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A B S T R A C T

Coronavirus disease 2019 (COVID-19) is a pulmonary inflammatory disease induced by a newly recognized
coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection was detected
for the first time in the city of Wuhan in China and spread all over the world at the beginning of 2020. Several
millions of people have been infected with SARS-CoV-2, and almost 382,867 human deaths worldwide have been
reported so far. Notably, there has been no specific, clinically approved vaccine or anti-viral treatment strategy
for COVID-19. Herein, we review COVID-19, the viral replication, and its effect on promoting pulmonary fibro-
inflammation via immune cell-mediated cytokine storms in humans. Several clinical trials are currently ongoing
for anti-viral drugs, vaccines, and neutralizing antibodies against COVID-19. Viral clearance is the result of
effective innate and adaptive immune responses. The pivotal role of interleukin (IL)-15 in viral clearance in-
volves maintaining the balance of induced inflammatory cytokines and the homeostatic responses of natural
killer and CD8+ T cells. This review presents supporting evidence of the impact of IL-15 immunotherapy on
COVID-19.

1. Introduction

Previously known four different coronaviruses (CoV), namely
HKU1, NL63, 229E, and OC43, can induce mild respiratory diseases.
The first outbreak of coronavirus was reported to have originated in
bats and crossed over to humans via the intermediary host palm civet
cats in the province of Guangdong in China in 2002 [1]. In 2012,
coronavirus was reported again in the Middle East that originated in
bats in Saudi Arabia with dromedary camels as the intermediate host,
and it was named Middle East respiratory syndrome coronavirus
(MERS-CoV) [2]. This virus also caused acute respiratory disease. The
third outbreak caused by the worst type of coronavirus, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported to
originate from the city of Wuhan in China in Jan 2020 and spread
worldwide to cause the coronavirus disease (COVID-19). SARS-CoV-2 is
a fast-spreading virus between humans by close contact, which has
infected approximately 6.4 million people and caused almost 382,867
deaths as of June 04, 2020. The current means of stopping viral
transmission is only by restricting social contact. SARS-CoV-2 is an
enveloped positive-sense RNA virus of 60 nm–140 nm in diameter with
spike-like projections identified by electron microscopy [3]. Herein,
this review highlights the biology of SARS-CoV-2 and possible novel
immunotherapy with interleukin (IL)-15 for COVID-19 infection in

humans.

