones from 5 VNCs). PSYP8h/8d = 0.016. Scale bars, 20 mm.

DOI: https://doi.org/10.7554/eLife.50375.010

The following figure supplement is available for figure 3:

Figure supplement 1. tNBs within a clone do not disperse.

DOI: https://doi.org/10.7554/eLife.50375.011
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Figure 4. Modeling tumor hierarchy and the dynamics of cellular heterogeneity. (A) Cartoon of the stochastic clone model. C stands for Chinmo+Imp+

tNBs, S stands for Syp+E93+ tNBs. Tc means ‘division time of Chinmo+Imp+ tNBs’, Ts means ‘division time of Syp+E93+ tNBs’. Cq stands for quiescent

Chinmo+Imp+ tNB, Sq stands for quiescent Syp+E93+ tNB. qc and qs are the probabilities for Chinmo+Imp+ and Syp+E93+ tNBs to be quiescent after

being generated. (B) Dynamics of proportion for each clone category in four extreme model scenarios: No hierarchy, Strict hierarchy #1, Strict hierarchy

#2, Plastic hierarchy. Solid lines represent the simulations (n = 1000 clones), dots represent experimental measurements. Cartoons above graphs

represent the division probabilities used to generate each graph. (C) Violin plots depicting distributions of clone sizes (number of cells) for each

category calculated from the experiments. (D) Violin plots depicting distributions of clone sizes (number of cells) for each category of clones after

simulation, using the set of parameters minimizing the error. Center lines of boxes show the medians. (E) Proportion of clones over time in each

category using the set of parameters minimizing the error. Solid lines represent the simulations (n = 1000 clones), dots represent experimental

Figure 4 continued on next page
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sizes (Figure 4C, D) and clone compositions (Figure 4E). Modulating these parameters to allow a

small probability for SfiCC reverse divisions (1% or 5%) significantly affected the simulations out-

come, leading to an important loss of SYP clones and a concomitant increase of MIXED clones

(Figure 4G). This further demonstrates that reverse divisions from Syp+E93+ tNBs to Chinmo+Imp+

tNBs are either very low or inexistent, at least during the first weeks of tumor growth.

Altogether, our clonal analysis demonstrates that NB tumors are strongly hierarchical. Chinmo+-

Imp+ tNBs are at the top at the hierarchy. They have a preference for symmetric self-renewing divi-

sions, allowing their perpetuation, and rarely become quiescent allowing tumor growth propagation.

They can also undergo fate asymmetric or symmetric differentiation divisions in order to generate

Syp+E93+ tNBs, albeit with a lower probability. Subsequent Syp+E93+ tNBs can undergo symmetric

self-renewing divisions but exhibit a high propensity for rapid cell-cycle exit and cannot generate

Chinmo+Imp+ tNBs. Consequently, Syp+E93+ tNBs cannot generate large and heterogeneous clones

in tumors unlike Chinmo+Imp+ tNBs. This set of characteristics (Figure 4F) thus confers cancer stem

cell (CSC)-like properties to Chinmo+Imp+ tNBs (Nassar and Blanpain, 2016; Nguyen et al., 2012;

Valent et al., 2012).

Tumor composition is predictable but varies according to the cell of
origin
We then tested whether the set of parameters defined by our analysis of clonal growth could reca-

pitulate the tNB population dynamics, from homogeneity (in early larvae) to stable heterogeneity (in

adults). When applying the uncovered set of parameters to a homogenous pool of Chimo+Imp+

tNBs as observed in early larvae (Figure 2A), simulations via the stochastic or a deterministic version

of the model (see Materials and methods) predict that Chimo+Imp+ and Syp+E93+ tNB populations

rapidly reach an equilibrium with a 20/80 ratio (Figure 5A). Remarkably, this is consistent with our

observations that the population of Chinmo+Imp+ tNBs invariably progresses to the minority, and

reaches a similar equilibrium in vivo (Figure 2E). Our observation that all poxn > prosRNAi tumors

invariably reach an approximate 20/80 equilibrium during adulthood suggests a robust hierarchical

scheme able to buffer intrinsic or extrinsic perturbations inherent to biological systems. Interestingly,

changing the initial proportions of tNBs in the simulation does not affect the final equilibrium

(Figure 5B). Thus, the uncovered hierarchical scheme robustly reproduces the observed dynamics of

intratumoral heterogeneity, at least during the first two and half weeks of tumor growth (from L1 to

10-day-old adults) and provides robustness to accommodate biological perturbations.

To investigate whether the 20/80 ratio is a property of all NB tumors, we measured this ratio in

tumors induced by the loss of the SWI/SNF factor snr1 in larval type II NBs of the central brain

(Eroglu et al., 2014; Koe et al., 2014). As for poxn > prosRNAi tumors, late larval and adult NB

tumors induced by a null Snr1 allele or Snr1RNAi are composed by a mix of Chinmo+Imp+ tNBs and

Syp+ tNBs (Figure 5C). As for poxn > prosRNAi tumors the ratio of Chinmo+Imp+ over Syp+ tNBs is

reproducible from adult to adult tumors (Figure 5D). However, we observed that it is different from

poxn > prosRNAi tumors with an approximate 50/50 ± 10 ratio encountered in Snr1RNAi tumors. Thus,

the rules finetuning the parameters defining the hierarchical scheme in the different types of tumors

are robust, but tumor-specific, possibly determined by the NB of origin.

Figure 4 continued

measurements. (F) Hierarchical scheme able to recapitulate the dynamics of clone growth and composition, with the parameters measured from the

experimental data and defined by the fit. (G) Proportion of clones in each category using the set of parameters minimizing the error while allowing a

small chance of reverse division from S to C (top: 1%, bottom: 5%).

DOI: https://doi.org/10.7554/eLife.50375.012

The following figure supplements are available for figure 4:

Figure supplement 1. Three categories of two-cell clones in poxn > prosRNAi NB tumors suggesting that tNBs can undergo fate symmetric and fate

asymmetric divisions .

DOI: https://doi.org/10.7554/eLife.50375.013

Figure supplement 2. Error maps Normalized error maps in the (Ts,P(c->cc)) space.

DOI: https://doi.org/10.7554/eLife.50375.014
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Imp and Syp antagonistically regulate NB growth and self-renewal
during development and tumorigenesis via chinmo
We then investigated the role of the two RNA-binding proteins Imp and Syp in tumor growth and

cellular heterogeneity. We had previously demonstrated that Imp sustains NB tumor growth beyond

normal developmental stages at least partially by promoting chinmo expression (Narbonne-
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Figure 5. The final proportions of Chinmo+Imp+ and Syp+E93+ tNBs are not influenced by their initial proportions and depend on the tumor type. (A)

Proportion of Syp+E93+ (blue) and Chinmo+Imp+ (red) tNBs over time using the set of parameter values determined by the error minimization and

starting from 100% of Chinmo+Imp+ tNBs. Dashed lines represent a stochastic simulation (clone model), thin lines represent the prediction of the

deterministic model. An equilibrium is rapidly reached were Chinmo+Imp+ tNBs represent about 20% of all tNBs. (B) Dashed curves: evolution of the

proportions of Syp+E93+ (blue) and Chinmo+Imp+ (red) tNBs, as predicted by the deterministic model, when starting with 100% of Chinmo+Imp+. Plain

curves: evolution of the proportions of Syp+E93+ (blue) and Chinmo+Imp+ (red) tNBs, as predicted by the deterministic model, when starting with 50%

of Chinmo+Imp+ and 50% of Syp+E93+ tNBs. In both scenarios, the same equilibrium is reached. (C) UAS-snr1RNAi transgenes are expressed in type II

NBs using the ase-Gal80, wor-Gal4, UAS-dicer2 system causing NB tumors that persist in the CB of adult flies. tNBs in 6-day-old adults are marked with

Mira, Imp, Chinmo and Syp. (D) Proportion of Chinmo+Imp+ tNBs in ase-G80, wor > snrRNAiRNAi-1 (n = 5 CB) and ase-G80, wor > snrRNAiRNAi-2 (n = 7

CB) tumors in 6-day-old adults (volume of Chinmo+Imp+ tNBs over volume of all tNBs x 100) . p=0.0061. Scale bars, 20 mm.

