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The global diabetes epidemic and its complications are increasing, thereby posing a major
threat to public health. A comprehensive understanding of diabetes mellitus (DM) and its
complications is necessary for the development of effective treatments. Ferroptosis is a
newly identified form of programmed cell death caused by the production of reactive
oxygen species and an imbalance in iron homeostasis. Increasing evidence suggests that
ferroptosis plays a pivotal role in the pathogenesis of diabetes and diabetes-related
complications. In this review, we summarize the potential impact and regulatory
mechanisms of ferroptosis on diabetes and its complications, as well as inhibitors of
ferroptosis in diabetes and diabetic complications. Therefore, understanding the
regulatory mechanisms of ferroptosis and developing drugs or agents that target
ferroptosis may provide new treatment strategies for patients with diabetes.
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INTRODUCTION

According to the International Diabetes Federation, 536.6 million adults are affected by diabetes
worldwide (2021), and the total number of adults with diabetes is predicted to rise to 783.2 million by
2045 (1). The World Health Organization proposes that diabetes will be the seventh leading cause of
death by 2030 (2). There are two major forms of diabetes: type 1 and type 2 diabetes mellitus (T2DM).
Type 1 diabetes mellitus (T1DM) is caused by insufficient insulin secretion, and T2DM results from
insulin resistance (3). Intervention studies have confirmed that hyperglycemia is a major cause of
diabetic complications (4). Long-term hyperglycemia damages multiple organs, including the kidneys,
cardiovascular system, nerves, bones, and eyes, ultimately resulting in severe complications (5). Major
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diabetic complications include diabetic kidney disease (DKD),
retinopathy (DR), neuropathy (DNP), osteoporosis (DOP), and
cardiomyopathy (DCM). With increasing trends in diabetes
worldwide, mortality and associated costs owing to diabetes and
diabetes-related complications are a major global public health
concern (6). It is generally believed that intensifying glucose
control reduces the risk of diabetic complications and
ameliorates them (7). However, the occurrence and progression
of diabetic complications cannot be prevented in some
patients (8).

As diabetes progresses, persistent hyperglycemia increases the
levels of inflammatory factors, advanced glycation end products
(AGEs), reactive oxygen species (ROS), free fatty acids (FFAs),
triacylglycerol, and diacylglycerol in the heart, retina, kidneys, and
nervous system (9–12). These factors individually and/or
synergistically result in cellular death, including apoptosis,
autophagy, and necroptosis (9, 10, 13). Diabetes complications are
believed to be a consequence of cellular death (14–16). For example,
increasing evidence demonstrates that death of pancreatic B cells is
the main cause of insufficient insulin secretion in diabetes (17).
Similarly, cell death is associated with diabetes complications such
as DKD (14), DR (18), DN (19), DCM (15), and DOP (20).

Ferroptosis is a recently recognized form of programmed cell
death that is genetically, biochemically, andmorphologically distinct
from apoptosis, necroptosis, autophagy, and other types of cell death
(21, 22). In recent years, ferroptosis has been found to be involved in
diabetes and its multiple complications (23–32). Thus,
pharmacological modulation of ferroptosis has emerged as a
promising therapeutic strategy for diabetes and various diabetic
complications. In this study, we provide an update on the
contribution of ferroptosis to the pathogenesis of diabetes and its
Frontiers in Endocrinology | www.frontiersin.org 2
complications. Potential therapeutic drugs or compounds targeting
the ferroptosis pathway for diabetic complications are also discussed.
OVERVIEW OF FERROPTOSIS

In 2003, a new compound, erastin, was found to induce a new
way of cell death (33). This mechanism of cell death can be
inhibited by iron-chelating agents (34). In 2012, Dixon first
named this cell death pattern as ferroptosis (35). Ferroptosis
differs from apoptosis, necroptosis, and autophagy in terms of
cell morphological characteristics and functions (21, 22).
Ferroptosis does not exhibit the typical morphological
characteristics of necrosis, such as swelling of the cytoplasm
and organelles and rupture of the cell membrane (36). It also
does not result in morphological changes similar to typical
apoptosis, including cell shrinkage, chromatin condensation,
and the formation of apoptotic bodies (37). Ferroptosis does
not form a classical closed bilayer membrane structure, which is
the main difference between ferroptosis and autophagy (38).

