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Abstract

Background: Positron emission tomography (PET) with '®F-3’-deoxy-3'-fluorothymidine (['®F]FLT) can be used to
assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of
tumours in dynamic ['®F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its
test-retest performance in ['®FIFLT PET in non-small cell lung cancer (NSCLC) patients.

Methods: Nine NSCLC patients underwent two 60-min dynamic ['®FIFLT PET scans within 7 days prior to treatment.
Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation
maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed
using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied
to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested.
Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value
(SUV) were evaluated.

Results: KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation
segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able
to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and
SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue,
which was shown to be related to heterogeneous ['®FIFLT uptake areas within the tumour.

Conclusions: For ['®FIFLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation
performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for
tumour segmentation in NSCLC ['®FIFLT PET studies in multicentre studies. Yet, it was observed that KF has the potential

to subsegment lesions in high and low proliferative areas.
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Background

In recent years, several studies demonstrated '°F-3’-deoxy-
3’-fluorothymidine ([*®F]FLT) as a useful positron emission
tomography (PET) tracer for the prediction and monitoring
of tumour response to chemotherapy [1-3]. Tumour tissues
that show changes in ["®FJELT uptake within a week of
therapy have a high likelihood of responding to treatment
[4,5]. To evaluate changes in tracer uptake and viable lesion
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volume quantitatively, analysis requires tumour segmenta-
tion. Various manual and (semi-)automatic methods for
tumour delineation have been proposed [6-8]. As manual
tumour delineation is time consuming, requires expertise
and is prone to observer variation, automatic tools are pref-
erable. The performance of a (semi-)automatic tumour seg-
mentation method in PET may vary per tracer, cancer type
and lesion location. Physiological biodistribution and
kinetic characteristics differ per tracer and per cancer
type. The location of the lesion determines the contrast
in tracer uptake between tumour and surrounding tis-
sue: the target-to-background ratio [9]. ['8F]FLT shows
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lower overall uptake in tumours and higher uptake
in certain healthy tissues, such as liver and bone marrow
than, for example, ['*F]FDG (2-fluoro-2-deoxy-D-
glucose). Therefore, [*8F]FLT PET may require different
(semi-)automatic tumour segmentation methods for
tumour delineation than [**F]FDG PET.

Gray et al. [10] proposed a supervised classification
method based on kinetic filtering (KF) [11]. In the KF
method, the time activity curve (TAC) of each voxel is
compared to the typical reference TAC of several repre-
sentative tissues (liver, bone marrow, soft tissue, etc.). In
breast cancer, Gray et al. reported significantly different
results of standard uptake values (SUVs) based on KF
and manual delineation.

For response-monitoring purposes, the repeatability of
quantitative measures, which are used to characterize
tracer uptake changes, needs to be known. Therefore, it
is required to determine the test-retest (TRT) perform-
ance of the KF method in [**F]JFLT PET studies and to
compare it with other (existing) segmentation methods.
Furthermore, it is of interest to explore the sensitivity of
the supervised classification method to varying imaging
protocols. Finally, the method has not yet been tested
for the segmentation of lung tumours.

The current study examines the TRT performance of
several implementations of the KF method for segmenta-
tion of lesions in non-small cell lung cancer (NSCLC)
["®F]FLT PET scans. Apart from segmentation perform-
ance, the TRT variability of SUVs and metabolically
active tumour volumes as defined with KF will be com-
pared with those based on a (static) 50% background
corrected relative threshold method.

Please note that segmented tumour volume in this art-
icle refers to the metabolically active tumour volume as
derived with PET, not the anatomical volume.

Methods

Segmentation methods

In this paper, we compare the segmentation and repeat-
ability of several adapted versions of the KF algorithm
and a 50% background corrected isocontour method
(A50%), as used by Frings et al. [12]. A short introduc-
tion of the original KF method and of the A50% method
is given below in order to introduce some basic termin-
ology used in the remainder of the paper.