DOI: https://doi.org/10.7554/eLife.50375.015
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Reveau et al., 2016). To investigate the function of Syp within the tumor context, we knocked it

down in poxn > prosRNAi tumors from their initiation. Syp knockdown led to tumors almost exclu-

sively constituted of Chinmo+Imp+ tNBs (Figure 6A,B). This is consistent with the finding that Syp

knockdown induces maintenance of both Imp (Yang et al., 2017) and Chinmo in NBs during

Figure 6. Imp and Syp antagonistically regulate the growth and heterogeneity of prosRNAi tumors. (A) Syp knockdown in poxn > prosRNAi tumors

triggers a dramatic increase of Chinmo+Imp+ tNBs. tNBs are marked with an anti-Mira antibody. (B) Proportion of Chinmo+Imp+ tNBs in

poxn > prosRNAi (n = 6 VNC) and poxn > prosRNAi, SypRNAi (n = 6 VNC) tumors in 4-day-old adults. p=0.0022. (C) Simulation of tumor growth (number of

cells) in prosKD and prosKD, SypKD (red) tumors. Quiescence probabilities are those set by the error minimization. (D) Volume of poxn > prosRNAi (n = 6

VNC) and poxn > prosRNAi, SypRNAi (n = 6 VNC) tumors in 1-day-old adults. p=0.002. Volume of poxn > prosRNAi (n = 7 VNC) and poxn > prosRNAi,

SypRNAi (n = 4 VNC) tumors in 4-day-old adults. p=0.0061. (E) Volume of poxn > prosRNAi tumors in 3-day-old (n = 10 VNC) and 8-day-old (n = 6 VNC)

adults. p=0.00025. Volume of poxn > prosRNAi (n = 10 VNC) and poxn > prosRNAi, UAS-Syp (n = 8 VNC) tumors in 3-day-old adults. p=0.0005. Volume of

poxn > prosRNAi (n = 6 VNC) and poxn > prosRNAi, UAS-Syp (n = 8 VNC) tumors in 8-day-old adults. p=0.00067. Volume of poxn > prosRNAi, SypOE

tumors in 3-day-old (n = 8 VNC) and 8-day-old (n = 8 VNC) adults. p=0.7209. (F) Volume of poxn > prosRNAi, SypRNAi (n = 6 VNC) and poxn > prosRNAi,

ImpRNAi, SypRNAi (n = 9 VNC) tumors in 4-day-old adults. p=0.0004.

DOI: https://doi.org/10.7554/eLife.50375.016

The following figure supplements are available for figure 6:

Figure supplement 1. Syp silences Chinmo and Imp to limit NB self-renewal during development.

DOI: https://doi.org/10.7554/eLife.50375.017

Figure supplement 2. Imp and Syp antagonistically regulate tumor growth and chinmo expression in poxn > prosRNAi NB tumors.

DOI: https://doi.org/10.7554/eLife.50375.018
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development (Figure 6—figure supplement 1). This suggests that in absence of Syp, Chinmo+Imp+

tNBs tend to exclusively undergo symmetric self-renewing divisions. As predicted by the numerical

model, this should lead to an increased tumor growth rate, since Chinmo+Imp+ tNBs do not, or

rarely enter quiescence, unlike Syp+E93+ tNBs (Figure 6C). Consistently, in vivo, the volume of

prosRNAi; SypRNAi tumors in 1-day-old adults exhibited a 3.9-fold increase compared to control prosR-

NAi tumors (Figure 6D and Figure 6—figure supplement 2A). By contrast, over-expressing Syp

(SypOE) within prosRNAi tumors blocked tumor growth in adults (Figure 6E and Figure 6—figure

supplement 2A). In addition, knockdown of both Syp and Imp in prosRNAi, SypRNAi, ImpRNAi tumors

arrested tumor growth in adults (Figure 6F and Figure 6—figure supplement 2), and tumors lacked

or exhibited low levels of Chinmo (Figure 6—figure supplement 2) demonstrating that, even in the

absence of Syp, Imp is essential for Chinmo expression in tumors and that is required for their con-

tinuous growth. Thus, the overgrowth phenotype observed in prosRNAi, SypRNAi tumors is mediated

by the Chinmo/Imp module. Together, these experiments indicate that cellular heterogeneity is not

required for tumor growth, and that Syp acts as a tumor suppressor. Syp restrains the population of

Chinmo+Imp+ CSC-like tNBs and its inactivation in tumors abolishes the hierarchy.

We then tested whether Imp and Syp exert their antagonistic activities by competing on the

same RNAs. As revealed by affinity pull-down assays performed using in vitro synthesized chinmo 5’

and 3’UTRs, both Imp and Syp can associate with the UTRs of chinmo mRNA (Figure 6—figure sup-

plement 1A). Therefore, Imp and Syp can have the same target genes. Interestingly, Syp appears to

have a greater affinity for the 5’UTR (Figure 6—figure supplement 1A). This phenomenon provides

a molecular explanation for the observation that chinmo 5’UTR is required for post-transcriptional

silencing (Zhu et al., 2006). Together, our data indicate that NB tumor growth, hierarchy and cellular

heterogeneity is governed by the finetuned activities of the two RNA-binding proteins Imp and Syp,

largely via the post-transcriptional regulation of chinmo.

tNBs follow a trajectory partially recapitulating larval temporal
patterning
We then thought to use our single-cell RNA-seq data to investigate in more details the genes

expressed along the Imp/Syp-mediated tumor hierarchy. For this purpose, we used Monocle 2 to

perform a pseudotime analysis (Qiu et al., 2017a; Qiu et al., 2017b; Trapnell et al., 2014). Pseudo-

time analysis determines trajectories of differentiation by ordering cells according to their transcrip-

tional changes. Our numerical model demonstrated that Chinmo+Imp+ tNBs are at the top of the

tumor hierarchy. Therefore, tNBs with high levels of Imp can be positioned at the root of the pseu-

dotime trajectory. In contrast, Syp+E93+ tNBs lie further down in the hierarchy and E93 marks late

NBs during development (Ren et al., 2017; Syed et al., 2017). In consequence, tNBs expressing

high levels of E93 can be assigned to the end of a differentiation trajectory. Based on these assump-

tions, we ran a semi-supervised ordering to uncover genes that are dynamically expressed along the

ImpfiE93 differentiation trajectory that occurs within poxn > prosRNAi tumors. The pseudotime

ordering generated a trajectory that is initially enriched in Imp+ tNBs and that splits into two main

branches enriched in E93+ tNBs (Figure 7A,B). We then searched for the top 200 genes whose

expression changes as a function of pseudotime. They could be separated in three main clusters

(Figure 7C and Supplementary file 1): Cluster 1 contains genes that, similar to Imp, decrease their

expression along the pseudotime (111 genes). They include Oatp74D, Sip1/CG10939, plum/

CG6490, Chd64, SP1173, CG10512, Gapdh2 and CG44325 (Figure 7B) that are expressed in early

larval NBs before the Imp-to-Syp switch (Figure 1F). Of note cas and svp, the upstream temporal

transcription factors scheduling the Imp-to-Syp transition in larval NBs are absent from cluster 1 con-

sistent with our observation that they are not enriched in Imp+ tNBs (Figure 1—figure supplement

3). Cluster 2 and 3 contains genes that, similar to E93, increase their expression along the pseudo-

time (71 and 18 genes respectively). However, they discriminate genes that are differentially

expressed along the two branches of the differentiation trajectories (Figure 7A). Cluster 2 is

enriched in ribosomal proteins, and also includes the late larval NB temporal markers: stg, lncRNA:

noe, and CG15628 (Figure 7C,D and Supplementary file 1). In the tumor, stg is enriched in the

branch defined by state three along the trajectory (Figure 7A). In contrast, cluster 3 pinpoints genes

that are highly expressed in the branch defined by state 7 (Figure 7A) including the late temporal

patterning gene CG15646. Interestingly, cluster 3 is also strongly enriched in genes of the E(spl) fam-

ily, known targets of the Notch pathway (Figure 7B and Supplementary file 1). Thus, the expression
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Figure 7. Redeployment of temporal patterning genes generates differentiation trajectories within NB tumors. (A) Cell trajectory reconstructed from

the population of tNBs using semi-supervised pseudotime ordering. Imp+ tNBs are enriched at the root of the trajectory while E93+ tNBs are enriched
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Figure 7 continued on next page
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of stg and E(spl) genes can discriminate two distinct states within the Syp+E93+ population of tNBs

(Figure 7A,B).

To investigate whether the Imp-to-Syp transition controls the progression of transcriptional states

observed along the pseudotime, we performed RNA-seq on bulk poxn > prosRNAi and

poxn > prosRNAi, SypRNAi adult tumors dissected with the VNCs on which tumors grow. Between the

two conditions, the expression of generic larval NB identity genes (grh, dpn) did not significantly

change (Figure 7E). In contrast, larval NB temporal markers varied greatly, as observed with early

(e.g. Imp, Oatp74D, Sip1/CG10939, plum/CG6490 and Chd64) and late (E93, Syp, CG15646)

markers being respectively strongly enriched and down-regulated in the poxn > prosRNAi, SypRNAi

tumors (Figure 7E and Supplementary file 2). Note that lin-28 and E23 were not detected in Imp+

tNBs with the single-cell RNA-seq approach but are detected with the bulk-seq approach, and their

expression dynamics matches those of other early temporal genes such as Imp (Figure 7E). This

transcriptomic analysis thus identifies differentiation trajectories in tumors characterized by the

dynamic expression of a subset of larval temporal patterning genes that is driven by the Imp-to-Syp

switch.