Morphologically, ferroptosis is mainly characterized by the
shrinkage of mitochondria with increased membrane density, as
well as the decrease or disappearance of mitochondrial cristae
(39). Biochemically, ferroptosis is characterized by iron-
dependent lipid peroxidation (35, 40). Cysteine deficiency and
glutathione (GSH) synthesis inhibition contribute to ferroptosis
(22, 41), while iron-chelating agents and lipophilic antioxidants
can prevent ferroptosis (42). The pathways in the ferroptosis
cascade can be roughly divided into three major categories: GSH/
glutathione peroxidase 4 (Gpx4) pathway, iron metabolism, and
lipid metabolism (Figure 1). Currently, the molecular
FIGURE 1 | Overview of the ferroptosis pathway. GSH is synthesized from glutamate, cysteine, and glycine, and catalyzed by glutamate cysteine ligase (GCL) and
glutathione synthetase (GSS). GPX4 converts GSH to glutathione oxidized (GSSG) to inhibit lipid ROS production. Erasin and RSL3 trigger ferroptosis by inhibiting of
system Xc- and Gpx4. In lipid metabolism pathway, phosphatidylethanolamine-adrenic acid/arachidonic acid (PE-AA/AdA) is synthesized in two steps catalyzed by
Acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3). Rosiglitazone is the strongest inhibitor of ACSL4
that alleviates ferroptosis. Transferrin receptor 1 (TFR-1), transferrin (TF), ferritin, and Ncoa4 are involved in iron metabolism and are closely associated with
ferroptosis. Deferoxamine (DFO) and ferrostatin-1(Fer-1) inhibit ferroptosis by regulating iron level and lipid oxidation, respectively.
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mechanisms underlying ferroptosis remain elusive. To date,
multiple proteins, such as voltage dependent anion channel 2/
3, p53, nuclear receptor coactivator 4 (NCOA4), cysteinyl-tRNA
synthetase (CARS), mitogen-activated protein kinase (MAPK),
nicotinamide adenine dinucleotide phosphate oxidase (NOX),
and other proteins, can positively regulate ferroptosis (43–48). In
addition, some genes are involved in the negative regulation of
ferroptosis, including Gpx4, nuclear factor erythroid 2-related
factor 2 (Nrf2), heat shock protein beta-1(HSPB1), and system
Xc- (xCT), which protect cells against ferroptosis (49–52).
EFFECTS AND THE MOLECULAR
MECHANISMS OF FERROPTOSIS ON
DIABETES AND DIABETES-RELATED
COMPLICATIONS

Ferroptosis is involved in various human diseases, such as acute
kidney injury (53), cancers (54–56), Parkinson’s disease (PD) (57),
and other neurodegenerative diseases (58). As a new mechanism of
cell death, the discovery of ferroptosis and the mechanisms involved
in its regulation may help to develop novel treatments for several
diseases. Recent studies have documented significant effects of
ferroptosis on the development and progression of T1DM (59);
T2DM (60, 61); gestational diabetes mellitus (60–62); and diabetes
complications such as DKD (27), DCM (29), DR (63, 64), diabetes-
Frontiers in Endocrinology | www.frontiersin.org 3
induced endothelial dysfunction (32), cognitive dysfunction (31),
wound healing (65), diabetic atherosclerosis (66), and DOP (67).
The molecular mechanisms of ferroptosis in diabetic complications
involve multiple proteins, including acyl-CoA synthetase long chain
family member 4 (ACSL4), high-mobility group box-1 (HMGB1),
hypoxia-inducible factor-1a (HIF-1a), heme oxygenase-1 (HO-1),
tripartite motif containing 46 (TRIM46), circ-PSEN1, NCOA4 (68),
and Nox2, and negative genes, Gpx4, Nrf2, xCT, adenosine
monophosphate-activated protein kinase, heat shock factor 1
(HSF1), and nutrient-deprivation autophagy factor-1 (NAF-1)
(69) (Figure 2). The key molecular mechanisms underlying
ferroptosis in diabetes and its complications are discussed in
detail below.

Ferroptosis and Diabetes
Excessive iron stores have been demonstrated to be associated with
the development of T2DM, and ferritin levels are increased in
T2DM (70) and gestational diabetes mellitus patients (71). The
activity of islet cells is closely associated with diabetes, and
insufficient insulin secretion caused by pancreatic b-cell failure
contributes to hyperglycemia. Increased cellular iron modulates
the expression of genes involved in b-cell function and causes
pancreatic b-cell dysfunction (72). Erastin, a small potent molecule
capable of selectively inhibiting the Xc-cystine/glutamate antiporter
required for GSH biosynthesis, induces ferroptosis (73) and affects
the growth and function of human pancreatic islet-like cell clusters
(74). NAF-1, a member of the [2Fe-2S] NEET protein family,
FIGURE 2 | Genes involved in ferroptosis regulation in diabetes and diabetic complications.
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regulates mitochondrial iron levels (75). Suppressed expression of
NAF-1 in INS-1E pancreatic b-cells results in the appearance of
ferroptosis-like features characterized by enhanced lipid
peroxidation, decreased expression of Gpx4, and enhanced
expression of tTfR. Fer-1 treatment of INS-1E NAF-1(−) cells
significantly reduced ferroptosis and improved cell growth (69).