2. IL-15 is required for the maintenance of innate immunity and
promotes viral clearance

IL-15 is a critical immunoregulatory cytokine with anti-viral prop-
erties [4]. IL-15 is expressed by myeloid cells to aid in T cell responses,
activate natural killer (NK) cells, and modulate inflammation [5]. In
lymphocytes, activated IL-15 binds to the IL-2/15Rβγ heterodimer and
induces signal transduction via phosphorylation of Janus-associated
kinases (JAK) and signal transducer and activator of transcription
(STAT) proteins. JAK1 activation phosphorylates STAT3 via the β
chain, whereas JAK3/STAT5 activation occurs via the γ chain. The
STAT3/STAT5 form heterodimers upon phosphorylation [6,7] and
translocate to the nucleus to activate Bcl-2, c-Myc, c-Fos, c-Jun and NF-
κB [8–11]. Akt is activated via a phosphatidylinositol 3-kinase (PI3K)-
dependent pathway. Shc is an adaptor protein that binds to a phos-
photyrosine residue on the IL-2/15Rβ heterodimer and activates Grb2,
which then activates Akt, resulting in an increase in cell proliferation
and/or survival [12,13]. IL-15 trans-presentation to IL-2/15Rβγ and
Shc-mediated activation of Grb2 lead to the formation of Grb2-SOS
complex that further activates the Ras-Raf pathway by facilitating the
removal of GDP from a member of the Ras subfamily, activating the
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mitogen-activated protein kinase (MAPK) pathway for cellular pro-
liferation [14–16].] IL-15 deficiency has been previously shown to
promote airway resistance in mice, whereas IL-15 inhibits pro-in-
flammatory cytokines, reduces goblet cell hyperplasia, and regulates
allergen-induced airway obstruction in mice by inducing Interferon
(IFN)-γ and IL-10-producing regulatory CD4+CD25+Foxp3+ T cells
[17]. In another study, rIL-15 treatment has been showed to further
protect mice from chronic fibro-inflammation via the induction of IFN-
γ-responsive invariant NK T cells [18]. Human IL-15 cytokine integra-
tion into the genome of the Wyeth strain of vaccinia induces powerful
immunogenicity in mice [19]. IL-15 enhances the activity of NK cells,
whereas blocking IL-15 delays NK cell entry into mouse lung airways
infected with influenza, resulting in dysregulated control of viral re-
plication. IL-15 regulates innate and adaptive responses to influenza
infection by mobilizing NK cells to control early viral replication. De-
pletion of NK1.1+ cells is associated with a decrease in the migration of
influenza-specific CD8+ T cells at the site of infection [20]. IL-15 may
be a novel therapeutic molecule, and we have previously showed that
IL-15-responsive RORγ + T regulatory cells are expressed in IL-15-
overexpressing allergen-challenged mice to restrict pulmonary fibrosis
[21]. A clinical trial is under way using intravenous infusions of Natural
Killer Group 2D (NKG2D)-Angiotensin-converting enzyme 2 (ACE2)
chimeric antigen receptor (CAR)-NK cells with an IL-15 superagonist
and Granulocyte-macrophage colony-stimulating factor (GM-CSF)
neutralizing single-chain variable fragments for the treatment of
COVID-19. This therapy aims to target SARS-CoV-2 and Natural killer
group 2D ligand (NKG2DL) with ACE2 and NKG2D on the surface of
infected cells for effective removal of SARS-CoV-2 virus particles
(https://clinicaltrials.gov/ct2/show/NCT04324996). An earlier report
has shown that plasma IL-15 levels are increased in MERS-CoV infected
patients, which demonstrates that IL-15 induced NK and CD8+ T cell
responses are effective in eliminating virus-infected cells [22]. Further,
Wyeth/IL-15/5Flu and Wyeth/mutIL-15/5Flu vaccines have been re-
ported to promote defense against clade 2.2 H5N1 infection [23]. These
data demonstrate that induced IL-15 improves both humoral and cel-
lular responses against respective viral antigens and protects infected
individuals. Most recent report indicates that IFN-α2b with or without
arbidol reduces virus load in the upper respiratory tract [24]. Since, IL-
15 is critical for the development, survival and function of several in-
nate cells including NK cells that regulates IFN-α/β; we hope that the
innate immune responses associated with IL-15 overexpression may
also be critical in the treatment of SARS-CoV-2 infection. Therefore, a
double-blind clinical trial with IL-15 immunotherapy is warranted to
establish the critical therapeutic effects of IL-15-induced innate im-
mune responses for patients infected with COVID-19.

3. Epidemiology of COVID-19

Coronavirus belongs to the family Coronaviridae and the order of
Nidovirales, which is a type of enveloped positive-sense RNA viruses
distributed in mammals. Earlier outbreaks of coronavirus diseases that
led to severe threats to human health at the beginning of the 21st
century were caused by the severe acute respiratory syndrome (SARS)-
CoV and the MERS-CoV [25]. The natural reservoir for these viruses
includes wild animals like bats, from which the virus may be trans-
mitted to a secondary host and humans [26]. SARS-CoV-2 is 96 % si-
milar to bat coronaviruses at the whole genome level [27]. Zhang et al.
determined the probable pangolin origin of SARS-CoV-2, which was
91.02 % similar to SARS-CoV-2 at the genome level [28]. COVID-19, an
inflammatory viral disease caused by the novel coronavirus SARS-CoV-
2, is a deadly disease emerged in December 2019 in Wuhan city, Hubei
province of China. A recent study identified the novel coronavirus by
deep sequencing analysis of isolated human airway epithelial cells from
patients with pneumonia, which was later named SARS-CoV-2 [29].
The initial events of virus spread was associated with animal-to-animal
contact, and subsequent spread to humans was linked to the Huanan

seafood market [30]. It has affected several countries across the globe
with a wide community spread and high mortality. There are numerous
clinical trials under way in developing potent vaccines and potential
anti-viral and neutralizing therapies for COVID-19 [31]. The mortality
of COVID-19 aggravates in patients with co-morbid conditions like
hypertension, diabetes, obesity, cancer, chronic respiratory disease,
chronic kidney disease, and liver diseases. Besides chronic obstructive
pulmonary disease, a history of asthma worsens disease severity and
increases mortality rate in COVID-19 patients [32,33]. The expression
of ACE2 receptor is upregulated in the lung tissues of tobacco smokers,
suggesting that smoking is a critical risk factor for viral infections [34].
Current data indicate that older adults and people of any age with co-
morbidities might be at an elevated risk of severe illness and mortality
from COVID-19 (https://www.cdc.gov/coronavirus/2019-ncov/need-
extra-precautions/people-at-higher-risk.html).