Kinetic-filtering algorithm

The supervised segmentation method is described in
Gray et al. [10]. The method compares for each voxel its
TAC to several typical TACs of the most characteristic
tissues (liver, vertebrae, tumour, heart, lung and back-
ground). These predefined TACs for various tissue types
are called kinetic classes (KCs). KCs are derived from
averaging tissue TACs from several dynamic [**F]FLT
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PET studies. These are then used to segment lesions in
(other) dynamic [®F]FLT studies based on calculation of
the Mahalanobis distance [13]. This is the distance be-
tween the voxel TAC and tissue class, weighted by the
kinetic class standard deviations:

where Dy is the Mahalanobis distance of voxel p to
tissue class M, N is the number of time frames, p, is the
activity of the voxel at time frame ¢, and g, and o, are
the activity of the class and the standard deviation at
that time frame, respectively.

In order to obtain the same temporal sampling
(frames) as that of the PET study, the KCs are resampled
to those of the PET scan to be analysed. Gray et al.
found that the algorithm did not distinguish properly be-
tween vertebrae and tumour tissue. Therefore, the algo-
rithm reclassifies voxels assigned to the vertebra class as
tumour tissue.

Segmentation based on A50%

A50% is a semi-automatic threshold technique. The
threshold method locates the voxel with the highest up-
take value near a user-indicated starting point in the
tumour. Next, a region-growing algorithm using the lo-
cation of the maximum tumour voxel value continues
until all voxels above a certain threshold are included. In
the case of the A50% method, this threshold is 50% of
the sum of the maximum uptake value and the local
background value. The local background value is calcu-
lated by averaging the values of a 1-voxel-thick shell at
1.5-cm distance from the boundary of an initial 70% of
the maximum value isocontour. More details can be
found in [14-16]. Frings et al. compared various thresh-
old settings [12] in [**F]FLT PET and found that the 50%
background adapted threshold, A50%, had the best
trade-off between success rate and repeatability. Here,
success rate is defined as the feasibility to define the
tumour volume of interest (VOI).

Clinical data sets and PET reconstruction

The present study involved three different KF reference
data sets, each of which has been described in previous
publications. The patients were included in the clinical
studies after providing written informed consent in ac-
cordance with institutional review board approval. The
first data set originates from the Hammersmith and
Charing Cross Hospitals, London, United Kingdom, and
was provided only in the form of tissue KC [10]. The
other two data sets were collected at the VU University
Medical Centre (VUmc), Amsterdam, The Netherlands
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[1,4]. Details of the data acquisition that are directly rele-
vant for this paper are given below; further information
can be found in the original publications of these studies.

Gray et al. [10] created tissue KC from the Hammer-
smith data. For the main part of our study, the KF method
was implemented using these KCs. The Hammersmith
data consisted of 13 [*®F]FLT PET scans of patients with
histologically proven stage II-IV breast cancer based on
American Joint Committee on Cancer stage (AJCC) cri-
teria. A median dose of 338 MBq [F]FLT (range 151 to
381 MBq) was injected intravenously. Simultaneously with
the injection, the emission scan was started using an
ECAT962/HR+ PET scanner (CTI/Siemens, Knoxville,
Tennessee, USA). The patients were scanned for 95 min,
and the data were binned into 31 discrete time frames of
varying duration (10x30 s, 5x60 s, 5x120 s, 5x 180 s,
6 x 600 s). A subsequent transmission scan was used for
attenuation correction. The images were reconstructed
using the ordered subsets expectation maximisation
(OSEM) method. The KC based on these data will be re-
ferred to as Hammersmith KC.