Acrolein and arsenic are common environmental pollutants
that threaten public health (76, 77). Growing evidence has
revealed that chronic arsenic exposure is a high-risk factor for
T2DM (78, 79). Arsenic induced ferroptosis in vitro in a dose-
dependent manner. Ferroptosis occurs in animal models of
arsenic-induced pancreatic dysfunction (61). The ferroptotic
effect of arsenic on mouse insulinoma cells depends on
regulation of the mitochondrial ROS-autophagy-lysosomal
pathway (61). In mouse pancreatic b-cell MIN6 cells, acrolein
induces ferroptosis and insulin secretion dysfunction via the
endoplasmic reticulum (ER) stress-related PERK pathway (77).
These data indicate that ferroptosis plays an important role in
maintaining homeostasis in the pancreatic islet cells.

In addition to their involvement in the regulation of islet cell
death and dysfunction, ferroptosis-related proteins modulate
diabetes-related metabolic phenotypes. Friedreich’s ataxia
(FRDA) is a neurodegenerative disease caused by a defect in
mitochondrial frataxin (FXN), a key regulator of ferroptosis, and
patients with FRDA are predisposed to diabetes (80). FXN knock-
in/knock-out (KIKO) mice exhibited hyperlipidemia, reduced
energy expenditure and insulin sensitivity, and reduced
thermogenic activities of brown adipose tissue. Moreover, the
mRNA levels of the iron modulators (Ncoa4 and solute carrier
family 39 member 14) were upregulated in brown adipocyte
precursors of KIKO mice. Increased susceptibility of brown
adipocyte precursors to ferroptosis could be one of the causes of
brown adipose tissue (BAT) dysfunction (81). These data suggest
that ferroptosis and its related proteins are involved in disorders of
glucose and lipid metabolism. However, little is known about the
exact mechanisms by which iron dysmetabolism affects metabolic
phenotypes in vivo, and further studies are needed.

Ferroptosis and DKD
DKD is a major complication of diabetes and is characterized by
proteinuria and decreased glomerular filtration rate (82).
Accumulating evidence has indicated that hyperglycemia-
stimulated oxidative stress, AGE production, inflammation,
and fibrosis are all involved in the pathogenesis of DKD (83–
85). Iron homeostasis is essential for normal functioning of renal
cells (86). In patients with DKD, the indicators of ferroptosis,
including the release of serum ferritin and lactate dehydrogenase,
are upregulated (24). In kidney biopsy samples from patients
with DKD, xCT and Gpx4 mRNA expression was also reduced
compared to that in control samples (26). A low-iron diet or iron
chelator can delay the progression of DKD in diabetic rats (87).
Recent studies have demonstrated that ferroptosis is involved in
the development of DKD and may be a new approach to explore
the progression of DKD (23–26, 87).

Animal experiments showed that iron content was increased
in the kidney tissue of streptozotocin (STZ)-induced DKD mice
Frontiers in Endocrinology | www.frontiersin.org 4
and diabetic (db/db) DKD mice, especially in the renal tubules.
The ACSL4 inhibitor rosiglitazone improves kidney function in
DKD mice and reduces the lipid peroxidation product and iron
content, and these effects are correlated with attenuated
ferroptosis (23). Renal tubular injury is a critical factor in
DKD. High glucose (HG) triggered iron overload, antioxidant
capability reduction, massive ROS production, and lipid
peroxidation in renal tubular cell death (23, 88). Salusin−b, a
bioactive peptide of 20 amino acids, participates in HG−induced
HK−2 cell ferroptosis in an Nrf−2−dependent manner (88). Feng
et al. found that ferroptosis might damage renal tubules in
diabetic models via the HIF-1a/HO-1 pathway (25). Another
study revealed that inhibition of ferroptosis by upregulating Nrf2
could delay the progression of DKD (27). Transforming growth
factor-b1 (TGF-b1) is an important factor that leads to renal
fibrosis, and renal tubular cell death induced by TGF-b1 is
known to be involved in DKD (89). GSH concentration and
xCT and Gpx4 expression were significantly decreased, and lipid
peroxidation was enhanced in TGF-b1-stimulated renal tubular
cells. These changes were significantly ameliorated by Fer-1 (26).