SARS-CoV-2 infected patient’s manifest dry cough, itchy throat, and
increased body temperature at the onset. As the disease progresses,
most patients exhibit pneumonia with dyspnea, pulmonary inflamma-
tion, myalgia, fatigue, and reduced leukocyte counts. SARS-CoV-2 in-
fected patients can be identified by radiological evaluation of pneu-
monia and laboratory detection of viral infection. Recent report
indicates that the infection of SARS-CoV-2 not only damage the lung,
but also affect multiple organs in virus infected patients [35]. Males
have been shown to exhibit higher rate of SARS-CoV-2 infection and
mortality than females, which may be attributed to the female X
chromosome that is associated with less viral loads, lower levels of IL-6
and inflammation, higher levels of CD4+ T cells, antibodies, and im-
mune cells, along with the activation of Toll-like receptor 7 (TLR7) and
IFN in females [36]. A study with 38 pregnant women with COVID-19
shows no evidence of intrauterine or transplacental transmission of
SARS-CoV-2 from infected pregnant women to their fetuses [37], which
still needs to be verified in future research. SARS-CoV-2 also infects
children, who are less susceptible to the infection with milder disease
course, better prognosis, and a lower mortality rate than those in adults
[38,39]. There has been an increasing concern over pediatric multi-
system inflammatory syndrome that requires intensive care to be po-
tentially associated with COVID-19, and the commonly reported
symptoms include fever, abdominal pain, vomiting, diarrhea, rashes
and cardiac inflammation. The blood work is consistent with severe
pediatric COVID-19 cases, with overlapping features of toxic shock
syndrome and atypical Kawasaki disease [40]. Mutation hotspots have
been identified by sequencing analysis of the spike protein of SARS-
CoV-2 that is involved in viral virulence [41]. As of June 04, 2020, 6.4
million cases of COVID-19 have been reported globally with 382,867
deaths. The worldwide spread of COVID-19 is presented in the heat map
modified from https://www.who.int/docs/default-source/
coronaviruse/situation-reports/20200517-covid-19-sitrep-118.pdf?
sfvrsn=21c0dafe_8 (Fig. 1).

4. COVID-19 entry and replication

The human SARS-CoV-2 genome encompasses the 5′-untranslated
region (5′-UTR), open reading frame (ORF) 1a/b encoding non-struc-
tural proteins that aid in replication, ORFs encoding structural proteins
including spike (S), envelop (E), membrane (M), and nucleocapsid (N)
proteins, ORFs 3, 6, 7a, 7b, 8 and 9b encoding accessory proteins, and
the 3′-UTR. The M and E proteins help with viral assembly, and the N
protein is critical for RNA synthesis as shown in Fig. 2 A–C. The S
protein plays a vital role in viral entry into host cells by biding to the
ACE2 receptor. Membrane fusion of SARS-CoV-2 is primed by proteases
cathepsin L and Transmembrane Serine Protease 2 (TMPRSS2) via
cleavage at the S1/S2 and the S2 sites [42]. The conformation change in
the S protein facilitates the fusion of viral envelope with the cell
membrane through the endosomal pathway, followed by RNA release
from SARS-CoV-2 into the host cell. Genome RNA is translated into viral
replicase polyproteins pp1a and pp1ab, which are cleaved by viral
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Fig. 1. Global cases of COVID-19 as of 06/04/2020.
(https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200604-covid-19-sitrep-136.pdf?sfvrsn=fd36550b_2)

