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How much information can be obtained
from tracking the position of the leading
edge in a scratch assay?
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Moving cell fronts are an essential feature of wound healing, development

and disease. The rate at which a cell front moves is driven, in part, by the

cell motility, quantified in terms of the cell diffusivity D, and the cell pro-

liferation rate l. Scratch assays are a commonly reported procedure used

to investigate the motion of cell fronts where an initial cell monolayer is

scratched, and the motion of the front is monitored over a short period of

time, often less than 24 h. The simplest way of quantifying a scratch assay

is to monitor the progression of the leading edge. Use of leading edge

data is very convenient because, unlike other methods, it is non-destructive

and does not require labelling, tracking or counting individual cells among

the population. In this work, we study short-time leading edge data in a

scratch assay using a discrete mathematical model and automated image

analysis with the aim of investigating whether such data allow us to reliably

identify D and l. Using a naive calibration approach where we simply scan

the relevant region of the (D, l) parameter space, we show that there are

many choices of D and l for which our model produces indistinguishable

short-time leading edge data. Therefore, without due care, it is impossible

to estimate D and l from this kind of data. To address this, we present a

modified approach accounting for the fact that cell motility occurs over

a much shorter time scale than proliferation. Using this information, we

divide the duration of the experiment into two periods, and we estimate

D using data from the first period, whereas we estimate l using data from

the second period. We confirm the accuracy of our approach using in silico
data and a new set of in vitro data, which shows that our method recovers

estimates of D and l that are consistent with previously reported values

except that that our approach is fast, inexpensive, non-destructive and

avoids the need for cell labelling and cell counting.
1. Introduction
Moving cell fronts are key features of tissue repair [1] and tumour spreading [2].

The rate at which the front of a population of cells moves is influenced by the

rate at which individual cells within the population migrate and proliferate [3].

Random, undirected cell migration is typically quantified in terms of the cell

diffusivity D, whereas cell proliferation is quantified in terms of the proliferation

rate l. Developing methods to estimate D and l from experimental observations

is important so that we can assess the effectiveness of intervention strategies

which often aim at influencing either D or l [4,5]. For example, drugs such as

mitomycin-C, which inhibit proliferation [4], are used to reduce tumour spread-

ing [5], whereas steroid treatment, which stimulates cell migration [6], is often

studied with the aim of enhancing wound healing.

Scratch assays [7–10], also known as scrape or wound-healing assays [9,10],

are routinely used to investigate the motion of cell fronts by creating a scratch in

a cell monolayer and observing the motion of the cell front. Images of the front
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are captured over a period of time that is typically less than 24 h

[7,11,12]. Use of short-time-scale experimental data is very

common because it avoids the need for replenishing the nutri-

ents in the assay. There are various ways that data from a scratch

assay are reported and analysed. The most common method is

to present a qualitative, visual comparison between a control

assay and another assay where some treatment has been

applied. This kind of data is often presented without any

attempt to estimate D or l. For example, Teppo et al. [9] pre-

sented scratch assay data showing that hypoxia increased the

rate at which the fronts of cancer cells moved, but they did

not determine how the hypoxic conditions affected D and/orl.

Another approach to analyse scratch assays is to use a

mathematical model, such as the Fisher–Kolmogorov equation

[13] or an extension of this reaction–diffusion equation [14–17]

(electronic supplementary material). Some previous studies

have focused on matching the experimental front speed with

the long-time asymptotic travelling wave speed of the

Fisher–Kolmogorov equation, c ¼
ffiffiffiffiffiffiffiffiffi
4lD
p

[18–20]. Unfortu-

nately, this approach is of little practical use for most

experiments which are conducted over short time scales

where no such travelling wave forms [7,11,12]. Another way

of analysing scratch assays is to generate cell density profiles

which can be matched to numerical solutions of a reaction–

diffusion equation [3,21,22]. Unfortunately, this approach is

expensive and time consuming because it requires some kind

of direct or indirect cell counting technique to construct the

density profiles. Other mathematical models have been used

to interpret scratch assays, such as mechanistic [23] and

biased continuum models [24]. However, the experimental

procedures required to parametrize these models are time con-

suming because they involved individual cell counting [23] or

individual cell tracking [24].