Alternative KCs were derived from one of the VUmc
datasets to test whether different scanning protocols
could affect the classes and the KF segmentation per-
formance. The data consisted of nine [“*FJFLT PET
scans of patients with histological-confirmed NSCLC
adenocarcinoma [1]. [*®FJFLT (248 MBq, range 226
to 270 MBq) was injected intravenously 30 s after start-
ing a dynamic emission scan in 3D setting on a ECAT
EXACT HR+ scanner (Siemens/CTI, Knoxville, TN,
USA). The total scan time was 60.5 min with the follow-
ing frame lengths: 1x30s,6x55s,6x105s,3x20s,5x
30s,5%x60 s, 8x 150 s and 6 x 300 s. All emission scans
were reconstructed with 128 x 128 matrices using fil-
tered back projection (FBP) with a Hanning filter (cut-
off, 0.5 cycles per pixel). In addition, the images were
reconstructed using OSEM, with 4 iterations and 16
subsets followed by post-smoothing of the reconstructed
images using a 5-mm full width at half maximum
(FWHM) Hanning filter. In the remainder of this paper,
the kinetic classes based on this data set will be referred
to as the VlUmc KC.

The third data set was used to evaluate tumour seg-
mentation performance of KF and A50%. The TRT study
was first described in a previously published study [1].
The data consist of [**F]FLT PET scans of nine patients
with histologically proven NSCLC. The patients were
scanned twice within 7 days (mean 1.9 days, median
1 day) before any treatment. The patients were given an
intravenous bolus injection with a median of 364 MBq
[“*F]FLT (range 252 to 397 MBq). Simultaneously, a
60-min PET scan was started using an ECAT962/HR+
PET scanner (CTI/Siemens, Knoxville, TN, USA). The
39 discrete time frames had varying durations (6 x5 s,
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6x10s,3x20 s, 5x30 s, 5x60 s, 8x 150 s and 6 x
300 s). The scans were reconstructed both with FBP and
OSEM in the same way as applied for obtaining the
VUmc KC. From here on, this data set will be referred
to by the test-retest data or TRT data.

Kinetic classes of kinetic filters

KCs are derived as described in Gray et al. [10]. For every
scan of the Hammersmith OSEM-reconstructed data, the
average of the last three frames was created, and tissue
VOI was defined manually by an experienced physician
on the several tissue types. Next, dose-normalized TACs
were extracted for every tissue type. The TACs were aver-
aged per tissue type for all scans, resulting in a mean
dose-normalized TAC or KC. The standard deviations for
all time frames were obtained and used as weighting
factors during KF segmentation, as described previously in
the ‘Kinetic-filtering algorithm’ section (Equation 1). As
indicated before, these reference tissue classes were
provided to us and are called the Hammersmith kinetic
classes (Hammersmith KC).

For the VUmc KF development dataset, the same pro-
cedure was applied to create VUmc-specific KC, both from
the FBP- and the OSEM-reconstructed images. These KCs
are called the VUmic kinetic classes (VUmc KC).

The TRT data were averaged over the last three frames
(45- to 60-min post injection (p.i.)) for both FBP- and
OSEM-reconstructed images. As no anatomical imaging
data was available, VOIs were delineated manually from
the averaged image data. A total of 28 tumour lesions
were identified by an experienced physician. The VOIs
were defined including the entire tumour plus a rim of a
few voxels with soft tissue surrounding the lesions. These
VOlIs are used as lesion masks. As will be explained later,
the lesion masks are used to generate some adapted ver-
sions of the KF method and to evaluate the performances
of the different implementations of the KF method.

KF method adaptations

During the evaluation of the KF methods using the
VUmc TRT dataset, several adaptations of the KF
method were explored. The adapted KF versions were
kept identical to the original method as described in
Gray et al. [10], except for the following changes:

— KF of FBP- versus OSEM-reconstructed TRT data.
— Use of different sets of KC: the Hammersmith classes
and FBP-reconstructed and OSEM-reconstructed

VUmc kinetic classes.

— Adjustment of weighting factors in calculating the
Mahalanobis distance. The standard deviations were
scaled with several values (0.5, 1.0 and 2.0).

