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Abstract
Background and Objectives: Altered trafficking of α‐amino‐3‐hydroxy‐5‐methyl‐4‐
isoxazolepropionic acid (AMPA) receptors has been reported in postmortem studies 
and suggested the involvement of AMPA receptors in the pathophysiology underpin‐
ning addictive disorders. However, these findings seemed mixed.
Methods: A systematic literature search was conducted, using PubMed and Embase 
(last search, August 2018), to identify human postmortem studies that examined the 
expression of proteins and mRNA of AMPA receptor subunits in patients with addic‐
tive disorders in comparison with healthy controls.
Results: Twelve (18 studies) out of 954 articles were identified to be relevant. Eight 
studies included alcohol use disorders, and four studies included heroin/cocaine 
abusers. The most frequently investigated regions were the hippocampus (three 
studies), amygdala (three studies), and putamen (three studies). In summary, two out 
of the three studies showed an increase in the expression of AMPA receptors in the 
hippocampus, while the other study found no change. Two studies to examine the 
amygdala demonstrated either a decreased or no change in receptor expression or 
binding. Concerning putamen, two studies showed no significant change whereas an 
overexpression of receptors was observed in the other.
Conclusions and Scientific Significance: The hippocampus and amygdala may be 
pertinent to addictive disorders through their functions on learning and memory, 
whereas findings in other regions were inconsistent across the studies. Human post‐
mortem studies are prone to degenerative changes after death. Moreover, only quali‐
tative assessment was conducted because of the limited, heterogenous data. These 
limitations emphasize the need to investigate AMPA receptors in the living human 
brains.

K E Y W O R D S

alcohol‐ and substance‐related disorders: basic/clinical, 

www.wileyonlinelibrary.com/journal/nppr
https://orcid.org/0000-0003-3463-5672
mailto:
https://orcid.org/0000-0002-0628-7036
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hiroyuki.uchida.hu@gmail.com


     |  149UENO Et al.

1  | INTRODUC TION

The effectiveness of currently available treatment options for human 
addictive disorders is far from ideal, in spite of global attention that has 
been paid to addiction and emerging treatment options. There has been 
growing interest in glutamatergic abnormalities that have been impli‐
cated in various addictions. With regard to alcohol use disorder (AUD) 
as an example, Tsai et al1 reported an increase in the concentration of 
glutamate in the cerebrospinal fluid (CSF) and Umhau et al2 also noted a 
positive association between the severity of illness and glutamate con‐
centration in the CSF. Moreover, lower glutamate and increased gluta‐
mine concentration in the bilateral anterior cingulate cortex (ACC) were 
shown in a small study with the use of magnetic resonance spectroscopy 
(MRS) in patients with AUD compared with healthy controls.3 Within 
the glutamatergic system, the N‐methyl‐d‐aspartate (NMDA), a well‐
studied ionotropic receptor, is assumed to play a central role in long‐ 
lasting learning and memories via its neurobiological plasticity.4 It is  
posited that the NMDA receptor may be associated with the develop‐
ment of such disorders5 in light of a possibility that addiction may be a 
pathological usurpation of mechanisms underlying learning and memory.

On the other hand, evidence has suggested that another glutama‐
tergic receptor, α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic 
acid (AMPA) receptor, is clearly associated with the development of 
addictive disorders.6 Several in vitro studies have shown the alter‐
ations in AMPA receptors in the brain of model rodents with alcohol 
and cocaine dependence: increased expression in the cortical cul‐
ture7 and nucleus accumbens (NAc)8 and decreased binding in some 
cortical regions, hippocampus and septohippocampal nucleus9 of 
alcohol‐dependent models; increased expression10,11 and potenti‐
ated excitatory postsynaptic currents (EPSCs)12 in the NAc and de‐
creased expression in the dorsolateral striatum11 of cocaine‐exposed 
rodents. Moreover, preclinical studies found, after administration of 
AMPA receptor antagonists, reductions in substance‐seeking be‐
haviors,13,14 alcohol withdrawal,15 and alcohol consumption16 in sub‐
stance‐preferring model of rats. Furthermore, the gene‐based study 
also noted significant correlation between metabotropic glutamate 
receptor (mGluR)‐eukaryotic elongation factor 2 (eEF2)‐AMPA re‐
ceptor pathway (including the glutamate ionotropic receptor AMPA 
[GRIA] 1 and 4) and addictive behaviors like a frequency of drink‐
ing.17 These findings collectively indicate that AMPA receptors are 
likely involved in the pathophysiology underpinning addiction.

Postmortem studies have provided important insights on the patho‐
physiology of addictive disorders in human beings. A systematic synthe‐
sis of currently available data is helpful to further our understanding on 
addiction and to underscore what is missing in the field. We therefore 
systematically reviewed published postmortem studies that investi‐
gated AMPA receptor expression in patients with addictive disorders.