The temporal trajectory governs the metabolic and proliferative
properties of tNBs
In addition to temporal patterning genes, single-cell and bulk RNA-seq analyses identify other genes

that are downregulated along the Imp/Syp-mediated trajectory followed by tNBs. These include for

example the nicotinic acetylcholine receptors alpha3 and alpha5 (nAChRalpha3, nAChRalpha5)

whose expression has not been reported to be temporally regulated in larval NBs (Figure 7E and

Figure 8—figure supplement 1). They may therefore represent genes that are specifically activated

in the tumor context and enriched in the Imp+Chinmo+ CSC-like tNBs. Glycolysis, TCA cycle and

respiratory electron transport chain (OXPHOS) genes are also highly expressed in Chinmo+Imp+

tNBs and down-regulated along the Imp/Syp-dependent hierarchy (Figures 7D,E,F and 8A,B), a

phenomenon that has not been reported in NBs during development (except for Gapdh2 expression

that is high in early MB NBs) (Figure 1—figure supplement 2D and Figure 1—figure supplement

3). Highly expressed genes in the Imp+Chinmo+ tNBs also include the Glutamate dehydrogenase

(Gdh) (Figure 8A,B). This suggests that Chinmo+Imp+ tNBs highly rely on glutamine and glucose

metabolism.

A more careful investigation of differential expression along the two main branches of the pseu-

dotime (Figure 8—figure supplement 2 and Supplementary file 3) indicates that the E93+stg+

branch is characterized by medium to low levels of glucose metabolism genes, when compared to

early pre-branched cells (cluster 4), and a burst of cell cycle genes (cluster 4) followed by increased

expression of ribosomal genes (cluster 3) (Figure 8—figure supplement 2). These data suggest that

tNBs in the E93+stg+ branch exhibit transient cell cycle activity before progressing towards the end

of their differentiation trajectory. In contrast, the E93+E(spl)+ branch exhibit low levels of glycolytic

and cell cycle genes (cluster 4) all along (Figure 8—figure supplement 2 and Figure 8A). Thus, E

(spl) genes appear to discriminate non-proliferative tNBs that are also possibly quiescent given their

low levels of metabolic gene expression. Altogether, this transcriptomic and genetic analyses sug-

gest that the Imp-to-Syp transition in tNBs induces a cell-autonomous down-regulation of glutamine

and glucose metabolism genes and the production of two different types of E93+ tNBs with distinct

metabolic and proliferative properties, consistent with the predictions of the numerical model.

To test the importance of glucose metabolism genes during tumor growth, we knocked down

Gapdh1 and Pglym78 (glycolysis), as well as Cyt-c-p and Cyt-c1 (OXPHOS), in poxn > prosRNAi

tumors, all being significantly enriched in poxn > prosRNAi, SypRNAi tumors and downregulated along

Figure 7 continued

pseudotime are indicated for each gene. (C) Kinetic heatmap depicting the expression of top 200 genes that vary as a function of pseudotime. Genes

are grouped in three clusters based on expression kinetics. (D) Gene ontology (GO) enrichment analysis for each cluster identified in (C). (E) Heatmap

depicting enrichment of various temporal patterning, metabolic and acetylcholine receptor genes when comparing poxn > prosRNAi tumors and

poxn > prosRNAi, SypRNAi tumors. (F) Gene ontology (GO) enrichment analysis when comparing the transcriptome of poxn > prosRNAi, SypRNAi vs

poxn > prosRNAi tumors.

DOI: https://doi.org/10.7554/eLife.50375.019
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Figure 8. The Imp-to-Syp transition triggers down-regulation of glutamine and glucose metabolism genes along the differentiation trajectory to reduce

tNB growth and proliferative potential. (A) Glucose metabolism pathways (glycolysis, TCA cycle and respiratory electron transport chain). Genes whose

expression is enriched in poxn > prosRNAi, SypRNAi tumors compared to poxn > prosRNAi tumors are highlighted in blue. Log2 fold change is indicated

in brackets. (B) Expression dynamics of various glycolytic, respiratory electron transport chain and glutamine metabolism genes along the tumor

pseudotime. p-values for differential expression along the pseudotime are indicated for each gene. (C) poxn > prosRNAi NB tumors are marked with

anti-Mira (green). Silencing of glycolytic (Gapdh-1RNAi, Pglym78RNAi) or respiratory genes (Cyt-c-pRNAi, Cyt-c1RNAi) leads to smaller poxn > prosRNAi

tumors in late L3 larvae. Silencing of glycolytic or respiratory genes arrests tumor growth in 4-day-old and 7-day-old adults respectively. (D) Volumes of

poxn > prosRNAi tumors (n = 5 VNC), poxn > prosRNAi, Gapdh-1RNAi tumors (n = 7 VNC); poxn > prosRNAi, Pglym78RNAi tumors (n = 5 VNC);
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Pglym78RNAi = 0,007. PCntrl/Cyt-c-pRNAi= 0,007. PCntrl/Cyt-c1RNAi = 0,007. Volumes of poxn > prosRNAi tumors (n = 6 VNC); poxn > prosRNAi, Gapdh-1RNAi

tumors (n = 8 VNC); poxn > prosRNAi, Pglym78RNAi tumors (n = 9 VNC); poxn > prosRNAi, Cyt-c-pRNAi tumors (n = 10 VNC); and poxn > prosRNAi, Cyt-

c1RNAi tumors (n = 6 VNC) in 4-day-old adults. PCntrl/Gapdh-1RNAi = 0,0007. PCntrl/Pglym78RNAi = 0,0002. PCntrl/Cyt-c-pRNAi = 0,0002. PCntrl/Cyt-c1RNAi = 0,002.

Scale bars, 50 mm. (E) Each dot represents the average area of Chinmo+Imp+ tNBs over the average area of Syp+E93+ tNBs for a single confocal

section of a poxn > prosRNAi NB tumor in a 4-day-old adult. (F) Schematic representation of the tumor hierarchy. Chinmo+Imp+ tNBs are proliferative

and tend to self-renew. However, they can also engage in a differentiation process triggered by the Imp-to-Syp transition and involving a subset of

larval temporal genes. Syp+E93+ tNBs can self-renew but also tend to exit the cell-cycle as they decrease expression of glucose/glutamine metabolism

genes. Syp+E93+ tNBs, that have exited the cell-cycle, express genes of the E(spl) family. The mechanisms controlling the Imp-to-Syp transition in NB

tumors, to determine the CSC proportion are unknown.

DOI: https://doi.org/10.7554/eLife.50375.020

The following figure supplements are available for figure 8:

Figure supplement 1. nAChRalpha3 and nAChRalpha5 are expressed in tNBs positioned at the beginning of the pseudotime.

DOI: https://doi.org/10.7554/eLife.50375.021

Figure supplement 2. Branch analysis of the single-cell trajectory.

DOI: https://doi.org/10.7554/eLife.50375.022

Figure supplement 3. Segmentation of NB tumors Segmented confocal section of a tumor using Tissue Analyzer.

DOI: https://doi.org/10.7554/eLife.50375.023
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the pseudotime (p-values=8,01e�63; 3,04e�146; 2,65e�46; 1,45e�26 respectively) (Figure 8A,B). In all

knockdown conditions, tumors underwent a slower growth rate already detectable in late L3

(Figure 8C,D). Moreover, tumors systematically failed to be maintained in adults showing that the

expression of both glycolytic and OXPHOS genes are necessary for long-term propagation of NB

tumor growth (Figure 8C,D). In addition, when comparing the size of tNBs within poxn > prosRNAi

tumors, we found that Syp+E93+ tNBs exhibited a smaller size than Chinmo+Imp+ tNBs in agreement

with reduced glycolysis decreasing cell growth (Figure 8E and Figure 8—figure supplement 3).

Together, this suggests that the Imp-to-Syp transition induces a metabolic switch that prevents long-

term self-renewal and reduces cell growth as tNBs move down the hierarchy (Figure 8F). Thus, reca-

pitulation of temporal patterning provides a tumor-intrinsic mechanism that generates metabolic

heterogeneity leading totNBs with different growth properties..

Discussion
Our study demonstrates that temporal patterning, not only determines which cells are susceptible to

cancer transformation during development (Narbonne-Reveau et al., 2016), but also has an over-

arching role in governing different aspects of CNS tumor organization such as hierarchy, heteroge-

neity and the proliferative properties of the different types of cells via the regulation of their

metabolism.

Given the recent discovery that temporal patterning is conserved in the developing mammalian

brain (Telley et al., 2019), our study could shed light on an ancestral mechanism that governs the

progression of CNS tumors with developmental origins.

Subversion of a subset of larval NB temporal patterning genes triggers
predictable hierarchical neural tumors
The rules governing the initiation and progression of CNS pediatric tumors that often exhibit stable

genomes are still unclear. We had previously demonstrated that temporal patterning in Drosophila

larval NBs delineates a window of time during which the Chinmo/Imp oncogenic module is

expressed and makes early larval NBs prone to malignant transformation (Narbonne-Reveau et al.,

2016). Here we find that after tumor initiation, temporal patterning is partly recapitulated in tNBs

where it generates differentiation trajectories to constrain tumor composition and growth. This is

illustrated by the presence of about 20 genes (Imp, chinmo, Lin-28, E23, Oatp74D, Gapdh2, Sip1/

CG10939, plum/CG6490, SP1173, Chd64, CG10512, CG44325, CG5953, Syp, E93, lncRNA:noe,

CG15646 and stg), previously identified to be temporally regulated in some larval NBs, that are dif-

ferentially regulated along the pseudotime/differentiation trajectory reconstructed from single-cell

RNA-seq analysis of tNBs, and/or differentially expressed in Imp+ vs Syp+ tNBs. Thus, we identify

here what appears to be a subset of a core temporal patterning program encoded in central brain

and ventral nerve cord NBs that becomes deregulated upon asymmetric-division defects during

early development.