Fig. 2. Schematic of the virion, the genome and the spike protein of SARS-CoV-2 that causes COVID-19, a human respiratory syndrome. A) The viral surface, spike,
envelope, and membrane proteins are embedded in a lipid bilayer and the single-stranded positive-sense viral RNA is associated with the nucleocapsid protein. The
SARS-CoV-2 genome encompasses the 5′-untranslated region (5′-UTR), open reading frame (ORF) 1a/b encoding non-structural proteins for replication, ORFs
encoding structural proteins including spike, envelop, membrane, and nucleocapsid proteins, ORFs encoding accessory proteins such as ORF 3a, 6, 7a, 7b, 8 and 10,
and the 3′-UTR. B) Genome organization of SARS-CoV-2. C) SARS-CoV-2 spike glycoprotein. The S1/S2 cleavage sites are indicated by dotted lines. In the S protein,
the S1 subunit is comprised of signal peptide (SP), receptor (ACE2)-binding motif (RBM), and receptor-binding domain (RBD); the S2 subunit is comprised of fusion
peptide (FP), heptad repeat (HR), transmembrane domain (TM), and cytoplasm domain (CP).
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proteinases. Subgenomic mRNAs produced by polymerases are trans-
lated into relevant viral proteins by discontinuous transcription, as-
sembled into virions in the ER and Golgi, transported via vesicles, and
released out of the host cell [43]. The released SARS-CoV-2 infects not
only the lungs, but key organs like the brain, heart, intestine, kidney,
and liver through ACE2-mediated pathways. Its pathogenesis involves
induced cytokine storms, immune cell infiltration, and the depletion of
T cells. These pathological changes lead to acute respiratory distress
syndrome (ARDS), hypoxia with myocardial, hepatic, renal, and central
nervous system injuries, and may contribute to organ failure and in-
creased mortality as depicted in Fig. 3 [44,45]. COVID-19 is also de-
tected in asymptomatic carriers by CT imaging and RT-PCR tests, and
the wide spread of asymptomatic transmission makes it challenging to
prevent COVID-19 infections [46,47].

5. Immune cell infiltration and cytokine storms with SARS-CoV-2
infection

Immune cell infiltration and cytokine storms have been reported in
patients with SARS-CoV-2 infection. The levels of inflammatory cells
including eosinophils were low at disease onset but returned to normal
before patients are discharged, indicating that COVID-19 patients may
benefit from continued use of lopinavir, a strategy that needs to be
verified in future studies [48]. The neutrophil to lymphocyte ratio
(NLR) is a marker for the overall inflammatory status of patients;

increased NLR is a risk factor in various diseases and is reported to be
increased in COVID-19 patients, suggesting that it can be an in-
dependent risk factor for mortality in SARS-CoV-2 infected hospitalized
patients [49]. Necropsy of two patients infected with SARS-CoV-2
showed pulmonary hemorrhage, epithelial injury, spherical hyaline
degeneration bodies with macrophage infiltration and fibrosis, and
desquamated alveolar cells in the lung. Immunohistology identification
has also confirmed the expression of chemokines and inflammatory
cytokines IL-6, IL-10, tumor necrosis factor (TNF)-α, programmed
death-ligand (PDL)-1, and CD68+ macrophages. Incubation of purified
and Fc-tagged spike proteins of SARS-CoV-2 that have receptor binding
domains to enter white blood cells showed evidence of the S protein
interacting with CD68-expressing monocytes or macrophages but not
with T or B lymphocytes. The expression of ACE2 was also observed on
macrophages. This study demonstrates the critical role of macrophages
as the host cells for SARS-CoV-2 and the potential driver of cytokine
storms [50].

6. T cell immunity in viral infections

T cell cytotoxic subsets and NK cells play an important role in viral
clearance; exhaustion of such cells increases disease severity. NKG2A is
an inhibitory receptor associated with NK cells to restrict viral re-
plication [51]. A recent study showed a decrease in NK cells and CD8+

T cells with an increased expression of NKG2A, whereas recovering

Fig. 3. Transmission of SARS-CoV-2, replication in humans, and induction of pulmonary fibro-inflammation and organ failure. SARS-CoV-2 that causes COVID-19
may originate from the primary host bats or unknown secondary hosts and cross the species barrier to humans. The spike protein on SARS-CoV-2 binds to the cell
surface receptor ACE2 and the enzyme TMPRSS2, which aid the virion entry. The virion releases its RNA, part of which is translated into proteins. Proteins and the
RNA are assembled into a new virion in the Golgi and released. Exposure to SARS-CoV-2 induces immune cell infiltration that promotes inflammatory cytokine
storms and multi-organ failure via the acute respiratory distress syndrome.
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patients showed restored levels of NK and CD8+ T cells with a de-
creased expression of NKG2A. Interestingly, the levels of CD107a+