2  | METHODS

A systematic search of the literature was conducted in order to 
identify postmortem, case‐control studies that investigated the 

expression of AMPA receptor subunits or receptor binding in pa‐
tients with addictive disorders compared with healthy individu‐
als, using PubMed and Embase (last search: August 21, 2018). The 
search terms were as follows: ((α‐amino‐3‐hydroxy‐5‐methyl‐4‐ 
isoxazolepropionic acid) or AMPA or AMPAR) AND (alcohol* or 
narco* or addiction). We also performed cross‐reference and manual 
searches. Original articles in English were included for the purpose 
of this study. The literature search was performed independently by 
two of the authors (FU and HU).

3  | RESULTS

Figure 1 shows the flow of our literature search, from an initial list 
of 954 studies; of these, 12 articles were identified to be relevant. 
All of these studies investigated AMPA receptor binding levels, 
or AMPA receptor subunit transcripts or protein expression; they 
compared these indices between patients with substance use dis‐
orders and healthy controls. Patients with AUD were targeted in 
eight studies; five studies used the DSM‐IV for the diagnosis,18‒22 
two studies relied on daily consumption of ethanol,23,24 and one 
study did not specify any criteria.25 The other four studies included 
patients with heroin and cocaine addiction, where the bases for the 
diagnosis were an archived history of abuse in two studies26,27 and 
death that resulted from overdose for the other two studies.28,29 
The regions of interest included the hippocampus (three studies in 
AUD), amygdala (three studies: two in AUD and one in drug abuse), 
and putamen (three studies: two in drug abuse and one in AUD), 
followed by the frontal cortex (two studies in AUD), cingulate cor‐
tex (two studies in AUD), and NAc (two studies: one in AUD and 
one in drug abuse).

Table 1 summarizes the methodologies and results of the studies 
included in our review. Synthesis of the main findings is described in 
a chronological order below.

4  | ALCOHOL USE DISORDER

Protein expressions of AMPA/kainite receptor subtypes were found to 
be increased in the hippocampus of alcohol users (n = 9) in the study 
by Breese et al25 Freund and Anderson23 found a numerically, but not 
significantly, increased [3H]AMPA binding in the frontal cortex of pa‐
tients with AUD (n = 13). mRNA and protein expression of GRIA 2 were 
decreased in the basolateral amygdala of patients with AUD (n = 10) in 
the study by Kryger and Wilce.24 Karkkainen et al18 classified patients 
with AUD into type 1 (age of onset >25 years, and susceptibility to 
anxiety, n = 9) and type 2 (age of onset <25, and impulsive and an‐
tisocial behaviors, n = 8), in accordance with Cloninger's criteria. The 
authors found an increased [3H]AMPA binding in the ACC of the type 2 
patients compared with healthy controls, whereas no differences were 
detected in the other brain regions of interest. Jin et al19,20 demon‐
strated that mRNA expressions of AMPA receptor subunits were lower 
in the central amygdala (n = 9) and higher in the hippocampus dentate 
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gyrus (n = 13) in the patient group, while there were no differences in 
the dorsolateral prefrontal cortex (DLPFC) (n = 14) or the orbitofrontal 
cortex (OFC) (n = 11). Bhandage et al21 found that mRNAs expression 
levels were not different among any of the glutamate receptor subunits 
in the caudate and the putamen (n = 29). Farris et al22 showed higher 
gene connectivity including GRIA1 in the prefrontal cortex (n = 16).

5  | OTHER SUBSTANCE USE DISORDERS

Tang and colleagues28 identified an upregulation of the mRNA and pro‐
tein level of GRIA2 in the ventral tegmental area (VTA), which was not 
observed in the lateral substantia nigra (l‐SN), among the victims of co‐
caine overdose (n = 10). Hemby et al29 showed an increase in the pro‐
tein expressions of GRIA2/3 in the NAc of cocaine overdose victims, 
but not in the putamen (n = 8). Okvist et al26 conducted two studies; 
they compared levels of mRNA expression of AMPA receptor subunits 
in the amygdala among the four groups (ie, multiple drug abusers [co‐
caine and heroin, n = 7], cocaine abusers [n = 7], heroin abusers [n = 8], 
and healthy controls) in one study and those between heroin abusers 
(n = 29) and healthy controls in the other, only to find no group differ‐
ences in both studies. An overexpression of GRIA1 and GRIA3 in the 
putamen was reported among heroin abusers (n = 48) in one study.27

To sum, two out of the three studies showed that the expression 
of AMPA receptors increased in the hippocampus of the patients 
with AUD,20,25 while the other failed to show changes.18 A de‐
creased receptor binding or expression in this region of the patients 
with AUD was identified in two of three studies that examined the 
amygdala,19,24 and no change was found for the cocaine and her‐
oin abusers in the other study.26 With respect to the putamen, two 

studies to target cocaine abusers and patients with AUD showed no 
change,21,29 whereas overexpression of receptors was observed in 
the study on heroin abusers.27 In the frontal cortex, there was no 
difference among both two studies that investigated patients with 
AUD.18,23 As for the cingulate cortex, binding of AMPA receptor was 
higher in the Cloninger type 2 AUD patients in one study,18 whereas 
there was no significant change in the study for the patients with 
AUD.25 Regarding the NAc, one study found an increment of AMPA 
receptors expression among cocaine abusers,29 and there was no 
change in AUD patients compared with healthy controls in the other 
study.18