Notably, the larval temporal transcription factor Cas and Svp, known to schedule the Imp-to-Syp

transition during development are not enriched in Imp+ tNBs suggesting that they do not play a role

in regulating the Imp-to-Syp transition along the trajectory in tumors. Interestingly, while Syp is tran-

scriptionally regulated in larval NBs, it seems rather post-transcriptionally regulated in tNBs as Syp

RNAs are present throughout all clusters. This suggests that different mechanisms may be operating

in tumors than during development to regulate the Imp-to-Syp transition.

We observed that the proportions of Imp+ and Syp+ tNBs systematically reach an equilibrium

over a few days with a 20/80 (+ /- 10) ratio in poxn > prosRNAi tumors. This suggests that the regula-

tion of the Imp-to-Syp transition in tumors is not random and the predictability of the final propor-

tions possibly implies robust underlying constraints. By investigating the population dynamics of

Imp+ and Syp+ tNBs in prosRNAi tumors, we have deciphered a finely tuned hierarchical division

scheme that appears to constrain the growth and cellular heterogeneity of the tumor. We showed

that Imp+ tNBs in the tumorigenic context favor a symmetric self-renewing mode of divisions (in

more than 60% of divisions) while unlikely to exit the cell-cycle. This allows the perpetuation of a

small subset of Imp+ tNBs that are endowed with a seemingly unlimited self-renewing potential by

the Imp/Chinmo module. Imp+ tNBs can also make symmetric and asymmetric divisions that gener-

ate Syp+ tNBs, leading to the production of a population of Syp+E93+ tNBs that accumulates
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through limited self-renewal, and have a high propensity for exiting the cell-cycle. Moreover, we

could show that Syp+E93+ tNBs are unable to generate Imp+ tNBs, demonstrating a rigid cellular

hierarchy reminiscent of development. In addition, in this context, Syp acts as a tumor suppressor by

limiting tNB proliferation while Imp acts as an oncogene by promoting tNB proliferation and propa-

gation of tumor growth. Together, these data argue for a scenario where cooption of the Imp-to-

Syp transition is responsible for installing a hierarchical mode of tumor growth with Imp+ tNBs prop-

agating unlimited growth in a CSC-like manner, while Syp+E93+ tNBs acts as transient amplifying

progenitors with limited self-renewing abilities. Although the Imp/Syp RNA-binding proteins have an

essential and antagonistic role in governing the proliferative properties of tumor cells, the function

of the other redeployed temporal patterning genes is unknown (except for chinmo, downstream to

Imp and Syp, that is essential for tumor growth). As many are linked with the Imp+ tNB state, it will

be important in the future to decipher how they contribute to establish or maintain the CSC-like

identity.

The division parameters defined by our clonal analysis and modeling approach could capture

both the hierarchical aspect of tumor growth as well as the global population dynamics: from an ini-

tial homogenous pool of larval Imp+ tNBs to the stable heterogeneity observed during adulthood. It

could also resolve the paradoxical observation that Chinmo+Imp+ tNBs end up in minority despite

exhibiting a higher average mitotic rate. Although, like all models, we don’t expect our model to

perfectly recapitulate all the parameters regulating tumor growth and heterogeneity (for example,

we have neglected apoptosis and neuronal differentiation that occur at low levels), we think it pro-

vides a reasonable and useful ground on which further studies can be performed for a more detailed

understanding. On these lines, while the division pattern we have described with our numerical

model provides estimates of division probabilities in poxn > prosRNAi tumors, it says nothing as to

how these probabilities are biologically set within the tumor. A possible scenario is that cell fate

determination upon division relies on signals received by immediate neighboring tumor cells, result-

ing in effective probabilities at the scale of the whole tumor. Such a micro-environment dependent

regulation of the Imp-to-Syp transition in tumors would strongly contrast with the cell-intrinsic regu-

lation of the Imp-to-Syp transition that systematically occurs in NBs around early L3. Future studies

will aim at deciphering the mechanisms that interfere with the developmental progression of the

temporal patterning, upon asymmetric-division defects, to favor the self-renewing mode of divisions

undergone by the Chinmo+Imp+ tNBs, allowing perpetuation of a population of CSC-like cells.

Noteworthy, prosRNAi and snr1/dSmarcb1RNAi tumors exhibit different but reproducible ratios of

Imp+ and Syp+ tNBs. This suggests the existence of tumor-specific mechanisms that fine-tune the

Imp-to-Syp transition. Such mechanisms may be related to the tumor cell of origin, or to the genetic

insult that initiated NB amplification. Further analysis will help identifying tumor-intrinsic signals reg-

ulating the balance between Chinmo+Imp+ tNBs and Syp+E93+ tNBs in various types of NB tumors.

Until recently, the existence of temporal patterning in mammalian neural progenitors remained

uncertain. Elegant single-cell transcriptomic studies of embryonic cortical and retinal progenitors in

mice have now revealed that they transit through different transcriptional states that are transmitted

to their progeny to generate neuronal diversity, similar to temporal patterning in Drosophila

(Clark et al., 2019; Telley et al., 2019). However, it remains unknown whether temporal patterning

determines the cell of origin and governs the growth of CNS tumors in children. Along these lines,

the finding that the transcriptional programs operating in cerebellar progenitors during fetal devel-

opment are recapitulated in medulloblastomas is promising (Vladoiu et al., 2019). By uncovering

the overarching role of temporal patterning in governing tumor susceptibility during CNS develop-

ment and in constraining tumor properties during cancer progression in Drosophila, our work thus

possibly provides a new conceptual framework to better understand CNS tumors in children.

Tumor-intrinsic regulation of NB metabolism by the temporal
patterning system
Because of the difficulty to investigate metabolism at the single-cell level, it has been difficult to

determine how heterogeneous is the metabolic activity of cells in tumors, and how it is controlled.

Here, using a combination of single-cell and bulk RNA-seq approaches, we find that progression of

temporal patterning provides a tumor-intrinsic mechanism that generates heterogeneity in the prolif-

erative abilities of tumor cells through the progressive silencing of glucose and glutamine metabo-

lism genes.
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Consequently, Chinmo+Imp+ tNBs, that lie at the top of the hierarchy, highly express glycolytic

and respiratory/OXPHOS genes, as well as Gdh, that are down-regulated by the Imp-to-Syp transi-

tion. This default high expression of both glutamine and glucose metabolism genes in CSC-like

Chinmo+Imp+ tNBs likely favors sustained self-renewal, but could also confer plasticity and a way to

adapt cellular metabolism to different environmental conditions as frequently observed in CSCs (e.g.

glutamine can compensate for glucose shortage) (Sancho et al., 2016).

We showed that Syp+E93+ tNBs exhibit a reduced size, and that knock-down of glycolytic

(Gapdh1 or Pglym78) or respiratory/OXPHOS genes (Cyt-c-p or Cyt-C1) prevented propagation of

tumor growth in adults. Thus, reduction of biosynthesis and energy production through down-regu-

lation of glucose and glutamine metabolism genes after the Imp-to-Syp transition could progres-

sively exhaust Syp+E93+ tNB growth and self-renewing ability, ultimately leading to cell-cycle exit.

With our demonstration that temporal patterning regulates glycolytic, TCA cycle and OXPHOS

genes in NB tumors, our work provides a tumor-intrinsic mechanism that creates metabolic hetero-

geneity to control the proliferative potential of the various tumor cells. We have observed that

Syp+E93+ tNBs associated with lowest levels of metabolic and cell-cycle genes also upregulate

genes of the E(spl) genes. Interestingly, expression of Hes genes (orthologs of Enhancer of split

genes) in vertebrate neural stem cells is associated with the maintenance of a quiescent state in

adults (Chapouton et al., 2011; Sueda et al., 2019). Thus, E(spl) genes may promote the quiescent

tNB state identified with our clonal and numerical analysis while preventing their differentiation in

neurons.

Down-regulation of the mRNA levels of metabolic genes after the Imp-to-Syp transition could be

due to the silencing of a transcriptional activator or to an increased mRNA degradation. On one

hand, Chinmo is a likely candidate for the first scenario, as its inactivation reduces growth in NBs

(Narbonne-Reveau et al., 2016) and we showed that it is a direct target of both Imp and Syp. On

the other hand, the second scenario is consistent with Imp orthologs in human being able to pro-

mote OXPHOS and proliferation in glioma cells, through the post-transcriptional regulation of mito-

chondrial respiratory chain complex subunits (Janiszewska et al., 2012).

We have also identified a small population of tNBs expressing various stress or growth arrest fac-

tors. One of these factors, Xrp1, is a transcriptional target of p53 in the response to irradiation. Xrp1

expression has also recently been linked to defects in translation rates, together with the expression

of Irbp18 and GstE6 (Lee et al., 2018). Thus, these factors may label a subset of tNBs undergoing

DNA or translational stress. The reason and consequences of such cellular stresses in tumor progres-

sion need to be further investigated.