CD8+, IFN-γ+CD8+, IL-2+CD8+, and granzyme B+CD8+ T cells as
well as CD107a+, IFN-γ+, IL-2+, TNF-α+, and granzyme B+ NK cells
were also decreased in COVID-19 patients [52]. Regulatory T cells
(Tregs) suppress activated CD4+ or CD8+ T lymphocytes, while IL-10
enhances Tregs and inhibits T cell activation. Decreased levels of Tregs
have been observed in COVID-19 patients [53]. IL-10 is an anti-in-
flammatory cytokine produced in viral, fungal, bacterial, and parasitic
infections. It suppresses macrophages and dendritic cells, while in-
hibiting cytokines and chemokines [54]. IL-10 adjunct therapy has been
shown to be effective against viral encephalitis caused by a re-
combinant coronavirus (J2.2-V-1 [rJ2.2]) in mice [55]. However, ele-
vated IL-10 levels have been observed in COVID-19 patients with severe
infection [56], possibly due to a compensatory anti-inflammatory re-
sponse of IL-10 for high disease severity. Taken together, the evidence
strongly supports IL-15 immunotherapy as a useful strategy to control
SARS-CoV-2 infection in patients. The rationale is based on our recent
findings that IL-15 can induce INF and IL-10 by increasing the number
of Treg subsets [17]. Further, mesenchymal stem cells (MSC) possess
immunomodulatory effects, and ACE2− MSC transplantation has
showed elevated levels of peripheral lymphocytes and IL-10, as well as
decreased levels of C-reactive protein, TNF-α, CXCR3+CD4+ T cells,
CXCR3+CD8+ T cells, and CXCR3+ NK cells that secrete cytokines.
These MSC are ACE2- and TMPRSS2-, and are free from SARS-CoV-2
infection [57]. Therefore, it is helpful to assess cytokines and lympho-
cyte subsets in the initial screening and treatment of COVID-19.

7. SARS-CoV-2 mediated pulmonary fibrosis

Immune cell infiltration and inflammatory cytokine storms ob-
served in SARS-CoV-2 infected patients can lead to acute pulmonary
injury and edema via dysfunctional endothelial barriers and damaged
alveolar walls in the lung [58]. The histological features of lung tissues
in COVID-19 patients include pulmonary edema, interstitial fibrosis,
mucin production, pulmonary hemorrhage, hyaline degeneration, vas-
cular wall thickening, inflammatory cell infiltration, necrotizing bron-
chial and epithelial cells, and squamous cell metaplasia. Additionally,
the pulmonary tissues showed positive staining of CD3, CD4, CD8,
CD20, CD79a, CD5, CD38, CK7, and collagen IV [59]. SARS-CoV-2 in-
duced cytokine storms may further lead to clotting, cell death, immune
paralysis with inflammation, and organ failure.