Mesangial cells, specialized smooth muscle cells, are distributed
between the capillary loops of glomerular capillaries, and their
injury is a basic pathological change in DN (90). High mobility
group box 1 (HMGB1) has been reported to be a damage-
associated molecular pattern molecule, and its levels are elevated
in patients with DKD. Further results identified HMGB1 as having
a regulatory role in the ferroptosis of mesangial cells. Suppression
of HMGB1 restores cellular proliferation, prevents ROS and lactate
dehydrogenase (LDH) generation, decreases ACSL4, and increases
Gpx4 levels in mesangial cells (24). Ferroptosis is also involved in
podocyte injury in diabetic conditions. Podocytes are an important
component of the glomerular filtration barrier (GFB), and
podocyte damage is considered one of the main mechanisms
leading to GFB injury (91). An in vitro study demonstrated that
HG triggered ferroptosis in mouse glomerular podocyteMPCs, and
these effects were mediated by peroxiredoxin 6 (Prdx6), a new
member of antioxidant enzymes (92). Taken together, the above
studies demonstrate that ferroptosis is closely related to the
pathogenesis of DKD and promotes DKD through a variety of
mechanisms in podocytes, mesangial cells, and tubule cells. An in-
depth study of the pathological mechanism of ferroptosis would
help in the timely and reasonable prevention and treatment of
DKD by targeted ferroptosis.

Ferroptosis and DCM
DCM, characterized by diastolic and systolic dysfunction, left
ventricular hypertrophy, myocyte hypertrophy, and fibrosis (93),
is a major cause of heart failure in patients with diabetes.
Increasing evidence suggests that ferroptosis is involved in the
pathogenesis of cardiomyocyte injury (28, 29). Wang et al. first
found that diabetes can cause more severe myocardial ischemia-
reperfusion injury (I/RI) by promoting ferroptosis in myocardial
cells, as well as two other forms of programmed cell death,
including apoptosis and pyroptosis. However, it is not known
which type of cell death has the dominant function in DCM (28).
However, what is certain is that cardiomyocytes of diabetic
March 2022 | Volume 13 | Article 853822
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myocardial I/RI rats were injured accompanied by increased
ferroptosis level. Inhibition of ferroptosis by Fer can alleviate this
injury. ERS aggravates hypoxia/reoxygenation (H/R)-induced
cardiomyocyte injury and inhibition of ERS alleviates
ferroptosis (29). Ferritinophagy is a newly identified selective
autophagy pathway that is mediated by NCOA4. NCOA4
mediates ferritin degradation in the autophagosome and causes
the release of iron ions from ferritin, resulting in ferroptosis (94).
Knockdown of NCOA4 reduced ferritinophagy and ferroptosis
in a high-glucose hypoxia reoxygenation model (68).

Excessive saturated fatty acids, such as palmitic acid (PA),
resulting from lipid metabolism in patients with diabetes, have
been shown to play a role in cardiomyocyte death and in the
development of DCM (95). It is widely accepted that apoptosis and
necroptosis contribute greatly to PA-induced myocardial injury
(96–98). Ferroptosis is also known to be involved in PA-induced
myocardial injury. Ferroptosis inhibitors significantly reduced cell
death in H9c2 cardiomyoblasts exposed to PA (30). HSF1 is an
important defender of ferroptosis in cardiomyocytes. HSF1
negatively regulates PA-induced cell death, and HSF1-/- mice
treated with PA exhibited more serious ferroptosis by decreasing
SLC40A1, FTH1, and Gpx4 expression and increasing TFRC
expression in the heart (30). Nrf2, a transcription factor
controlling the expression of many ferroptosis-related genes such
as Gpx4, is generally considered to have an inhibitory effect on
ferroptosis (99). An interesting study demonstrated that Nrf2 has
detrimental effects on the heart by promoting ferroptosis during
myocardial autophagy deficiency (100). However, targeting Nrf2
and its related targets remains a viable approach to prevent or treat
DCMby regulating ferroptosis. In summary, these findings suggest
that ferroptosis is involved in the pathogenesis of DCM. At
present, the mechanism of ferroptosis in DCM remains poorly
understood, and areas related to ferroptosis and cardiomyocyte
function need to be further explored.