Our transcriptomic analyses have revealed strong similarities in the differentiation trajectories of

tNBs in tumors and of NBs in larvae. Yet, it is surprising that the down-regulation of glutamine and

glucose metabolism genes has not been detected in NBs during larval development, after the Imp-

to-Syp transition (Ren et al., 2017). It is possible that the glial niche surrounding NBs, that is known

to influence NB growth properties during larval stages (Chell and Brand, 2010; Cheng et al., 2011;

Sousa-Nunes et al., 2011), somehow sustains high levels of glucose metabolism genes in late

Syp+E93+ NBs. Given that this glial niche is absent in tumors, Syp+E93+ tNBs may not be able to sus-

tain the high expression of metabolic genes imposed by the Imp/Chinmo module, leading to pro-

gressive cell-cycle exit.

Imp and syp: a conserved couple of antagonistic RNA-binding proteins
regulating cell hierarchy in human tumors?
Chinmo and Imp are reminiscent to oncofetal genes in mammals, in that their expression decrease

rapidly as development progresses while they are mis-expressed in tumors. Along these lines, the

three IMP orthologs in humans (also called IGF2BP1-3) are also known as oncofetal genes. They

emerge as important regulators of cell proliferation and metabolism in many types of cancers includ-

ing pediatric neural cancers (Bell et al., 2015; Dai et al., 2017; Degrauwe et al., 2016a;

Degrauwe et al., 2016b; Janiszewska et al., 2012). Along evolution, the ancestral Syncrip gene

has been subjected to several rounds of duplication and has diverged into five paralogs in mammals,

some of them emerging as tumor suppressors with an important role in tumor progression

(Sakurai et al., 2016; Vanharanta et al., 2014).

Thus, the respective oncogenic and tumor suppressor roles of IMP and SYNCRIP gene families

appear to have been conserved in humans and they may not be restricted to tumors of neural origin.
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Our study therefore raises the exciting possibility that these two families of RNA-binding proteins

form a master module at the top of the self-renewal/differentiation cascades, that regulates CSC

populations and hierarchy in a spectrum of human cancers.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

UAS-Flybow. 1.1 Bloomington
Drosophila
Stock Center
(Hadjieconomou
et al., 2011)

RRID:BDSC_35537

Genetic reagent
(D. melanogaster)

UAS-mCherrychinmoUTRs Cédric Maurange
(Dillard et al., 2018)

mCherry reflects
the post-transcriptional
regulation of chinmo.

Genetic reagent
(D. melanogaster)

UAS-SypRNAi1 VDRC 33011 RNAi1

Genetic reagent
(D. melanogaster)

UAS-SypRNAi2 VDRC 33012 RNAi2

Genetic reagent
(D. melanogaster)

UAS-Syp-RB-HA Tzumin Lee
(Liu et al., 2015)

Genetic reagent
(D. melanogaster)

UAS-prosRNAi1 Bloomington
Drosophila
Stock Center

RRID:BDSC_26745 RNAi1

Genetic reagent
(D. melanogaster)

UAS-prosRNAi2 VDRC 101477 RNAi2

Genetic reagent
(D. melanogaster)

UAS-ImpRNAi VDRC 20322

Genetic reagent
(D. melanogaster)

UAS-chinmoRNAi Bloomington
Drosophila
Stock Center

RRID:BDSC_33638

Genetic reagent
(D. melanogaster)

UAS-dicer2 Bloomington
Drosophila
Stock Center

RRID:BDSC_24650
RRID:BDSC_24651

was used in
combination
with GAL4 lines
in order to improve
RNAi efficiency.

Genetic reagent
(D. melanogaster)

UAS-mCD8::GFP Bloomington
Drosophila
Stock Center

RRID:BDSC_5130
RRID:BDSC_32185

Genetic reagent
(D. melanogaster)

UAS-myr::GFP Bloomington
Drosophila
Stock Center

RRID:BDSC_32197

Genetic reagent
(D. melanogaster)

UAS-mCherry.NLS Bloomington
Drosophila
Stock Center

RRID:BDSC_38424

Genetic reagent
(D. melanogaster)

UAS-Snr1RNAi1 VDRC 108599 RNAi1

Genetic reagent
(D. melanogaster)

UAS-Snr1RNAi2 VDRC 32372 RNAi2

Genetic reagent
(D. melanogaster)

UAS-Gapdh1RNAi VDRC 100596

Genetic reagent
(D. melanogaster)

UAS-Pglym78 VDRC 106818

Genetic reagent
(D. melanogaster)

UAS-Cyt-c1RNAi1 VDRC 9180 RNAi1

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

UAS-Cyt-c1RNAi2 VDRC 109809 RNAi2

Genetic reagent
(D. melanogaster)

UAS-Cyt-c-pRNAi1 VDRC 33019 RNAi1

Genetic reagent
(D. melanogaster)

UAS-Cyt-c-pRNAi2 VDRC 106759 RNAi2

Genetic reagent
(D. melanogaster)

w, tub-GAL4, UAS-
nlsGFP::6xmyc::NLS,
hsFLP122; FRT82B,
tubP-GAL80/TM6B

Cédric Maurange
(Narbonne-
Reveau et al., 2016)

MARCM line

Genetic reagent
(D. melanogaster)

FRT82B snr16C
hdac36C

Bloomington
Drosophila
Stock Center
(Koe et al., 2014)

RRID:BDSC_34494

Genetic reagent
(D. melanogaster)

Imp-GFP Florence Besse protein trap line

Genetic reagent
(D. melanogaster)

poxn-Gal4 Bloomington
Drosophila
Stock Center
(Boll and Noll, 2002)

RRID:BDSC_ 66685

Genetic reagent
(D. melanogaster)

ase-Gal80,
wor-GAL4,
UAS-dcr2

Juergen Knoblich
(Eroglu et al., 2014)

Genetic reagent
(D. melanogaster)

nab-GAL4 Kyoto DGRC 6190

Genetic reagent
(D. melanogaster)

UAS-FLP, Ubi-
p63EFRTstopFRTnEGFP

Bloomington
Drosophila
Stock Center
(Evans et al., 2009)

RRID:BDSC_28282 G-trace

Genetic reagent
(D. melanogaster)

hs-mFLP5 Bloomington
Drosophila
Stock Center
(Hadjieconomou
et al., 2011)

RRID:BDSC_35534 Flipase for Flybow

Antibody chicken polyclonal
anti-GFP

Aves Labs
#GFP-1020

RRID:AB_10000240 1:1000

Antibody rabbit polyclonal
anti-RFP

Rockland
#600-401-379

RRID:AB_2209751 1:500

Antibody rat monoclonal
anti-RFP

Chromotek #5F8 RRID:AB_2336064 1:500

Antibody mouse monoclonal
anti-Miranda

Alex Gould 1:50

Antibody rabbit polyclonal
anti-PH3

Millipore #06–570 RRID:AB_310177 1:500

Antibody rat monoclonal
anti-PH3

Abcam #AB10543 RRID:AB_2295065 1:500

Antibody rat monoclonal
anti-Elav

DSHB #9F8A9 1:50

Antibody rabbit polyclonal
anti-cleaved Dcp-1

Cell Signaling #9578 RRID:AB_2721060 1:500

Antibody rat polyclonal
anti-Chinmo

Nick Sokol 1:500

Antibody rabbit polyclonal
anti-Imp

Paul Macdonald 1:500

Antibody guinea pig polyclonal
anti-Syp

Ilan Davis 1:500

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody Rabbit polyclonal
anti-Syp

Ilan Davis 1/200

Antibody rabbit polyclonal
anti-E93

Daniel J. McKay 1/2500

Antibody guinea-pig
polyclonal antibody

Bill McGinnis 1/200

Chemical
compound, drug

Dapi Vector Laboratories
Cat# H-1400

RRID:AB_2336787

Recombinant
DNA reagent

Chinmo cDNA clone DGRC,
EST Collection

#RE59755

Sequence-
based reagent

Chin-5’UTR/
pBS_Forward

This paper PCR primers Described in Affinity
pull-down assays
section in the
Materials and
methods

Sequenced-
based reagent

Chin-5’UTR/
pBS_Reverse

This paper PCR primers Described in Affinity
pull-down assays
section in the
Materials and
methods

Sequenced-
based reagent

Chin-3’UTR/
pBS_Forward

This paper PCR primers Described in Affinity
pull-down assays
section in the
Materials and
methods

Sequenced-
based reagent

Chin-3’UTR/
pBS_Reverse

This paper PCR primers Described in Affinity
pull-down assays
section in the
Materials and
methods

Software,
algorithm

Seurat and
Monocle codes
used for single-cell
RNA-seq data analysis

This paper https://github.com/
cedricmaurange/
Genovese-et-al.-2019

See the Single-cell
mRNA sequencing and analysis
section
in the Materials
and
methods

Software,
algorithm

Code used for
numerical model

This paper http://dx.doi.org/
10.17632/j2j9gmyb6m.1

See the Numerical
model section in
the Materials and
methods

Fly culture
Drosophila stocks were maintained at 18˚C on standard medium (8% cornmeal/8% yeast/1% agar).