The simplest and most cost-effective measurement that can

be made to characterize a scratch assay is to record the location

of the cell front as a function of time [8,11,25]. The widespread

availability of automatic edge detection algorithms [26,27]

means that it is straightforward to obtain this information.

Given that most scratch assays are conducted for short time

periods, here we seek to determine whether it is possible to

reliably estimate D and l from short-time leading edge data

alone without constructing cell density profiles [3,21,22]. To

explore this question, we use automatic edge detection algor-

ithms to analyse a discrete model of collective cell spreading

driven by cell migration and cell proliferation [28]. While

such models have been used to analyse various types of

in vitro assays previously [21,29], these studies have not

focused on short-time leading edge data. Our work shows

that great care must be taken when interpreting short-time

leading edge data because the most straightforward model

calibration approach indicates that there are many choices of

D and l which lead to indistinguishable leading edge data.

To overcome this, we develop a novel method by dividing

the leading edge time-series data into two intervals allowing

us to estimate D from the first time interval, and then we sep-

arately estimate l using the second time interval. We test the

method using both in silico and in vitro data showing that

we recover estimates of D and l that are consistent with pre-

viously reported results obtained using far more complicated

experimental procedures.

This article is organized in the following way. In §2, we

describe a discrete model for simulating the motion of cell

fronts. Section 2 describes the image analysis and experimental
procedure. Data in §3 show that a straightforward model cali-

bration procedure implies that there are many choices of D
and l that match short-time leading edge data. As a result,

we also describe, in §3, a modified method that leads to

unique estimates of D and l, and we validate our results

using both in silico and in vitro data. Finally, in §4, we discuss

our results and outline options for extending the work.
2. Material and methods
2.1. Experimental method
The experimental method has been presented previously [3].

Briefly, murine fibroblast 3T3 cells [30] were grown in T175 cm2

tissue culture flasks and 1 ml of cell suspension was placed into

the well, with diameter 15.6 mm, of a tissue culture plate. The

tissue culture plate was incubated at 378C and 5% CO2 until the

population became confluent. A scratch was made in the mono-

layer using a P1000 pipette tip (Lab Advantage, Australia).

Images were recorded at t ¼ 0, 3, 6, 9, 12 and 24 h, and a schematic

illustration of the assay at t ¼ 0 is given in figure 1a.

2.2. Mathematical model
We consider a lattice-based random walk model on a two-

dimensional square lattice, with lattice spacing D [28,31]. Each

site may be occupied by, at most, one agent, and each simulation

contains a total of Z(t) agents which have the ability to move and

proliferate, with probability Pm [ [0, 1] and Pp [ [0, 1], respect-

ively, during each time step of duration t. We make the

standard assumption that Pm and Pp are constants, which are

related to D and l by

D ¼ PmD
2

4t
and l ¼

Pp

t
, (2:1)

which means that we can view the parameters (Pm, Pp) as being

interchangeable with (D, l). During each time step Z(t), agents

are chosen, at random, one at a time, and given the opportunity

to move [28]. An agent at (x,y) will attempt to step to (x+D, y)

or (x, y+D), with the target site chosen with equal probability.

After Z(t) potential motility events have been attempted, an

additional Z(t) agents are selected, at random, one at a time, and

given the opportunity to proliferate. A proliferative agent at (x,y)

will attempt to place a daughter agent at (x+D, y) or (x, y+D),

with the target site chosen with equal probability. Potential motility

and proliferation events will only succeed if the target site is vacant,

otherwise the event is aborted. Implicitly, this means that individual

agents in crowded regions will be relatively immobile and unable to

proliferate, whereas uncrowded agents will behave differently and

will have a greater opportunity to move and proliferate. The conti-

nuum-limit description of this model is a generalization of the

Fisher–Kolmogorov equation in two dimensions [28] (electronic

supplementary material). This description is valid only when the

ratio Pp/Pm is sufficiently small [28,32].