Ferroptosis and Diabetic
Neurodegenerative Disease
Diabetes is a risk factor for neurodegenerative disorders such as
Alzheimer’s disease (AD), PD, Huntington’s disease, amyotrophic
lateral sclerosis, and FRDA (101). Ferroptosis is involved in the
development of neurodegenerative diseases (102). In some
neurodegenerative diseases, iron is redistributed in specific regions
of the central and peripheral nervous systems; for example, iron
content is significantly increased in thehypothalamusofpatientswith
AD (103) and in the dopaminergic neurons of the substantia nigra in
PD (104). AD is characterized by a loss of neurons in the frontal lobe,
amygdala, andhippocampus.Hao et al. (31) reported that ferroptosis
is the main pathogenic factor in diabetes-induced cognitive
dysfunction. Among the ferroptosis signaling pathway genes, the
SLC40A1 gene (ferroportin) was significantly downregulated in the
diabetic rat hippocampus (31). Hyperglycemia or hypoglycemia can
cause nerve cell injury, resulting in cognitive dysfunction. Another
study showed that ferroptosis occurs in the hippocampus of db/db
mice, and liraglutide, adrugapproved for the treatmentofobesity and
diabetes, reduces ferroptosis by suppressing oxidative stress and iron
overload, improving hippocampal neuronal and synaptic plasticity,
Frontiers in Endocrinology | www.frontiersin.org 5
thereby restoring cognitive impairment (105). Indiabetic rats, butnot
in control rats, an iron chelator, deferoxamine, improved
sensorimotor and cognitive outcomes of rats subjected to
thromboembolic middle cerebral artery occlusion (106). These data
indicate that the inhibition of ferroptosis may prevent brain injury
and provide a novel disease-modifying therapeutic strategy for the
prevention of cognitive impairment in diabetes.

Ferroptosis and DR
DR is one of the most devastating complications of diabetes,
affecting millions of working-age adults worldwide (107). DR is a
leading cause of global vision loss. Retinal microvasculopathy,
inflammation, and retinal neurodegeneration are the major causes
of DR. Hyperglycemia causes pericyte damage, endothelial cell
dysfunction, and basement membrane thickening in retinal
vessels, leading to disruption of the blood-retinal barrier (108).
Dysfunction and increased permeability of the retinal capillary
endothelial cells (RCECs) are essential features of DR progression.
HG inhibits human RCEC growth and induces ferroptosis, which
can be reversed by Fer-1. TRIM46 mediated Gpx4 ubiquitination
pathway is involved in HG-induced ferroptosis in human RCECs
(63). In addition to microvascular changes, retinal neuro
degeneration or loss of the retinal pigment epithelium (RPE)
also contribute to diabetic retinal damage early in DR, and HG
has detrimental effects on RPE cells by producing ROS and
decreasing the Gpxs expression (109). An in vitro study in
ARPE-19 cells showed that circular RNAs (circRNAs) play a
regulatory role in HG-induced ferroptosis via competing
endogenous RNAs to regulate target microRNAs (miRNAs).
Circ-PSNE1 was significantly upregulated in DR patients and in
HG-treated ARPE-19 cells, and downregulation of circ-PSEN1
reduced cell death, decreased MDA and Fe2+ content, and
increased the expression of Gpx4 and solute carrier family 7
member 11 (SLC7A11). Furthermore, Zhu, et al. demonstrated
that circ-PSEN1 mitigates HG-induced ferroptosis via the miR-
200b-3p/cofilin-2 axis (64). These studies suggest that ferroptosis
plays an important role in damage to RCECs and retinal pigment
epithelium under hyperglycemic conditions. However, whether
ferroptosis is involved in HG-triggered pericyte loss remains
unclear and requires further investigation.