6  | DISCUSSION

Addictive disorders are prevalent in human being but their patho‐
physiological underpinnings remain to be elucidated to date. The 
present systematic review aimed to synthesize the currently avail‐
able evidence on human postmortem studies that examined AMPA 
receptor subunit expression and receptor binding in patients with 
substance use disorders. The results were suggestive of the notion 
that hippocampus and amygdala may be related to the development 
of addictive disorders, possibly through their well‐known functions 
to regulate learning and memory. On the other hand, findings in the 
other regions were not consistent across the studies, perhaps be‐
cause of the heterogeneity in the subjects, targeted brain regions, 
substances of interest, cause of death, and analysis techniques em‐
ployed. It may further be attributable to variations in degenerative 
and agonal changes after death to which postmortem studies are 
almost always susceptible.

F I G U R E  1   PRISMA flow diagram of 
the literature search

Records identified 
through database searching 

(n = 1226) 

Additional records identified 
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Records after duplicates removed 
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Although the currently available data are still very modest, the 
subunit expression and binding to AMPA receptors are increased 
in the hippocampus of AUD patients, but decreased in the amyg‐
dala in quantity, in comparison with healthy controls. The hippo‐
campus is a vital region for learning and memory; such pivotal 
functions are postulated to be processed by long‐term potenti‐
ation and long‐term depression through glutamate receptors.30 
Therefore, a possibility is that the changes in AMPA receptor 
subunit expression and receptor binding contribute to impaired 
cognition, including memory function, in association with insobri‐
ety of heavy ethanol.31,32 Interestingly, the finding in the hippo‐
campus of AUD patients is different from the that of the animal 
study which showed the decreased AMPA receptor binding level 
in the same region.9 Such a discrepancy may be due to the fol‐
lowing limitations of the studies included in the present review; 
the number of studies identified was small and these postmortem 
studies were prone to physiological degenerative changes after 
death. The central amygdala of patients with AUD synthesizes 
emotional and somatic information gathered from other brain 
regions and other subregions within the amygdala33 and plays a 
vital part in regulating alcohol‐drinking behaviors.34 The basolat‐
eral amygdala plays an important role in cue‐induced relapse by 
regulating associative learning,35 which is critical in the regulation 
of anxiety.36 Thus, AMPA receptor dysfunction in the basolateral 
amygdala may result in continuous substance‐seeking behavior 
and withdrawal anxiety.

The NAc8,10 and VTA37 have been the hot target in previous an‐
imal studies. They found an upregulated density of AMPA receptor 
and revealed a decrease in substance‐seeking behavior by adminis‐
tration of AMPA receptor antagonists, such as 6‐cyano‐7‐nitroqui‐
noxaline‐2,3‐dione (CNQX) and 6,7‐dinitroquinoxaline‐2,3‐dione 
(NBQX).14,16,38 The beneficial results with the use of AMPA recep‐
tor antagonists corroborate those of microinjection to basolateral 
amygdala, to prevent anxiety‐like behavior of withdrawn alcohol‐
dependent rats.15,39 On the other hand, in contrast, human stud‐
ies reported decreases in AMPA receptors in the amygdala of AUD 
patients.20,24 Given the significant impact and burden of substance 
use disorders around the globe, further investigations are clearly in‐
dicated to examine AMPA receptors in the brain regions, hopefully 
in vivo, in order to devise new therapeutics.

Findings from several studies of antiepileptics collectively sug‐
gest that AMPA receptor seems to be a potential target of novel 
medications against addictive disorders. For example, topiramate is 
an antiepileptic drug to antagonize glutamate activity at AMPA/ka‐
inite receptors.40 This blockade is expected to decrease extracellular 
dopamine release in the midbrain41 and modulate a nonbenzodiaze‐
pine site on the gamma‐amino‐butyric acid‐A (GABA‐A) receptor.42 
Previous clinical studies have shown its hope in reducing craving for 
alcohol, drinking behavior, and withdrawal symptoms.43‒45 Similarly, 
lamotrigine, which is another antiepileptic medication to inhibit 
AMPA receptors and decrease glutamate release,46 was found 
to be promising in reducing cocaine intake and craving in cocaine 
abusers.47

Several limitations need to be taken into account to interpret 
the results of this systematic review. First, the number of studies 
was small. Second, as already mentioned, degrading changes after 
death render human postmortem studies challenging. Third, sub‐
jects included in these studies were not always well‐characterized 
in terms of the diagnosis and the severity of illness. Forth, not 
quantitative but just qualitative assessment of the literature was 
conducted in the present review because of the limited, heterog‐
enous data.

To conclude, while the hippocampus and amygdala may play piv‐
otal roles in the pathophysiology of addiction, the above‐mentioned 
limitations and the paucity of evidence clearly highlight the neces‐
sity for examining AMPA receptors in the living brain of well‐charac‐
terized patients by using positron emission tomography (PET). These 
findings would be expected to inform the development of well‐antic‐
ipated novel therapeutics against addictive disorders.
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