8. Current and potential treatments for COVID-19

Humoral and cell-mediated responses are critical in fighting against
SARS-CoV-2 infection. Various preclinical studies in mouse models
showed protective responses against the S protein of SARS-CoV-2, and
antibodies generated against the N protein of SARS-CoV-2 was reported
in COVID-19 patients. Azithromycin and hydroxychloroquine combi-
nation are more efficient for viral load reductions against SARS-CoV-2
infection [60]. Kaletra anti-viral therapy, along with IFN and antibiotic
treatment, has been shown to normalize T cells, NK cells, and NKG2A+
Cytotoxic T lymphocytes (CTLs) in a small set of individuals [52]. In-
creased level of IL-6 is correlated with poor outcomes in COVID-19
patients and a study with IL-6 receptor-targeted antibodies, tocili-
zumab, has showed recovery of respiratory functions
(ChiCTR2000029765) [61]. Cross-neutralizing human monoclonal an-
tibody 47D11 that targets the conserved epitope in the SARS2-S-S1B
domain and neutralizes both SARS-CoV and SARS-CoV-2 is identified in
cell culture. This antibody alone or in combination with other anti-viral
drugs may potentially prevent and/or treat COVID-19 [62]. Further-
more, convalescent plasma transfusion with SARS-CoV-2-IgG antibody
and a neutralization titer has been shown to improve symptoms in a
small study with 5 patients [63]. Convalescent plasma therapy is well
tolerated with increased oxyhemoglobin saturation and lymphocyte
counts, decreased C-reactive protein, and neutralized viremia in 10
COVID-19 patients [64]. However, these data are not independently
reliable due to the absence of the control groups in these studies. The
effectiveness of plasma therapy needs to be validated in reliable double-
blind placebo-controlled clinical trials. Natural immunity and anti-
oxidative capacity of the host are crucial in minimizing or preventing
symptoms associated with viral attacks. Earlier reports have also in-
dicated antiviral properties of micronutrients [65], and a recent study
has demonstrated that vitamin D could improve clinical symptoms of
COVID-19 [66]. Therefore, maximizing the body’s defense with anti-
oxidant-rich diets supplemented with micronutrients might be bene-
ficial in some individuals with healthy immune systems [67]. Several
ongoing clinical trials across the globe for vaccines, anti-viral drugs,
and neutralizing antibodies to restrict COVID-19 infection in humans
are listed in Table 1.

9. Conclusions

The COVID-19 pandemic is a worldwide public health concern and
is worse than the influenza pandemic of 1918. Almost 382,867 deaths
have been reported as of June 04, 2020. Several clinical trials are
currently under way in search of therapies for COVID-19. SARS-CoV-2
infection induces cytokine storms via several immune cells. The IL-15
immunotherapy may be a viable strategy for COVID-19, as it promotes
innate immune responses via the induction of NK cells, CD8+ T cells,
and T regulatory cells to neutralize Th2 cytokine storms, resulting in
decreased levels of IL-4, IL-5, and IL-13. These events mitigate SARS-
CoV-2 induced inflammation and fibrosis through IFN-γ and IL-10,

Table 1
Pharmacology of selected COVID-19 treatments under investigation. Resources:
() FDA, WHO, Clinical trials.gov.

Drugs Mechanism of action

Anti-inflammatory therapies for COVID-19 infection
Actemra IL-6 inhibitor
Lenzilumab anti-GM-CSF
CD24Fc IL-6 inhibitor
Colchicine Tubulin disruption
Kevzara IL-6 inhibitor
Leronlimab CCR5 antagonist
Aviptadil IL-6 inhibitor
SNG001 IFN-β-1α
Gilenya sphingosine 1-phosphate receptor

modulator
Mesenchymal stem cells Tissue regeneration
Gimsilumab Anti-GM-CSF
Sylvant IL-6 inhibitor
Anti-viral therapies for COVID-19 infection
Remdesivir Adenosine analog
Kaletra HIV protease inhibitor
Arbidol Broad-spectrum antiviral
Chloroquine/ Hydroxychloroquine ACE-2 inhibitor
Avigan RNA polymerase inhibitor
Pneumonia therapies for COVID-19 infection
Ganovo-Ritonavir Hepatitis C/HIV protease inhibitors
Prezcobix HIV-1 protease inhibitor + CYP3A

inhibitor + CYP3A inhibitor
Avastin VEGF inhibitor
Airuika PD-1 inhibitor
Plasma therapies for COVID-19 infection
Plasmapheresis Antibodies from recovered patients
Therapies for organ failure with COVID-19 infection
Losartan AT1R inhibitor
Vaccines under investigation for COVID-19 infection
mRNA-1273 S-protein mRNA vaccine
Ad5-nCoV Non-replicating viral vector
ChAdOx1 nCoV-19 Non-replicating viral vector
LV-SMENP-DC Lentiviral
BCG Vaccine Live attenuated Virus
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which inhibit viral replications and reduce viral loads. The current re-
view highlights the importance of IL-15 immunotherapy in decreasing
viral loads and neutralizing cytokine storms induced by SARS-CoV-2 in
COVID-19 patients. A summarized mechanistic pathway for IL-15 im-
munotherapy is presented in Fig. 4.
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