Ferroptosis and DOP
Recently, osteoporosis has been recognized as a complication of
diabetes, and DOP has a serious impact on the quality of life of
the elderly. A decrease in bone mineral density (BMD) is a
characteristic of patients with T1DM. Conversely, most studies
have demonstrated that BMD does not decrease in patients with
T2DM (110). Although seemingly paradoxical, the fracture risks
in patients with T1DM and T2DM are similar (111). Although
BMD is variable in T1DM and T2DM, prolonged hyperglycemia
promotes changes in bone metabolism and destroys bone micro-
architecture through multiple mechanisms, such as production
of AGEs, inflammation, calcium and phosphorus metabolism
disorders, and oxidative stress (112). DOP has also been reported
to be associated with ferroptosis, and iron overload can promote
osteoclast differentiation and bone resorption through ROS
March 2022 | Volume 13 | Article 853822
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production (113). HG induces ferroptosis, and Fer-1 inhibits the
downregulation of the expression of osteogenesis-associated
proteins, osteoprotegerin (OPG) and osteocalcin (OCN), in
MC3T3-E1 cells, suggesting that ferroptosis is involved in
osteogenic ability in the presence of HG (20). Recent studies
have shown that Fer-1 and DFO block ferroptosis induced by
HG and palmitic acid (HGPA) in MC3T3-E1 cells. The
mechanism of high glucose and high fat (HGHF)-induced
ferroptosis in osteoblasts is related to the activation of the
METTL3/ASK1-p38 signaling pathway (114). Morphological
changes of mitochondrial are the important hallmark of
ferroptosis, and studies have shown that mitochondria play an
important role in the regulation of ferroptosis via regulation of
energetic metabolism, iron metabolism, and other pathways
(115, 116). Mitochondrial ferritin (FtMt), an iron-storage
protein, can intercept excessive iron ions to decrease ROS
levels in mice and is involved in osteoblastic ferroptosis in type
2 DOP. Overexpression of FtMt reduced osteoblastic ferroptosis
and improved osteoblast function under HG conditions, whereas
knockdown of FtMt decreased osteogenic function and induced
mitophagy through the ROS/PINK1/Parkin pathway (67). These
studies indicate that the occurrence of T2DOP is correlated with
iron homeostasis imbalance and ferroptosis in osteoblasts.
However, the detailed mechanism requires further investigation.
FERROPTOSIS INHIBITORS IN DIABETES
AND DIABETIC COMPLICATIONS

With an in-depth study on the mechanism of ferroptosis, many
specific inhibitors of ferroptosis have been identified, such as Fer-
1, deferoxamine, liproxstatin-1, mitoquinone, vitamin E, and
zileuton (38, 49). Ferroptosis inhibitors in diabetes and its
complications have also been well studied. Some compounds
that specifically inhibit iron death have not yet entered clinical
stages. However, studies have shown that some drugs in the
market inhibit ferroptosis and are beneficial for diabetes and its
complications. Rosiglitazone is the strongest inhibitor of ACSL4
(117) and ACSL4 is an essential component of ferroptosis (118).
Rosiglitazone ameliorates DKD by maintaining kidney function
and inhibiting the production of pro-inflammatory cytokines by
inhibiting ACSL4 and blocking renal tubular cell ferroptosis (23).
Fenofibrate is a third-generation fibric acid derivative widely used
to treat patients with atherogenic dyslipidemia (119). Many
studies have shown that fenofibrate can improve diabetes
complications, but this effect does not depend on its ability to
improve lipid levels (120). Fenofibrate delays the progression of
DKD by inhibiting diabetes-related ferroptosis via upregulation of
Nrf2 (120). Metformin is a commonly used anti-diabetic agent
(121). Metformin attenuates hyperlipidemia/PA-induced vascular
calcification through anti-ferroptosis effects (122). It is possible
that metformin may also exert its anti-diabetic effects through this
pathway, but further studies are needed to confirm this hypothesis.

Some compounds from natural products have been developed
to protect cells against ferroptosis. Quercetin is one of the most
Frontiers in Endocrinology | www.frontiersin.org 6
widely distributed natural polyphenolic flavonoids in the plant
kingdom (123). It has been reported to have potential anti-diabetic
effects both in vivo and in vitro (124, 125). Epidemiological
investigations have demonstrated that quercetin can reduce the
risk of T2DM (124–127). Li et al. (60) investigated the
mechanisms by which quercetin protects against T2DM and
found that quercetin exerts beneficial effects on T2DM by
inhibiting pancreatic iron deposition and pancreatic beta cell
ferroptosis. Resveratrol, a natural polyphenol, inhibits acrolein-
induced ferroptosis in MIN6 cells (77). Germacrone, one of the
main bioactive components extracted from Curcuma zedoaria
Roscoe, has been reported to have numerous pharmacological
activities, including anti-inflammatory, anti-tumor, and anti-
fibrotic effects (128, 129). Jin et al. found that germacrone
combined with exogenous mmu_circRNA_0000309 facilitated
DKD treatment by inactivating ferroptosis-dependent
mitochondrial injury and podocyte apoptosis (130).
Cryptochlorogenic acid was the main active component in the
mulberry leaf extract. The extracts of mulberry leaf have been
confirmed to improve inflammation and insulin resistance (131).
Cryptochlorogenic acid exerts excellent anti-diabetic effects by
inhibiting ferroptosis by activating cystine/xCT/Gpx4/Nrf2 and
inhibiting NCOA4 in diabetes (132). These natural products have
potential anti-ferroptosis properties; however, the targets of these
compounds need to be further verified. Furthermore, randomized
clinical trials of these anti-ferroptotic compounds for diabetic
complications need to be conducted.
CONCLUSIONS AND PERSPECTIVES