— TRT data scans were resampled to better resemble
the frame duration and distribution of the
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Hammersmith data. The total number of frames was
reduced from 40 to 31 by reduction of the first 10-
min data from 26 to 16 time frames. This was per-
formed by temporally interpolating the TRT data to
the Hammersmith frame times.

— Reclassification of voxels that are incorrectly
classified as liver and/or vertebrae within the lesion
mask into tumour voxels.

— Reduction of the set of KCs, by leaving out the liver
KC or both the liver and vertebrae KC.

— Temporal smoothing of voxel TACs before
application of the KF method. Every frame was
averaged with the previous and the next time frames.

— Limitation of the time interval of the PET data.
Tested time intervals are: 0 to 5, 9 to 60, 15 to 60
and 30 to 60 min. Frames outside the time interval
were disregarded during classification.

Combinations of these adaptations were tested leading
to over 50 different KF versions. In Table 1, a small subset
of the most successful implementations is summarized.

Performance evaluations

For each test and retest scan of the TRT dataset, (combi-
nations of) the above-mentioned adapted versions of the
KF method were applied to automatically segment the
tumour. In addition, the A50% method was applied as
reference semi-automated lesion delineation. The meta-
bolically active tumour volume and SUV TRT (percentage
difference and absolute differences) for both measures
were compared using those lesions that were detected by
both methods. The absolute difference and relative TRT
variability for volume and SUV between test and retest
data were calculated for both the KF and A50% methods
for all identified lesions (within the manually predefined
lesion masks) and averaged. The TRT variability was cal-
culated as the absolute value of difference between the test
and retest value, divided by the mean of both measure-
ments and multiplied by 100. In order to further compare
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the A50% and KF segmentation performance, the number
of lesions that could be reliably segmented by each
method was reported.

Results

The TACs of the Hammersmith and VUmc KC are shown
in Figure 1. Though the shape of the KCs appear to be
similar, differences can be observed in amplitude, standard
deviations, frame distribution and total scan time (90 vs.
60 min for Hammersmith and VUmc scans, respectively).

The original as well as various modified versions of
the KF method provided very poor segmentation results
when applied to FBP-reconstructed images due to image
artefacts. Figure 2A is an example of the result of post-
processing a FBP-reconstructed image with the kinetic-
filtering method. The artefacts that are visible on the
original FBP image (Figure 3A) are clearly affecting the
classification of the kinetic-filtering method (Figure 2A).
Therefore, we only considered OSEM-reconstructed im-
ages of both KF and A50% (Figures 3B, C and 2B).

The median A50%-defined lesion size (PET volume)
was 8.6 cm® (range 0.7 to 51.9 cm®). The original imple-
mentation of KF segmented 15 out of 28 lesions (KF1,
Table 1), whereas A50% segmented all lesions. All un-
detected lesions were metastases and had a A50%-
defined metabolic volume smaller than 2.5 cm?® All
primary lesions and metastases larger than 2.5 cm?® were
identified. On average, the original implementation of
KF (using the Hammersmith kinetic filters) provided
97% larger volumes and 16% lower SUV than measured
with A50%. The lower SUV obtained with KF compared
to A50% was caused by the larger tumour segmentation
as well as by KF misclassification of highly active areas
in the lung tumour as being liver, which were excluded
from the obtained tumour segmentation. Median meta-
bolically active tumour volume and SUV TRT variability
of KF and A50% were 20.7% vs. 10.0% and 4.7% vs. 4.3%,
respectively, as also illustrated in the boxplot in Figure 4A
and C, respectively.

Table 1 Overview of various KF methods and their corresponding settings

KF version KC Description Undetected lesions
1 H'smith Original KF algorithm 13

2 H'smith Temporal smoothing was added 11

3 H'smith Frame times of the scan data adjusted 2

4 H'smith Liver KC reclassified as tumour KC, classification of 9- to 60-min p.i. 4

5 H'smith Liver KC reclassified as tumour KC, classification of 20- to 60-min p.i. 2

6 H'smith Liver KC omitted 6

7 H'smith Liver and vertebrae KS omitted 1

8 VUmc Original KF algorithm 10

9 VUmc Liver KC reclassified as tumour KC, temporal smoothing, classification of 15- to 60-min p.i. 2

Only the results of the original KF and the eight most successful adaptations are provided. KC, kinetic class; KF, kinetic filtering; p.i.,, post injection.