We apply this model to mimic the geometry of the scratch

assay. In all results, we set D ¼ 25 mm, corresponding to a typical

cell diameter [3,33]. The simulation domain, shown in figure 1b,

is 0 � x � Lx and 0 � y � Ly. We choose Lx ¼ 12.5 mm so that our

domain captures almost the entire population within the well

without directly simulating the curved boundaries. Although it

is possible to simulate such curved geometries [3,33], we neglect

these details here because our experimental data, described in

§3.3, focus on several rectangular subregions within the well,

away from the circular boundary. We choose Ly ¼ 3.75 mm

which is sufficient to ensure that agents in simulations never

reach the boundary, y ¼ 3.75 mm, during the 24 h simulation

period. Symmetry conditions are applied along the lines x ¼ 0,

x ¼ Lx, y ¼ 0 and y ¼ Ly. To match our experimental conditions,
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Figure 1. Schematic illustrating the initial scratch in the cell monolayer, simulation and leading edge data. (a) Monolayer of cells (grey) immediately after the
scratch (white) has been made. The red rectangle indicates the spatial region which we simulate. (b) The initial confluent cell monolayer (grey) has height Y0 and
the width Lx, corresponding to the width of the red rectangle in (a). The height of the domain Ly is chosen to be sufficiently large that the agents in the simulation
never touch this boundary within the 24 h period of the simulation. (c) Simulation after time t. (d ) The simulation results are analysed using the image analysis
tools to detect the leading edge (green) which is used to estimate the average position of the leading edge (blue). Scale bars in (a – d ) are 2 mm. (e) Typical
experimental image immediately after a scratch has been made. To illustrate the edge detection algorithm, we show in ( f ) an experimental image and in (g) the
detected leading edge (green) and the average position of the front (blue). Scale bars in (e – g) are 400 mm. (h) Typical temporal evolution of the position of the
leading edge for experimental data (blue crosses) and averaged simulation data (red).
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agents are initially placed on the lattice so that the region y , Y0

is confluent. All simulation data are presented for a particular

choice of t, and we re-simulated all results with smaller values

of t to ensure our results are insensitive to t.

The results in this work could have been generated using a

lattice-free model [34,35]. Instead, we chose a lattice-based model

because lattice-free models with crowding effects are far more

computationally expensive [34,35]. Furthermore, our recent work

showed that lattice-based and lattice-free models produce equival-

ent data at the leading edge [34,35] which means that there is no

advantage in using a lattice-free model here if we are focusing

on leading edge data.
2.3. Image analysis
We use Matlab’s Image Processing Toolbox to estimate the position

of the leading edge from the experimental and modelling images.

The experimental image is imported and converted to greyscale

using imread and rgb2gray, respectively. The simulation data

are converted from a matrix representing occupied and vacant

sites into a greyscale image using mat2gray. Henceforth, the pro-

cedure for analysing the experimental images and simulation data

is identical. Edges are detected using edge with the Canny

method [36] and a threshold between 0.04 and 0.1. Detected

edges weaker than the threshold are ignored. Remaining edges

are dilated, using imdilate, by a stretching element, defined

using strel, with a square element of size seven. Any remaining

vacant spaces are filled, using imfill, after which the dilation

was reversed by eroding the image with the stretching element,

defined previously, using imerode. The edges within the image

were smoothed using medfilt2, and the area enclosed by the

leading edge estimated using regionprops. For illustrative pur-

poses, this algorithm was applied to the simulation data in figure

1c and the detected edge is superimposed in figure 1d. To estimate

the vertical position of the leading edge, Y, we use

Y ¼ A
Lx

, (2:2)

where A is the area enclosed by the detected leading edge. The aver-

age position of the leading edge, Y, is superimposed in figure 1d.
To estimate how Y changes with time, we repeat the process at

many time points and subtract the initial position to give a measure

of the net displacement of the leading edge as a function of time.