Fly lines
The protein trap line used was:

. Imp-GFP (Bloomington Stock Centre #G0080)

The Gal4 lines used were:

. poxn-Gal4 is active in six homologous thoracic NBs of the VNC (Boll and Noll, 2002).

. ase-Gal80, wor-GAL4, UAS-dcr2 has been crossed with various UAS-RNAi transgenes for spe-
cific mis-expression in type II NBs of the central brain (Eroglu et al., 2014).

. nab-Gal4, UAS-dicer2, UAS-GFP. nab-GAL4 (#6190 from Kyoto DGRC) is a GAL4 trap inserted
into nab (CG33545) that is active in all NBs of the VNC and central brain from late
embryogenesis

The UAS lines used were:
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. UAS-Flybow. 1.1 (Bloomington Stock Centre #35537) (Hadjieconomou et al., 2011).

. UAS-mCherrychinmoUTRs (Dillard et al., 2018). In NB tumors carrying UAS-mCherrychinmoUTRs,
expression of mCherry reflects the post-transcriptional regulation of endogenous chinmo. Con-
sistently, we observe that mCherry always overlaps with endogenous Chinmo as detected by
immunostaining (Figure 1—figure supplement 4).

. UAS-SypRNAi1(Vienna Drosophila RNAi Center #33011)

. UAS-SypRNAi2(Vienna Drosophila RNAi Center #33012)

. UAS-Syp-RB-HA (T Lee, Janelia Research Campus, Virginia, USA) (Liu et al., 2015).

. UAS-prosRNAi1 (Transgenic RNAi Project #JF02308, Bloomington Stock Centre #26745)

. UAS-prosRNAi2 (Vienna Drosophila RNAi Center #101477)

. UAS-ImpRNAi (Vienna Drosophila RNAi Center #20322)

. UAS-chinmoRNAi (Transgenic RNAi Project #HMS00036, Bloomington Stock Centre #33638)

. UAS-dicer2 (Bloomington Stock Centre #24650 and #24651) was used in combination with
GAL4 lines in order to improve RNAi efficiency.

. UAS-mCD8::GFP (Bloomington Stock Centre #5130 and #32185) and UAS-myr::GFP (Bloo-
mington Stock Centre #32197) were used to follow the driver expression.

. UAS-mCherry.NLS (Bloomington Stock Centre #38424)

. UAS-ImpRNAi; UAS-SypRNAi2 (UAS-SypRNAi2 from Vienna Drosophila RNAi Center #33012)

. UAS-SypRNAi1; UAS-chinmoRNAi (UAS-SypRNAi1 from Vienna Drosophila RNAi Center #33011)

. UAS-prosRNAi1, UAS-mCD8::GFP (UAS-prosRNAi1 from Transgenic RNAi Project #JF02308)

. UAS-prosRNAi2; UAS-mCherrychinmoUTRs(UAS-prosRNAi2 Vienna Drosophila RNAi Center
#101477)

. UAS-Snr1RNAi-1 (Vienna Drosophila RNAi Center #108599).

. UAS-Snr1RNAi-2 (Bloomington Stock Centre #32372).

. UAS-Gapdh1RNAi (Vienna Drosophila RNAi Center #100596)

. UAS-Pglym78 RNAi (Vienna Drosophila RNAi Center #106818)

. UAS-Cyt-c1RNAi1 (Vienna Drosophila RNAi Center #9180)

. UAS-Cyt-c1RNAi2 (Vienna Drosophila RNAi Center #109809)

. UAS-Cyt-c-pRNAi1 (Vienna Drosophila RNAi Center #33019)

. UAS-Cyt-c-pRNAi2 (Vienna Drosophila RNAi Center #106759)

The MARCM and FRT stocks for used were:

. w, tub-GAL4, UAS-nlsGFP::6xmyc::NLS, hsFLP122; FRT82B, tubP-GAL80/TM6B (Narbonne-
Reveau et al., 2016)

. FRT82B snr16C hdac36C (Koe et al., 2014)

Fly crosses were set up and raised at 29˚C. To label all tumor cells with GFP, poxn-Gal4, UAS-

prosRNAi, UAS-dicer2 flies were crossed with the G-TRACE system UAS-FLP, Ubi-p63EFRTstopFRT-

nEGFP (Bloomington Stock Centre #28282) (Evans et al., 2009). To generate mCherry+ clones in

tumors, poxn-GAL4, UAS-prosRNAi1, UAS-mCD8::GFP; UAS-dicer2 flies were crossed to UAS-Fly-

bow.1.1; hs-mFLP5 (Bloomington Stock Centre #35534 and #35537) (Hadjieconomou et al., 2011).

The progeny of this cross was collected 48 hours after adult eclosion and heat-shocked for 1h30’ at

37˚C. Flies were put back at 29˚C after heat-shock. Note that differentiated neurons generated from

mCherry+ tNBs will not retain mCherry expression due to the silencing of poxn-GAL4 in neurons.

MARCM clones were induced by heat-shocking 1 hr at 37˚C larvae that have just hatched.

Image processing
Confocal images were acquired on a Zeiss LSM780 microscope. FIJI-ImageJ was used to process

confocal data and to compile area and volume data. Imaris Image Analysis Software (http://bitplane.

com) was used to generate 3D representations of clones in tumors.

Tumor segmentation using tissue analyzer
For Figure 8E, poxn > prosRNAi tumors carrying an Imp-GFP marker were dissected, fixed in 4%

paraformaldehyde and stained with antibodies against Miranda and GFP proteins. VNCs were visual-

ized in a Zeiss LSM780 confocal microscope and co-planar images were made of several sections

ranging from the tumor surface to its interior. Several confocal planes for four tumors (n = 21) were

analyzed using the ‘Tissue Analyzer’ plugin for FIJI-ImageJ (Aigouy et al., 2016). This tool allows for

cell membrane tracing, via the signal from Miranda which marks the cellular border of all tumor cells,

segmentation and quantification of several parameters, including size, of each tumor cell individually.
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Chinmo+Imp+ tNBs are identified by their strong Imp-GFP signal. Initial automatic segmentation was

further refined manually to ensure all cell boundaries were properly tracked and cells assigned a cor-

rect identity (Figure 8—figure supplement 3). Data points represent different planar sections within

the same tumor, in order to account for variability within each tumor.

Statistical analysis
For each experiment, at least three biological replicates were performed. Biological replicates are

defined as replicates of the same experiment with flies being generated by different parent flies. For

all experiments, we performed a Mann-Whitney test for statistical analysis. Statistical analysis was

performed using GraphPad Prism version 7.04 for Windows (GraphPad Software, La Jolla California

USA, www.graphpad.com). Results are presented as dot plots. Error bars represent s.d. from the

mean. The sample size (n) and the P-value are reported in the figure legends (****p�0.0001;

***p�0.001; **p�0.01; *p�0.05; ns, not significant).

Immunohistochemistry
Larval and adult VNCs were dissected in phosphate-buffered saline (PBS) and fixed for 10 min at

room temperature (RT) in 4% paraformaldehyde/PBS. VNCs were rinsed in PBT (PBS containing

0.5% Triton X-100) and incubated with primary antibody overnight at 4˚C. Secondary antibodies

(Jackson ImmunoResearch) were incubated overnight at 4˚C. VNCs were mounted in Vectashield

(Clinisciences, France) with or without DAPI for image acquisition. The following primary antibodies

were used: chicken anti-GFP (1:1000, Aves #GFP-1020), rabbit anti-RFP to label mCherry (1:500,

Rockland #600-401-379), rat anti-RFP (1:500, Chromotek #5F8), mouse anti-Miranda (1:50, A Gould,

Francis Crick Institute, London, UK), rabbit anti-PH3 (1:500, Millipore #06–570), rat anti-PH3 (1:500,

Abcam #AB10543), rat anti-Elav (1:50, DSHB #9F8A9), rabbit anti-cleaved Dcp-1 (1:500, Cell Signal-

ing #9578)), rat anti-Chinmo (1:500, N Sokol, Indiana University, Bloomington, USA), rabbit anti-Imp

(1:500, P Macdonald), guinea pig anti-Syp (1/500, I Davis, Oxford University, UK), rabbit anti-Syp (1/

200, I Davis, Oxford University, UK), rabbit anti-E93 (1/2500, DJ McKay, University of North Carolina,

Chapel Hill).

Affinity pull-down assays
Affinity pull-down assays were performed as previously described (Medioni et al., 2014), and West-

ern Blots performed using rat anti-Imp and rabbit anti-Syp antibodies. The 5’ and 3’ UTRs of chinmo

were cloned from the cDNA clone #RE59755 (DGRC, EST Collection) using the following primers:

Chin-5’UTR/pBS_Forward aatttctagaAGTCAAAAAGAAACTGCCGTG

Chin-5’UTR/pBS_Reverse gatgaagcttGGTGCCAGCAGTGATGCT

Chin-3’UTR/pBS_Forward taaatctagaGAAGCAGCCGCAACAGCA

Chin-3’UTR/pBS_Reverse ttttaagcttGGTGAATTTTCATTTGTACGAAGAA

Capitals represents analogous or complementary parts of the chinmo sequence. In bold are the

restriction sites used for cloned into pBS-KS(-) (TCTAGA = XbaI, AAGCTT = HindIII), and in lower

case are extra bases for efficient digestion. This plasmid was used to generate the UTP-biotinylated-

RNA probes (5’UTR and 3’UTR).