Hoyng et al. EJINMMI Research (2015) 5:26 Page 5 of 10
g
o.sz‘ 0.52[
018} . 018} g
Heart Heart
Liver Liver
0.16 | ---%-- Vertebrae 4 0.16 |-—~*-- Vertebrae g
Lung Lung
= ---#-- Breast T “-+-- Breast
S 014H | —+— Tumour - S 014f | —+— Tumour 1
o [}
[l o«
= ]
= 012 B = 012} .
S o01f oot 1 S oaf .
5 s 5
o ok o
2 e 2
2 008 o g & 008 R g
€ e € et
g \ *{*’M 2 5 ¥
2 0.06H + . 3 0.06f - P .
o o \ -
= #"* a H
\ *
! S
0.04 'g’ 3 1 omW i
0.02} 4 0.02 T .
. ik b R S R
i S V. T e P WM L R s
0 . A L L L 0 L . L L \
0 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Time (sec) Time (sec)
Figure 1 Hammersmith (A) and VUmc (B) kinetic classes.

Given the high number of either undetected lesions or
partly misclassified lesions by the original implementa-
tion of KF, our aim was primarily to optimize the KF
method performance and test its feasibility for the
VUmc TRT data. Due to the large amount of KF ver-
sions, only the results obtained from the original and the
best performing implementations are shown in Figure 4
and listed in Table 1.

The best performing KF implementations in combin-
ation with the Hammersmith KC were those that were ob-
tained using (in random order) the following: temporal
smoothing (KF2); frame times of the TRT data PET scans
interpolated to the frame times of the Hammersmith KCs

(i.e. not vice versa, KF3); KC liver being reclassified as KC
tumour in combination with analysis over a limited time
interval from 9- to 60-min p.i. (KF4); KC liver being re-
classified as KC tumour, analysis over a limited time inter-
val from 20- to 60-min p.i. (KF5); use of a reduced set of
KC, i.e. the liver KC was omitted (KF6); use of reduced set
of KC, i.e. both liver and vertebrae KC were omitted
(KF?); and the original KF implementation (KFI) in com-
bination with the VUmc KC is indicated by KF8. The best
performing KF implementation in combination with the
VUmc KC was the one that reclassified liver and vertebrae
as tumour KC, used temporal smoothing and restricted
the analysis time interval from 15- to 60-min p.i. (KF9).

B Background
Breast
p Lung
Heart
Liver
Vertebra
Tumor

Figure 2 Example of KF classification. Example of a KF classification of an axial slice, FBP- (A) versus OSEM- (B) reconstructed image; the black
arrow points at tumour segmentation from corresponding images shown in Figure 3.
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Figure 3 Example ["8FIFLT PET axial slice, FBP and OSEM reconstructed. Axial slice showing ["8FIFLT uptake, using FBP and OSEM reconstructions:
FBP, 60-min p.i. (A); OSEM, 5-min p.i. (B); OSEM, 60-min p.i. The tumour has a coloured overlay of the lesion mask (C).

The adapted KF method versions (as listed above and in
Table 1) reduced the amount of undetected lesions and
improved the percentage repeatability performance as
compared to the original KF implementation (KFI). The
best performing KF methods in combination with the
Hammersmith KC were KF3, KF4 and KFS5, i.e. when
using temporally resampled PET images, reclassifying liver
as tumour or when leaving out liver as a kinetic class.