Schematic results in figure 1h indicate how the net displacement

of the leading edge evolves with time for a representative set of

experimental and averaged simulation data. We acknowledge that

the edge detection could have been performed with IMAGEJ rather

than Matlab. For this work, we chose to use Matlab because our

previous comparison of Matlab and IMAGEJ edge detection algor-

ithms showed that Matlab allows greater flexibility in the choice

and control of threshold and dilation parameters [26].
3. Results
In this work, we will generate, and refer to, two distinct types

of data: experimental data and averaged simulation data.

The differences between these types of data can be described

as follows:

— Experimental data. Describes the position of the leading

edge as a function of time obtained from a single exper-

iment. Furthermore, we consider two different ways of

generating experimental data:

(i) In vitro experimental data. Corresponds to data from

experimental images.

(ii) In silico experimental data. Corresponds to data from

discrete simulation images.

— Averaged simulation data. Describes the average position of

the leading edge, where the average has been constructed

using data from many identically prepared realizations of

the discrete model, that is, simulations performed with an

identical algorithm, initial condition and parameters.

We construct the averaged simulation data using

kYil ¼ 1

M

XM
n¼1

Yi
n, (3:1)
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Figure 2. Comparison of in silico experimental data and averaged simulation data. (a) Leading edge in silico experimental data correspond to (Pm, Pp) ¼ (0.5, 5 � 1023)
(blue crosses). Data are presented at every 20th time step. (b) Contour plot of E (equation (3.2)) measuring the difference between the in silico experimental data and
averaged simulation data within the region Pm [ [0, 1], Pp [ [0, 0.01]. Simulation parameters are M ¼ 10, Y0 ¼ 750 mm, D ¼ 25 mm and t ¼ 0.09191 h, with a
final time of 24 h. The contour plot of E was generated by considering 2601 different parameter combinations; 51 equally spaced values of Pm, and 51 equally spaced values
of Pp. The light blue, green and red coloured squares in (b) correspond to three different parameter combinations: (Pm, Pp) ¼ (0.6, 1.4 � 1023), (0.46, 8.8 � 1023) and
(0.5, 5 � 1023), respectively. Averaged simulation data from these three different parameter combinations are superimposed in (a), showing that all three parameter
combinations lead to indistinguishable short-time leading edge data. All averaged simulation data are insensitive to t.
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where Yi
n is the position of the leading edge, at time step i, in

the nth identically prepared realization and M is the total

number of identically prepared realizations. To measure the

differences between different sets of experimental data and

averaged simulation data, we define

E ¼ 1

NYmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

(kYil� Yi)
2

vuut , (3:2)

where kYil is the position of the leading edge, at time step i,
using averaged simulation data, Yi is the position of the lead-

ing edge, at time step i, using experimental data, N is the

number of time steps and Ymax is the maximum value of

Yi, for i ¼ 1, 2, 3, . . . , N.
3.1. Naive parameter recovery
To explore whether it is possible to reliably estimate D and l

from short-time leading edge data, we first analyse a repre-

sentative set of in silico experimental data corresponding to

(Pm, Pp) ¼ (0.5, 5 � 1023), with D ¼ 25 mm, which is reported

in figure 2a. We note that it is difficult to draw specific con-

clusions by a simple visual inspection of this dataset, with

the exception that it appears that the front speed is not

constant over this time interval. To analyse this data, we gen-

erate a suite of averaged simulation data, sampling 2601

equally spaced parameter combinations within the region Pm

[ [0, 1], Pp [ [0, 0.01], and we present a contour plot of E,

given by equation (3.2), in figure 2b. We expect that if there is

a unique choice of D and l that matches the data in figure 2a,

we would see a unique minimum on the E surface. Instead,

we observe a relatively large, flat region, within which E
takes on small, indistinguishable, values. This region extends