RNA extraction of bulk tumors
To generate NB tumors poxn-Gal4, UAS-mCherry.NLS; UAS-dicer2 flies were crossed to flies

carrying:

1. UAS-prosRNAi1

2. UAS-SypRNAi1;UAS-prosRNAi1

Crosses were grown at 29˚C. Sixteen adult females and 13 adult males (8 day-old) were killed in

70% ethanol and washed once in PBS. VNCs containing tumors were dissected in PBS and collected

in a RNase-free Protein LoBinding tube filled with 750 mL of Lysis Buffer (Buffer RLT, RNeasy Mini

Kit, Qiagen) supplemented with 7.5 mL of b-mercaptoethanol and 500 mL of glass beads (diameter

Genovese et al. eLife 2019;8:e50375. DOI: https://doi.org/10.7554/eLife.50375 26 of 36

Research advance Cancer Biology Developmental Biology

http://www.graphpad.com
https://doi.org/10.7554/eLife.50375


0.75–1 mm, Roth, A554.1). Samples were disrupted and homogenized using the tissue homogenizer

Precellys 24 (Bertin Technologies).

Sample tubes were then stored at �80˚C up to RNA extraction. Total RNA was extracted using

the RNeasy Mini Kit (Qiagen). RNA quality and quantity were checked by running samples on an Agi-

lent RNA 6000 Pico Chip (Agilent Technologies). For each condition, samples were made from 29

dissected VNCs pooled from adult flies born from several crosses (more than 3). For technical repli-

cates, two samples of each condition were generated and treated in parallel until sequencing.

Library preparation and sequencing of bulk tumors
Total RNA-Seq libraries were generated from 130 ng of total RNA using TruSeq Stranded Total RNA

LT Sample Prep Kit with Ribo-Zero Gold (Illumina, San Diego, CA), according to manufacturer’s

instructions. Briefly, cytoplasmic and mitochondrial ribosomal RNA (rRNA) was removed using bioti-

nylated, target-specific oligos combined with Ribo-Zero rRNA removal beads. Following purification,

the depleted RNA was fragmented into small pieces using divalent cations at 94˚C for 2 min.

Cleaved RNA fragments were then copied into first strand cDNA using reverse transcriptase and

random primers followed by second strand cDNA synthesis using DNA Polymerase I and RNase H.

Strand specificity was achieved by replacing dTTP with dUTP during second strand synthesis. The

double stranded cDNA fragments were blunted using T4 DNA polymerase, Klenow DNA polymer-

ase and T4 PNK. A single ’A’ nucleotide was added to the 3’ ends of the blunt DNA fragments using

a Klenow fragment (3’ to 5’exo minus) enzyme. The cDNA fragments were ligated to double

stranded adapters using T4 DNA Ligase. The ligated products were enriched by PCR amplification

(30 s at 98˚C; [10 s at 98˚C, 30 s at 60˚C, 30 s at 72˚C] x 12 cycles; 5 min at 72˚C). Surplus PCR primers

were further removed by purification using AMPure XP beads (Beckman-Coulter, Villepinte, France)

and the final cDNA libraries were checked for quality and quantified using capillary electrophoresis.

The libraries were loaded in the flowcell at a concentration of 2.8 nM and clusters were generated

using the Cbot and sequenced on an Illumina HiSeq 4000 system as paired-end 100 base reads fol-

lowing Illumina’s instructions.

RNA-Seq analysis of bulk tumors
Quality control of raw reads was done using FastQC. Reads were mapped to dmel6 reference

genome with Subread aligner using default parameters (Liao et al., 2013). Read counts were calcu-

lated using Subread featureCount (Liao et al., 2014). Differential expression was computed using R

package DESeq2 (Love et al., 2014). To concentrate on genes that are expressed in tNBs and

remove those that are specific to wild type neurons and glia of the VNC, we excluded from the bulk

RNA-seq analysis all genes that are not expressed in at least 0,5% of the 5740 cells used for the sin-

gle-cell RNA-seq experiment. Among the remaining 6660 genes, we selected as significantly

enriched genes those with an adjusted p-value<0001. Gene Ontology and Reactome Pathway analy-

sis was made using Panther (http://www.pantherdb.org/). Sequencing data have been deposited in

GEO under accession code GSE114562.

Preparation of tNBs for single-cell mRNA-seq
NB tumors were generated in poxn-Gal4, UAS-GFP UAS-prosRNAi2, UAS-dicer2 flies. Fifty-six adult

females (6–8 day-old) were killed in 70% ethanol and washed once in PBS. VNCs were dissected in

PBS, collected in a RNase-free Protein LoBinding tube filled with ice-cold PBS, and incubated in a

freshly prepared dissociation solution containing 0,4% bovine serum albumin (BSA), 1 mg/mL colla-

genase I and papain (Sigma Aldrich) in PBS for 75 min at 29˚C with lowest agitation. Tissues were

then disrupted manually by pipetting up and down with a 200 mL tip. Dissociated cells were pelleted

for 20 min at 300 g at 4˚C to remove the dissociation solution and to resuspend cells in ice-cold PBS

+ 0,4% BSA. The cell suspension was filtered through a 30 mm mesh Pre-Separation Filter (Miltenyi)

to remove debris and transferred in new RNase-free Protein LoBinding tube for FACS sorting. Forty

thousand GFP+ tNBs cells were isolated using a FACSAriaII machine (BD) with an 85 mm nozzle, at

45 psi low pressure and according to viability, cell size and GFP intensity. In the next 30 min, sorted-

cells were encapsidated using with the Single Cell Controller (10X genomics) for single-cell RNA-

seq.
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Single-cell mRNA sequencing and analysis
Codes used for single-cell RNA-seq analysis are available at: https://github.com/cedricmaurange/

Genovese-et-al.-2019 (Maurange, 2019; copy archived at https://github.com/elifesciences-publica-

tions/Genovese-et-al.-2019).

Single-cell mRNA sequencing
Single cells were processed using the Single cell 3’ Library, Gel beads and multiplex kit (10X Geno-

mics, Pleasanton) as per the manufacter’s protocol. Cells were partitioned into nanoliter-scale Gel

Bead-In-Emulsions (GEMs) with the Chromium Single Cell Controller (10X genomics, Pleasanton),

where all generated cDNA share a common 10x Barcode. Libraries were generated and sequenced

from the cDNA and the10x Barcodes are used to associate individual reads back to the individual

partitions. Analysis using molecular indexing information provides an absolute digital measurement

of gene expression levels. Sequencing was performed using a NextSeq 500 Illumina device (1sample)

containing transcript lengh of 57 bp. Sequencing data have been deposited in GEO under accession

code GSE114986.

Data processing
Single-cell mRNA seq data were analyzed using the 10x Genomics suite Cell Ranger 2.0.1 with

default settings for de-multiplexing, aligning reads to the Drosophila genome (10X Genomics pre-

built dm6 reference genome) with STAR and counting unique molecular identifiers (UMIs) to build

transcriptomic profiles of individual cells. This first level of analysis generates quality metrics (Q30,

number of reads by sample. . .), FASTQ files and filtered genes matrices.

PC analysis, UMAP clustering and differential expression
Filtered gene matrices generated via Cell Ranger 2.0.1 was then processed with the R package

Seurat v3.0.2, using the online tutorial as a guide (https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.

html). We kept all cells that had between 200 and 4000 genes/cell. Cells with more than 5% mito-

chondrial gene expression were removed. Cell cycle genes were regressed out using the CellCycleS-

coring and ScaleData functions.

PCA was then utilized to determine sources of variability. Twenty significant PCs were determined

based on the JackStraw function. We used the PCHeatmap function to explore gene sets represent-

ing the main sources of heterogeneity in the dataset. Cells were then clustered with the FindClusters

function a resolution parameter of 0.5. Differentially expressed genes were determined with the Fin-

dAllMarkers and function. Code available upon request.

Cell trajectory and pseudo time analysis by Single-cell mRNA sequencing
Filtered gene matrices generated via Cell Ranger 2.0.1 was processed with the R package Monocle

version v2.10.1. for pseudotime analysis (Qiu et al., 2017a; Qiu et al., 2017b; Trapnell et al.,

2014). Graphics were generated through ggplot2 R library. Analysis was performed following online

tutorial as a guide (http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-

trajectories). UMI Counts were both normalized across cells using estimateSizeFactors function and

gene expression variance was estimated using estimateDispersions functions to remove outlier

genes using DESeq2 packages (Love et al., 2014). Semi-supervised ordering was performed with

the classifyCells function. Only genes expressed in at least 10 cells were taken in account. Marker

genes were selected for subsequent analysis based on their normalized average expression and vari-

ability across cells using markerDiffTable function. The top 200 genes were used for ordering.