In this review, we summarize the role and possible mechanism
of ferroptosis in diabetes and its complications. To date,
studies have demonstrated that ferroptosis plays an
important role in diabetes and its complications, and drugs
or agents that target ferroptosis may provide new treatment
strategies for patients with diabetes. Morphologically,
ferroptotis-experiencing cells, including HK-2, MC3T3, and
hFOB 1.19 cells, exhibited reduced mitochondrial volume and
cristae, and increased mitochondrial membrane density in
diabetes (Table 1). These changes are consistent with the
mitochondrial phenotypic changes induced by erastin.
Moreover, HG and other risk factors (FFA or H/R) could
induce ferroptosis in target cells through the following three
categories: iron metabolism, antioxidant system, and lipid
oxidation pathway. These defects may predispose cells to
ferroptosis in diabetes (Figure 3).

Further studies are needed to understand the regulatory
mechanisms of ferroptosis in diabetes and its related
complications. At present, there is a lack of knowledge
regarding potential biomarkers that can be used to specifically
diagnose ferroptosis in clinical settings. Although proteins
related to iron metabolism, such as ferritin, are elevated in the
serum of patients with diabetes and related complications, their
specificity cannot meet the requirements of clinical diagnosis.
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TABLE 1 | The main regulatory mechanism, morphological and biochemical feature of ferroptosis in diabetes and related complications.

Type of
disease

Cell line/animal/clinical samples Mechanism Morphological features Biochemical features Reference

DKD Animal: STZ-induced diabetic mice
and db/db mice
Cell: NRK-52E cells and HK-2 cells

ACSL4 was mediated
ferroptosis.

Ruptured mitochondrial membrane and
disappeared mitochondrial cristae.

Increase in ACSL4, MDA
and iron content.
Decreased in Gpx4.

Wang Y,
et al. (23)

Cell: Renal mesangial SV40-MES 13
cells
Clinical samples: blood samples
collected from DKD patients or
healthy subjects

HMGB1/Nrf2 regulates HG-
induced ferroptosis.

N.A. Increase in ROS, MDA,
ACSL4 and LDH release
Decreased Gpx4
expression.

Wu Y,
et al. (24)

Animal: db/db mice HIF-1a/HO-1 pathway might be
regulates ferroptosis.

N.A. Decrease in Gpx4,
GSH-Px, CAT, SOD.
Increase in MDA, ROS.
Elevated serum iron ion,
ferritin and transferrin.

Feng XM,
et al. (25)

Cell: NRK-52E cells
Animal: STZ-induced diabetic mice
Clinical samples: human kidney
sample

N.A. Mitochondria shrinkage and vanishing of
mitochondrial cristae.

Decrease in SLC7A11
and Gpx4.
Decrease in xCT and
GSH.
Increase in MDA, 4-HNE
and FTH1.

Kim S,
et al. (26)

Animal: STZ-induced DBA/2J
diabetic mice
Cell: NRK-52E cells and HK-2 cells

Nrf2 inhibits ferroptosis. Shrunken mitochondria with increased
membrane density and ridge reduction or
even disappearance.

Iron content, 4-HNE,
MDA overload.
Decrease in Gpx4,
SLC7A11, and FTH-1.
Increase in TFR-1.

Li SW,
et al. (27)

Cell: HK-2 cells Salusin−b/Nrf−2 participates in
HG−induced HK−2 cell
ferroptosis.

N.A. Decrease in Gpx4, GSH,
SLC7A11, and FTH-1.
Increase in TFR-1, iron
content, MDA, ROS,
and LDH release.

Wang WJ,
et al. (88)

Cell: MPC5 cells Prdx6 negatively regulates HG-
induced ferroptosis

N.A. ROS, MDA, and iron
overload.
Decrease in SOD, GSH,
and SLC7A11.

Zhang QJ,
et al. (92)

DCM Animal: DM+I/R rats
Cell: H9c2 cells

ERS aggravates H/R or I/R-
induced ferroptosis in
cardiomyocytes.