right across this portion of the parameter space, indicating

that there are many combinations of D and l which match

the experimental data equally well. To demonstrate that our

observations for this parameter set hold more generally, we

repeated the process focusing on in silico experimental data

with a higher proliferation rate and found similar results

(electronic supplementary material).
To demonstrate the redundancy in the short-time leading

edge data, we choose three different combinations of (Pm, Pp),

highlighted in figure 2b, and we superimpose the correspond-

ing averaged leading edge data on the experimental data in

figure 2a. Comparing these datasets confirms that there are

several parameter combinations which give indistinguishable

short-time leading edge data. Furthermore, we found that

any parameter combination within the dark blue region in

figure 2b also gives averaged simulation data that matches

the experimental data (not shown). These results indicate

that short-time leading edge information should be treated

with care because a standard model calibration procedure

may not provide useful information.

3.2. Parameter recovery accounting for the separation
of time scales

Our results in §3.1 imply that additional information needs to

be incorporated into our parameter estimation procedure if

we are to infer useful information from short-time leading

edge data. Here, we make use of the fact that there is a

large separation of time scales between cell proliferation pro-

cesses and cell motility processes. Typical estimates of the cell

doubling time are approximately 15–30 h [3,19], whereas the

time scale of cell motility events is approximately 10–20 min

[37]. This separation of time scales implies that the first part

of the leading edge time-series data will be dominated by

the influence of cell motility, and we can make use of this

information by dividing our time-series data into two inter-

vals: (i) t , T and (ii) t . T, where T is a time interval

during which the motion of the leading edge is dominated

by cell motility. Intuitively, we expect that T ought to be

chosen to be much less than the cell doubling time, and we

will discuss this choice in §3.3.

To make use of this separation of time scales, we estimate

Pm and Pp iteratively as follows:

— Step 1. Estimate Pm by considering experimental data for

t , T, we set Pp ¼ 0 and systematically vary Pm so that our

averaged simulation data match the experimental data.
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experimental data and averaged simulation data for 3 , t , 24 h. The averaged simulation data correspond to 51 equally spaced values of Pp in the interval
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a final time of 24 h. Pm and Pp required two iterations to converge. All averaged simulation data are insensitive to t.
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— Step 2. Estimate Pp by considering experimental data for

t . T, we set Pm to be the value found previously, and

we systematically vary Pp so that our averaged simulation

data match the experimental data.

— Step 3. Re-estimate Pm by considering experimental data

for t , T, we set Pp to be the value found in step 2, and

we systematically vary Pm so that our averaged simu-

lation data match the experimental data. Repeat steps 2

and 3 until both Pm and Pp converge.
t = 24 h t = 12 h
(c) ( f )

Figure 4. Time evolution of a scratch assay with 3T3 fibroblast cells. Exper-
imental images are shown at: (a) 0, (b) 12 and (c) 24 h. To illustrate the
application of the edge detection algorithm, we show in (d ) the image at
12 h and in (e) we superimpose the detected leading edge (red).
( f ) Detected leading edge (red) and the average position of the front
(blue). Scale bar corresponds to 200 mm.
We now apply this method to in silico experimental data and

then examine in vitro data in §3.3. Figure 3a shows same in
silico experimental data presented previously in figure 2a.