Dimension reduction was performed with Monocle implementation of Discriminative Dimension

Reduction Tree (DDRTree) algorithm (Qi Mao et al., 2017) using reduceDimension function. Mini-

mum spanning tree computation, cell state assignations and pseudo time reconstruction was per-

formed using orderCells functions. differentialGeneTest and plot_pseudotime_heatmap functions

were used to uncover the top 200 genes that change as a function of pseudotime. The BEAM func-

tion was used to identify genes that are differentially expressed between the three main branches of

the trajectory (qval <1e-20). Code available upon request.
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Numerical model
Codes generated for the numerical model are available at: http://doi.org/10.17632/j2j9gmyb6m.1.

1. Algorithm of the clone model
In this section we detail the stochastic numerical model used to generate clones.

Each clone grows from a single initial cell. There are two cell types, Chinmo+Imp+ tNBs (which we

will call C cells for simplicity) and Syp+E93+ tNBs (called S cells). The probability that the initial cell is

a C cell is pc and the probability that the initial cell is a S cell is ps ¼ 1� pc.

We assume that C and S cells have constant division rates, kc and ks respectively. We define the

division times as the inverses of the division rates, so that Tc ¼ 1=kc and Ts ¼ 1=ks. An implicit

assumption is that we neglect any refractory period following a division. Divisions are considered as

random events occurring at a certain rate.

We use T = 1 hr long time steps. The growth of a model clone during 10 days thus runs over 240

time steps.

At each time step, for each C cell (resp. S cell) in the clone, the probability to undergo division is

equal to
R T

0

1

Tc
e�t=Tc dt ¼ 1� e�T=Tc (resp.1� e�T=Ts ).

If a C cell undergoes division, it can either:

. Generate 2 C cells, with probability P c ! ccð Þ

. Generate 1 C cell and 1 S cell, with probability P c ! csð Þ

. Generate 2 S cells, with probability P c ! ssð Þ ¼ 1� P c ! ccð Þ � P c ! csð Þ

Similarly, if a S cell undergoes division, it can either:

. Generate 2 S cells, with probability P s ! ssð Þ

. Generate 1 C cell and 1 S cell, with probability P s ! csð Þ

. Generate 2 C cells, with probability P s ! ccð Þ ¼ 1� P s ! ssð Þ � P s ! csð Þ

In addition, each newly created C cell (resp. S cell) has a probability qc (resp.qs) to be quiescent.

Note that this also applies to the initial cell of the clone. Quiescent cells lose their ability to undergo

further divisions. In this simplified model, this probability does not depend on cell generation (as

cells have no age in the model). However, it is likely that “older” cells have a higher chance to

become quiescent. This is not taken into account here.

To produce plots of size distributions and of composition ratios, we simply generate a large num-

ber of clones (N = 1000) by iterating this algorithm. Due to the stochastic nature of the algorithm,

there is important size and composition variability among simulated clones, which we can compare

to the variability observed in vivo.

2. Reducing the amount of independent parameters
This general model has 9 independent parameters: pc, Tc, Ts, P c ! ccð Þ, P c ! csð Þ, P s ! ssð Þ,

P s ! csð Þ, qc and qs.

To reduce the number of independent parameters, we performed experimental measurements in

clones that allow to establish quantitative relationships between the parameters.

a. Two-cell clones
First, we analyzed clones composed of exactly two cells. To that end, we chose to look tumors 2

days after clonal induction, as at this stage many clones are composed of two cells (Figure 4—figure

supplement 1).

The probability for a two-cell clone to be composed of two C cells is:

P CCð Þ ¼ pc P c! ccð Þþ ps P s! ccð Þ (1)

Similarly,

P CSð Þ ¼ pc P c! csð Þþ ps P s! csð Þ (2)

and

P SSð Þ ¼ pc P c! ssð Þþ ps P s! ssð Þ ¼ 1�P CCð Þ�P CSð Þ (3)
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We estimated P CCð Þ, P CSð Þ and P SSð Þ from N=122 2-cell clones (7 animals), and found

that P CCð Þ»0:29, P CSð Þ»0:07 and P SSð Þ»0:64.

Using these values in Equations (1) and (2) reduces the number of independent parameters from

9 to 7 (as Equation (3) is not independent from Equations (1) and (2)).

b. Quiescent cells
We analyzed clones 8 days ACI. We reasoned that clones still composed of a single cell at this stage

were most likely initiated from an initially quiescent cell. Hence the probability P QCð Þ to observe a

clone composed of a single C cell at 8 days is equal to the probability for an initial cell to be a quies-

cent C cell, so that:

P QCð Þ ¼ pc qc (4)

Similarly, the probability that a clone is composed of a single quiescent S cell is

P QSð Þ ¼ ps qs (5)

We estimated P QCð Þ and P QSð Þ from N=338 clones 8 days after induction (5 animals), and found

that P QCð Þ»0:02 and QSð Þ»0:26. Using these values in equations (4) and (5) reduces the number of

independent parameters by another 2.

c. Hierarchical scenario
We are left with 5 independent parameters. We showed in the main text that experimental clone

data has the signature of a hierarchical growth mode (maintenance of clones composed of S cells

only). In the following we thus rule out the generation of C cells by S cells. Hence P s ! ssð Þ ¼ 1, and

P s ! csð Þ ¼ P s ! ccð Þ ¼ 0.

In addition, if C cells can only be generated by C cells, we can estimate the division time Tc of C

cells. At time t, the number of cells in clones only composed of C cells should be on average equal

to Nc tð Þ ¼ et=Tc .

At 2 days, we find that clones composed only of C cells are composed, on average, of 3.4 cells

(N=75 clones from 5 animals). Hence Tc »
2

ln 3:4ð Þ ¼ 1:6 days.

Hence, we are left with only two independent parameters, from which all the others can be deter-

mined. We arbitrarily chose Ts and P c ! ccð Þ as these two parameters, and used these as free

parameters to perform the fits.

3. Fitting experimental data
To determine the values of Ts and P c ! ccð Þ, we adopted a fitting approach. We want to determine

the values of Ts and P c ! ccð Þ that fit best our experimental data. To that end we generated error

maps in the P c ! ccð Þ; Tsð Þ space (Figure 4—figure supplement 2). To generate the error maps, we

computed 1000 clones for each pixel (100x100) on the map.

We calculate the error on size as the Kolmogorov-Smirnov distance between model and experi-

mental clone size distributions, for all clone categories and at all stages (12 terms).

We calculate the error on composition as the normalized sum of Euclidian distances between

model and experimental proportions of each clone category at all stages (12 terms).

The combined error is the average between the normalized error on size and the normalized error

on composition.

We find that the smallest error is found for P c ! ccð Þ » 0:64 and Ts » 1:3 days, and thus (Equa-

tions 1-5):

pc »0:45

P c! csð Þ»0:15

P c! ssð Þ»0:21

qc »0:04
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qs »0:47

We use these values to generate Figures 4C–G and 5A,B, and Figure 4—figure supplement 2.

4. Tumor composition and deterministic version of the model
a. Proportion of S and C cells in tumors
To test whether our model also accounts for the stabilization of the volume fraction occupied by S

and C cells in tumor, we simulated the growth of clones on longer periods (30 days), and plotted the

overall proportion of each cell type as a function of time (Figure 5A).

b. Deterministic, continuous model
To better understand this homeostatic behavior without systematically simulating thousands of

clones, we wrote a deterministic version of the model where the exact same ingredients and param-

eters are used.

For simplicity, we call C the number of C cells, S the number of S cells, Cq the number of quies-

cent C cells and Sq the number of quiescent S cells. The rate of change of C writes:

dC

dt
¼�kcCþ 1� qcð Þ 2kc!cc þ kc!csð ÞCþ 1� qcð Þ 2ks!cc þ ks!csð ÞS (6)

With kx!yz ¼ kxP x! yzð Þ, where x, y and z are cell types (C or S).

Each C cell division removes 1 C cell (first term). C cell divisions can also generate 1 or 2 C cells

with given rates (second term), with a possibility that they are quiescent (prefactor 1� qcð ÞÞ: S cell

divisions can also generate C cells (third term), which can also be quiescent (prefactor).

Similarly, we can write the rate of change of S:

dS

dt
¼�ksSþ 1� qsð Þ 2ks!ss þ ks!csð ÞSþ 1� qsð Þ 2kc!ssþ kc!csð ÞC (7)

And for quiescent cells:

dCq

dt
¼ qc 2kc!ccþ kc!csð ÞCþ qc 2ks!ccþ ks!csð ÞS (8)

dSq

dt
¼ qs 2ks!ss þ ks!csð ÞSþ qs 2kc!ss þ kc!csð ÞC (9)

Note that this continuous model is fully deterministic, and therefore not suited for the simulation

of clone size distribution and composition, which are inherent to the stochastic aspects of divisions.

However, it can recapitulate the overall proportion of cell types in a large population of cells. Inte-

grating this system of equations, we thus computed the ratios
CþCq

Ncells
and

SþSq
Ncells

, that is, the respective

proportions of C and S cells. We first compared the outcome of the deterministic model to the out-

come of the clone model using the exact same parameters. We find that the deterministic model

perfectly fits the stochastic model (Figure 5A), and reaches the same homeostatic state. Importantly,

this is also a control that both algorithms were properly implemented. We also use this deterministic

model to illustrate the influence of the initial proportions of C and S cells (Figure 5B).
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