KF with temporal smoothing and a reduced set of KC
(no liver and vertebral KC) (KF7) showed a good TRT
variability compared to other KF implementations and
was able to reliably segment all but one lesion. Figure 5
shows that the method classified too many voxels as
tumour, even outside the lesion mask. This version of
the KF method is therefore not successful. The red
colour in the lung area in the segmentation pictures of
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Figure 4 Test-retest performance of the most successful KF versions and of A50%. Percentage metabolically active tumour volume variability
(A), absolute metabolically active tumour volume difference (B), percentage SUV variability (C) and absolute SUV difference (D). Per KF version,
the A50% TRT performance is shown for those lesions that were detected by the specific KF version. KF versions are listed in Table 1. KF, kinetic
filtering; SUV, standard uptake value.
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KF 8

kinetic filtering.

Figure 5 Segmentation examples obtained from several KF implementations. The KF numbering corresponds to the KF numbering as listed in
Table 1. The black arrow in the image of KF1 points at the tumour. Every image represents the same axial image plane in the same patient. KF,
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KF3, KF5 and KF9 shows misclassification of heart and
lung tissue as breast tissue. However, repeatability of
metabolically active tumour volume was similar to that
of A50% and fewer lesions were undetected in these ver-
sions as compared to the original KF. However, the
spread in these methods is higher than with A50%.
Misclassification of tumour voxels as liver or vertebrae
was observed in the original KF implementation. After fur-
ther analysis, these misclassifications seem to reflect a het-
erogeneous kinetic behaviour within the tumour as shown
by the high-uptake trend of the averaged TACs of the
tumour voxels classified as liver or vertebrae (Figure 6B).

Discussion

KF allows automated segmentation of lesions from dy-
namic ["*F]FLT PET studies. In this study, various modifi-
cations of the KF method of Gray et al. [10] are examined.
Since none of the tested methods reliably distinguished
vertebrae and tumour, we introduced lesion masks. Com-
bined with the KF method, these masks enable the seg-
mentation of tumour as well as redefinition of voxels
classified as liver and/or vertebrae into tumour (as there
can be no liver or vertebrae within the lesion masks).

Comparison of the Hammersmith KC with the VUmc
KC shows that the TACs of several KCs are very similar
in shape and in relative uptake intensity (Figure 1 Ham-
mersmith (A) and VUmc (B) kinetic classes). Tumour
tissue and bone marrow show relatively high uptake due
to rapid proliferation. The average ["*F]FLT PET bone
marrow TAC demonstrates irreversible tissue kinetics.
The liver metabolizes [**F]FLT to [ISF]FLT-glucuronide
causing an even higher uptake signal in liver tissue but
with explicit reversible kinetics, i.e. a decreasing trend
over time. Recent studies suggest that most NSCLC tissue
TACs are best fitted by a two-tissue reversible model in
nonlinear regression analysis when applying a 90-min dy-
namic scan [17-19]. Small amplitude and shape discrepan-
cies between the two KCs might be caused by a difference
in tracer injection and/or imaging procedure. Differences
in administration procedures, i.e. a fast or slow bolus in-
jection, have a direct effect on the shape of any TAC for
all tissues which may also affect the performance of the
KF methods. As the use of Hammersmith KC versus
VUmc KC has a large effect on the observed TRT perfor-
mances, use of optimized or site-specific KC seems to be
important for obtaining reliable results. Consequently,
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Figure 6 Misclassification of KF showing possibly heterogeneous tumour areas. The black arrow points at a tumour area that now encloses two
different segmentations, KC tumour and KC liver, indicated by different colours (A). The tumour part that is classified as liver and/or vertebrae
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application of KF to multicentre studies requires highly
standardized imaging procedures to apply KC derived
elsewhere, or alternatively, the KCs need to be defined per
imaging site. Furthermore, the specific framing of the dy-
namic scan affects KF performance. Best results with
Hammersmith KC were obtained by either adjusting the
frame times to a more even distribution of the time frames
over the course of the PET scan or by disregarding the
first 10 min of the scan (KF3-KF5). The 30-min difference
in total scan duration between the two sites might be rele-
vant in this context as well. Better TRT performance was
obtained by allowing a more prominent role of the ‘tails’
of the TACs in the distance calculations. Possibly, use of
longer than 60-min scan durations could have further im-
proved performance; however, this was not possible with
the currently available datasets. Optimisation of adminis-
tration procedure in combination with adjustment of
frame times of the dynamic scans might improve the per-
formance of the tested KF methods. Moreover, we found a
difference in the standard deviations of the Hammersmith
KC and VUmc KC. Since these act as the weighting factor
when calculating the Mahalanobis distance, this difference
can influence the classification results. Although we tested
various levels of rescaling of the amplitude of the weight-
ing factors, we did not find an optimal setting. Reclassifi-
cation of voxels that were initially classified as vertebrae
or liver to tumour provided the best TRT results (KF4 and
KF5) with Hammersmith KC. Obviously, when studying
liver metastases, this would not be appropriate. Similarly,
we expect the A50% isocontour method to be less reliable
in hepatic metastases due to the high physiological
[*®F]FLT uptake value of the liver. KF with VUmc KC
needed adjustment as well due to the required order of
the Mahalanobis distances between a voxel and the KCs