The results from estimating Pm using the iterative procedure

are given in figure 3b and show that by choosing T ¼ 3 h and

focusing on the interval Pm [ [0, 1], we observe a relatively

well-defined minimum in the plot of E indicating that we

have Pm � 0.48. The results from estimating Pp are given in

figure 3c and show that with T ¼ 3 h and Pm ¼ 0.48, we

observe a well-defined minimum in E indicating that we

have Pp � 5.6 � 1023. We note that it took two iterations for

Pm and Pp to converge. These parameter estimates are a great

improvement on the results in §3.1 where we found it was

impossible to distinguish between many different parameter

combinations. We note that our parameter estimates do not

precisely coincide with the expected values of Pm ¼ 0.50 and

Pp ¼ 5 � 1023, and there are two potential explanations for

this. First, our in silico experimental data correspond to one

realization of the discrete model which might not be represen-

tative of the expected behaviour we would observe when

considering many identically prepared realizations. Second,

when we generated the averaged simulation data, we only

used a modest value of M ¼ 10, and we expect that our

estimate could be improved by increasing M. To further illus-

trate the robustness of our approach, we also applied it to

data generated using several different parameter combinations,

including some for larger proliferation rates, and we found that

this method also gave reliable parameter estimates for these

additional cases (electronic supplementary material).

Once we have obtained estimates of Pm and Pp, it is poss-

ible to re-examine the suitability of our choice of T. Our

estimate of Pp indicates that the average time taken for an
isolated agent to undergo a proliferation event is approxi-

mately 18 h, whereas our estimate of Pm indicates that the

average time taken for an isolated agent to undergo a motility

event is approximately 30 min. These time scales give a phys-

ical explanation for why our choice of T ¼ 3 h is sufficient,

because agents have plenty of opportunity to undergo moti-

lity events during the first 3 h of the simulation, whereas

there is hardly any opportunity for proliferation to occur

during this interval. To further demonstrate the robustness

of our results, we repeated the process of estimating Pp and

Pm using the data in figure 3a and found that we obtained

excellent estimates of the parameters regardless of whether

we chose T ¼ 2, 3 or 4 h.

3.3. In vitro data
We obtained in vitro experimental data for a scratch assay

using 3T3 fibroblast cells as described in §2.1. At each time

point, we took four different images, at different spatial

locations, in the scratch assay. The field of view in each

image is approximately 2 mm wide and 0.8 mm high. The

spatial location of the four sets of images is approximately
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Figure 5. Comparison of in vitro experimental data and averaged simulation data. (a) Leading edge in vitro data (blue crosses) are presented with the error bars indicating
1 s.d. from the mean. (b) Contour plot of E (equation (3.2)) measuring the difference between the in vitro data and the averaged simulation data in the region Pm [ [0, 1],
Pp [ [0, 0.01]. Simulation parameters are M ¼ 10, Y0 ¼ 750 mm, D ¼ 25 mm and t ¼ 0.09191 h, with a final time of 24 h. The contour plot of E was generated by
considering 2601 different parameter combinations; 51 equally spaced values of Pm and 51 equally spaced values of Pp. The red, green and light blue coloured squares in (b)
correspond to three different parameter combinations: (Pm, Pp) ¼ (0.16, 5.4 � 1023), (0.14, 9.6 � 1023) and (0.2, 2 � 1024), respectively. Averaged simulation data
from these three different combinations are superimposed in (a), showing that all three parameter combinations lead to indistinguishable short-time leading edge data. All
averaged simulation data are insensitive to t.
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evenly spaced along the edge of the scratch within the red

rectangle in figure 1a. One set of such images, at t ¼ 0, 12

and 24 h, is presented in figure 4a–c. An example of the

results from the edge detection algorithm, applied to the

image at t ¼ 12 h, is illustrated in figure 4d– f. Results sum-

marizing the average position of the leading edge as a

function of time are given in figure 5a, and the original data-

set from the four sets of images at all time points is given in

the electronic supplementary material.

We first apply the naive parameter recovery method,

described in §3.1, where we consider the difference between

our in vitro experimental data were averaged simulation

data using the entire time series of leading edge data. The

averaged simulation data were generated using 2601 equally

spaced parameter combinations within the region Pm [ [0, 1],

Pp [ [0, 0.01]. Results in figure 5b show a contour plot of E,

defined by equation (3.2), which confirms that there is a large

region within the parameter space for which the short-time

leading edge data are indistinguishable. To confirm that mul-

tiple parameter combinations match the in vitro experimental

data, we consider three distinct parameter pairs, highlighted

in figure 5b, and superimpose the corresponding averaged

simulation data in figure 5a.