N.A. Increase in ACSL4,
ATF4.
Increase in LDH release,
MDA, ROS and Fe2+.
Decrease in SOD and
Gpx4.

Li WY,
et al. (29)

Animal: Hsf1+/+ and Hsf1-/- mice
Cell: H9c2 cells

HSF1 regulates PA-induced
ferroptosis in cardiomyocytes.

N.A. Fe2+, MDA, and ROS
overload.
Decrease in Gpx4, FTH1
and SLC40A1.

Wang N,
et al. (30)

Animal: Nrf2 transgenic mice or Nrf2
KO mice treated with STZ.
Cell: H9c2 cells

Nrf2 mediated ferroptosis in
DCM.

N.A. Iron deposition
Increase in 4-HNE and
ACSL4.
Decrease in Gpx4 and
Fsp1.

Zang HM,
et al. (100)

DR Cell: Human RCEC cells TRIM46 regulates Gpx4 by
promoting Gpx4 ubiquitination
and degradation.

N.A. Increase in MDA and
lipid ROS.
Decrease in SOD, Gpx4
and GSH-Px

Zhang JF,
et al. (63)

Cell: ARPE19 Circ-PSEN1 regulates HG-
induced ferroptosis via miR-
200b-3p/cofilin-2 axis.

N.A. Fe2+ and MDA overload.
Decrease in GSH, Gpx4
and SLC7A11.
Increase in TRF1.

Zhu ZL,
et al. (64)

Diabetic
cognitive
disease

Animal: STZ-induced diabetic rats N.A. Area of mitochondria was decreased.
The sputum was shorter and diminished.

Fe2+ and 4-HNE
overload.
Decrease in SLC40A1.

Hao LJ,
et al. (31)

Animal: db/db mice N.A. Mitochondria were reduced and shrunken. Fe content overload.
Inactivation of SOD and
GSH-Px.

An, JR, et
al (105).
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Frontiers in E
ndocrinology | www.frontiersin.org
 7
 Mar
ch 2022 | Volume 13 | Art
icle 853822

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Yang and Yang Ferroptosis Is Involved in Diabetes and Its Complications
Therefore, identification of biomarkers for ferroptosis will
benefit the treatment of diabetes and its complications.
Techniques for detecting ferroptosis in vivo should be
developed in the future. In addition, the identification and
development of specific inhibitors for ferroptosis is crucial, and
much work remains to be done before specific inhibitors can be
used clinically. In some cases, at least two or more types of
programmed cell death may occur because of diabetic
complications. Therefore, targeting of apoptosis, autophagy,
necrosis, or ferroptosis alone may not achieve the desired
effects, and multi-target therapeutics may be effective for
treating complex diseases in the future.
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TABLE 1 | Continued

Type of
disease

Cell line/animal/clinical samples Mechanism Morphological features Biochemical features Reference

Increase in ACSL4 and
TFR1.
Decrease in FTH, FPN1,
GPX4, FtMt, and
SLC7A11.

DOP Cell: MC3T3 cells
Animal: a rat model of DOP using
intralipids and low-dose STZ

N.A. Mitochondria appeared smaller and less
tubular, membrane with distinct disrupted
inner membrane folding

Accumulation of MDA
and ROS.
Decrease in GSH, SOD,
Gpx4, Nrf2, and
SLC7A11.

Ma HD,
et al. (20)

Cell: hFOB 1.19 cells
Animal: a rat model of diabetic
osteoporosis using high-fat and
low-dose STZ

Mitophagy is mediated FtMt
deficiency- promoted
ferroptosis.

Mitochondria appeared smaller. Increase in FtMt and
DMT1.
Decrease in Gpx4, Nrf2,
and SLC7A11.
ROS and lipid
peroxidation overload.

Wang XD,
et al. (67)

Cell: HGPA (high glucose and
palmitic acid)-treated MC3T3 cells.
Animal: a rat model of DOP using
HGHF (high glucose and high fat)
and low-dose STZ.

METTL3/ASK1-p38 pathway
regulates ferroptosis.

Mitochondria appearing shrunken,
decreased cristae, and ruptured
membrane.

Decrease in Gpx4 and
SLC7A11.

Lin YF,
et al. (114)
Mar
ch 2022 | Volume 13 | Art
FIGURE 3 | Ferroptosis is involved in the development of diabetes and related complications. HG and other risk factors (FFA or H/R) could induce ferroptosis by
interfering with the balance of ion metabolism, reduction system, and lipid oxidation. Ferroptosis is involved in cell death of target organ and dysfunction in diabetes
and its metabolic diseases.
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