to allow for KC reclassification of KC vertebrae. Reduced
VUmc KC performed best with only 2 missing lesions out
of 28 and good metabolic active tumour volume and SUV
TRT variability. Currently, patients with liver metastases
are undergoing [*®F]JFLT-PET scans in order to further as-
sess the performance of KF in areas with high physio-
logical [*®F]FLT uptake in a future study.

Scan and administration procedures were identical for
both the VUmc development dataset and the TRT data-
set, and therefore, obviously KF performed better in
combination with the VUmc KC than in combination
with the Hammersmith KC. If KC were not adapted to
the study-specific and centre-specific tracer administra-
tion and scanning settings, then 50% of the lesions were
not properly segmented. Yet, after carefully adjusting the
method to align KC to scan conditions of the TRT data
set or applying KC derived from scans performed on the
same scanner and obtained using the same imaging pro-
cedure, the KF method performance improved and was
able to reliably delineate 93% of the lesions. At the same
time, metabolically active tumour volume and SUV TRT
performances improved to similar levels observed with
the A50% method (around 10%, on average). The im-
proved performance after local (study-specific) optimisa-
tion of KF again illustrates that for a multicentre study
standardized administration and scanning protocols are
essential. Yet, once KF is optimized to the specific scan
conditions at hand, the method can be used as an initial
automated visualisation to identify lesions in dynamic
[*®F]FLT PET studies.

An additional advantage of KF classifications could be
their potential use as a segmentation method for kinetic-
ally heterogeneous tumours. Detection of tumour het-
erogeneity could be used as a prognostic biomarker, to
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asses treatment response and for dose escalation in radi-
ation therapy [20-22]. Therefore, it is necessary to study
(automatic) delineation of intratumour subvolumes. To
date, only few such studies have been performed to ad-
dress this issue [9,23]. In our study, the observed intra-
tumour (mis-)classification of voxels into liver or
vertebrae may indicate that the method can differentiate
between metabolically high and low active tumour tis-
sues within a predefined lesion mask. Some preliminary
results are shown in Figure 6, together with TACs, for
these differently classified intratumour regions (now still
denoted as liver and vertebrae). Further adaptations of
this method might improve its use for intratumour
tracer uptake heterogeneity assessment or segmentations
and will be part of future research.

Conclusions

For dynamic [*®F]FLT PET studies in NSCLC patients,
kinetic filtering and an adaptive contrast-oriented iso-
contour method (A50%) have similar repeatability per-
formance to define metabolically active tumour volume
but only after careful optimisation of the kinetic-filtering
method settings. The kinetic classes and/or the kinetic-
filtering method therefore requires a protocol-specific
optimisation. In multicentre studies, A50% might be a
good alternative segmentation method for ['*F]FLT PET
in NSCLC. Yet, KF has the potential to identify low and
high proliferative areas within heterogeneous lesions.
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