We now apply the approach described in §3.2 to our in vitro
data choosing T ¼ 6 h. Results in figure 6a show the averaged

experimental data. A plot of E, given in figure 6b, constructed

using 51 equally spaced values of Pm in the interval Pm [ [0, 1],

with Pp¼ 0, indicates that the optimal value of Pm is approxi-

mately 0.18. A plot of E, given in figure 6c, constructed using 51

equally spaced values of Pp in the interval Pp [ [0, 0.01], with

Pm¼ 0.18, indicates that the proliferation parameter lies within

the subinterval Pp [ [0, 5� 1023]. We now refine our parameter

estimates by repeating the process and increasing the number of

realizations used to generate the averaged simulation data from

M¼ 10 to M¼ 50. Furthermore, we now focus our attention on

the subintervals Pm [ [0, 0.5] and Pp [ [0, 5� 1023], highlighted

by the rectangles superimposed on figure 6b,c. By repeating the

parameter estimation process, we obtained the refined results

shown in figure 6e,f, indicating that the optimal parameter pair

is (Pm, Pp)¼ (0.17, 2.7 � 1023), or (D, l)� (300 mm2 h21,
0.03 h21). To quantify the uncertainty in our estimates, we

repeated the same process using the mean experimental data

+1 sample standard deviation of the experimental data.

This gave Pm¼ 0.17 (0.1420.20) and Pp¼ 2.7� 1023 (1.6�
1023 2 3.5� 1023), where the ranges in the parentheses indicate

an estimate of the uncertainty. Our estimates of Pm and Pp were

obtained using just one iteration.

To explore whether our results are sensitive to our choice

of T, we repeated the process using T ¼ 9 h and found that

this also gave (Pm, Pp) ¼ (0.17, 2.7 � 1023), or (D, l) �
(300 mm2 h21, 0.03 h21), indicating that our results are rela-

tively insensitive to T. The reason for this insensitivity can

be explained by considering the time scales implied by our

parameter estimates. Our estimate of l indicates that the

average time required for an isolated cell to proliferate is

approximately 34 h. In comparison, our estimate of D indi-

cates that the average time taken for an isolated cell to

undergo a motility event is approximately 30 min. This indi-

cates that that either T ¼ 6 or 9 h is appropriate because

either of these time scales is sufficiently small relative to

the proliferation time scale is well as being sufficiently large

compared with the motility time scale. Averaged simulation

data produced using (Pm, Pp) ¼ (0.17, 2.7 � 1023) are super-

imposed in figure 6a, confirming that the simulated leading

edge data match the measurements. We note that our

parameter estimates are consistent with Tremel et al.’s [22]

previously reported estimates. However, we would also like

to point out that our estimates of D and l were obtained

simply and inexpensively, using only short-time leading

edge data, whereas Tremel’s results were obtained by con-

structing cell density profiles and tracking individual cells,

both of which are time consuming and expensive.
4. Discussion and conclusion
Moving cell fronts [7–10] play a key role in development, dis-

ease and tissue repair. The rate at which the cell front moves

depends both on the motility and proliferation of individual

cells within the population. Mathematical models can be
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used to interpret scratch assays, with some previous studies

focusing exclusively on matching experimental estimates of

the front speed with the long-time asymptotic wave speed

of the travelling wave solution of the Fisher–Kolmogorov

equation, c ¼
ffiffiffiffiffiffiffiffiffi
4lD
p

[14]. This approach suffers from two limit-

ations. First, travelling wave solutions require a large amount
of time to develop, whereas most scratch assays are performed

for short-time intervals. Second, even if large-time experimen-

tal data are available, this approach determines the product,

lD, and not the values of l and D separately [19,20]. Other

methods for interpreting scratch assays have involved calibrat-

ing the numerical solution of a reaction–diffusion equation to
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observed cell density profiles [3,21,22] to provide estimates of l

and D. Unfortunately, this approach is expensive and time con-

suming since it requires either a direct or indirect method for

counting individual cells to construct the cell density profiles.

In this work, we describe a different approach for analys-

ing scratch assays relying only on determining short-time

leading edge data. Our method can be implemented either

for new experimental images or, retrospectively, using pre-

viously published images. The simplicity of our approach

derives from the fact that we do not require any analysis or

counting of individual cells. Using a discrete model of cell

motility and cell proliferation, we show that care ought to

be exercised when analysing short-time leading edge data

because a straightforward model calibration procedure,

whereby we match the entire time history of the position of

the leading edge, reveals that there are many parameter com-

binations for which the short-time leading edge data from the

model are equivalent. To overcome this, we make use of the

fact that cell migration takes place on a short time scale com-

pared with cell proliferation, and we introduce a new

iterative method where we analyse the leading edge time-

series data in two steps. First, we analyse the interval t , T,

setting Pp ¼ 0 in the model, to provide an estimate of Pm.

Second, we analyse the time interval t . T, using our pre-

viously determined estimate of Pm, to provide an estimate

of Pp. These two steps can be applied iteratively until our

estimates converge to within some tolerance. Our approach

relies on estimating some time, T, which is sufficiently large

compared with the time scale of cell migration, yet is suffi-

ciently small compared with the time scale of proliferation.

We confirm our approach using both in silico and in vitro
data, and we note that our estimates of D and l for the

in vitro data are consistent with previously published

values for the same cell line in a similar experiment [22].

As we demonstrate, once the data have been analysed to

produce an estimate of D and l, we can test the sensitivity of

our estimates to our choice of T. For our in silico data, we

found that we obtained similar results regardless of whether

we chose T ¼ 2, 3 or 4 h. Similarly, for our in vitro data, where

we had less experimental data points from which to choose

T, we found that we obtained the same values for D and l

regardless of whether we chose T ¼ 6 or 9 h.
Our parameter estimates for the in vitro data indicate

that care should be taken when interpreting leading edge

data with the long-time asymptotic wave speed expression

for the Fisher–Kolmogorov equation [18–20]. Our parameter

estimates for the in vitro data correspond to (D, l) �
(300 mm2 h21, 0.03 h21). While it is possible to use these par-

ameters to estimate the speed of the travelling wave solution

of the Fisher–Kolmogorov equation [18–20], this result is

valid only in the long-time limit, t!1. As our experimental

results have been reported over a time interval which is less

than the doubling time, we expect that it is inappropriate to

use such a result because there has been insufficient time for

the travelling wave to form. Indeed, comparing the slope of

the data in figure 5a with c ¼
ffiffiffiffiffiffiffiffiffi
4lD
p

, evaluated using our par-

ameter estimates, confirms that these approaches give different

estimates of the front speed.

Our approach of combining simulation data with auto-

mated leading edge analysis can be extended in several ways.

One important point, not considered here, is that certain

cells, such as melanoma [33] and glioma cells [37], exhibit

significant cell-to-cell adhesion. To incorporate cell-to-cell

adhesion, we could consider a different discrete model with

an additional parameter controlling the adhesion strength

[37]. Under these conditions, it would be interesting to explore

whether the three parameters governing cell migration, cell

proliferation and the strength of adhesion could be uniquely

determined by short-time leading edge data. Alternatively,

we could apply our model to scratch assays performed on

different substrates [19,20] to analyse the effect of cell-to-

substrate adhesion. Another approach may be to apply our

model to narrow wounds, where cell proliferation is negligible

or absent [38]. A further application of our model would be to

analyse a series of scratch assays where we considered some

control assay relative to a set of other assays where a chemical

inhibitor or promotor has been applied. Our approach could

be used to determine precisely how D and/or l varies as a

function of the concentration of the chemical, and therefore

play a role in the design of intervention strategies aimed at

manipulating the movement of cell fronts.
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