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Hardness of cubic solid solutions
Faming Gao

We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, 
covalent and metallic bonding. It is revealed that the hardening stress ∆τF

cg is determined by three 
factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple 

hardening correlation in KCl-KBr solid-solution is proposed as ∆τF
cg = 0.27 G f δv b

2
3 . It is applied to 

calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-
NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The 
BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the 
x = 0.55–0.85 in BNxP1−x, where BNxP1−x solid solutions are far harder than cubic BN. Because the 
prediction is quantitative, it sets the stage for a broad range of applications.

High-hardness materials are widely used for wear-resistant coatings and cutting tools. In engineering practice, 
hardening processes, such as Hall-Petch strengthening, work hardening, precipitation hardening, and alloy hard-
ening, are commonly used to increase the hardness of a material1. Solid-solution hardening is a type of alloying 
that is performed by adding a soluble alloying element to the material to be hardened. Such mixtures often exhibit 
superior tunable properties compared to those of pure materials. Obviously, a physical understanding of the hard-
ening mechanisms of solid solutions is critical for the development of novel wear-resistant materials. Although 
solid-solution hardening in metals has been extensively studied1–4, we are currently far from achieving a quanti-
tative understanding of the hardening behavior of solid solutions.

In recent years, computational materials science based on first-principles calculations has emerged as an effec-
tive supplement to experimentation, especially because it enables powerful prediction of material properties that 
depend only on electronic density or atomic bonding. Because hardness is the resistance to localized fracture or 
permanent plastic deformation, it relies strongly on the motion of dislocations in addition to atom bonding1,5. 
Technically, both dislocations and solid solutions represent great challenges for the current first-principles calcu-
lations. Therefore, solid-solution hardening cannot be predicted strictly from the electronic structure obtainable 
using density functional theory calculations. From a electronic transition viewpoint, the hardness formulas devel-
oped by Gao et al.5 and other scientists6–9 are very successful for perfect elemental or binary crystals without any 
defects and solid solute. However, these schemes encounter insurmountable difficulty in reproducing correctly 
the trend of the hardness increase with composition in solid solutions. Recently, Gilman2 tried to explain the 
hardening of Ag-Au and KCl-KBr solid solutions using mixing heat, strain and mixing entropy, respectively. 
From our initial theory5, we learned that the activation energies of dislocation glide and hardness are proportional 
to homopolar band gap Eh. When normal sites are replaced by other atoms or vacancies in a crystal structure, the 
local electronic states or new energy levers are introduced, leading to a ∆Eh. When ∆Eh is positive, the activation 
energies of dislocation glide or hardness will increase. Therefore, a hardening rule could exist in various solid 
solutions with combinations of ionic, covalent and metallic bonding. However, an accurate expression of ∆Eh can 
not yet be extracted directly from the electronic description of impurity-dislocation interactions. According to 
Fleischer’s continuum elasticity scheme1, when solute and solvent atoms in solid solutions differ in size, local 
stress fields are formed on a slip plane, and these stress fields interact with those of the dislocations, impeding 
their motion. As a result, to move the dislocations higher applied stress is required, leading to the increase of 
material hardness. In the framework of the Fleischer-Friedel point-obstacle approximation1, the maximum inter-
action force Fm between a dislocation and a single solute atom is characterized by a critical breaking angle θc: 
Fm =​ 2Edsinθc, where Ed is the dislocation line energy. Furthermore, the critical stress of solid solutions can be 
estimated by τ∆ cg

F  =​ 1.8Gδb f1/2, where G is shear modulus, f is the volume fraction of solute atoms intersecting the 
unit area of the glide plane, in the isotropic case the size misfit parameter δb  =​ (da/dc)/a, a is the lattice constant, 
c is the atomic solute concentration1.

From the perspective of dislocation, the hardness Hk of a single-crystal material relies strongly on the resolved 
shear stress on the glide plane due to indentation. We proposed a hardness formula. The Knoop hardness of (hkl)
[h’k’l’] direction in single crystals can be expressed as follows10:
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where τcg is the stress required for slip by the movement of lattice planes past one another in the glide region,  
Θ(ψ​, φ​) is the orientation factor of a glide plane, φ​ is the angle between a glide-plane spacing vector and the  
section of indenter along the short edge, and ψ​ is the angle between the projection of a glide-plane spacing vector 
on the section of indenter along the short edge and the short edge of the indenter, ϕ​ is the angle between the facet 
and the crystal surface, Λ​f is a constant, Nbg is the bond electron density in the glide region, fc is covalency, d is 
bond length. Parameter n is taken as 0 and 1 for brittle and semi-brittle materials, respectively. In solid-solution 
single crystals, the total hardness Hk of solid-solution single crystals can be expressed as follows:

τ τ Θ φ= + ∆ ψ−H 3 ( ) ( , ) (2)
n f

k cg cg
F

The hardening stress τ∆ cg
F  is determined by three factors: shear modulus G, the volume fraction of solute 

atoms fv, and the size misfit degree δb. τ∆ cg
F  may be expressed in a general form

τ δ δ∆ = = .⁎G f AG fA ( ) ( ) (3)v b
p

v b
q p

cg
F

δ δ=⁎ (4)b b
q

where A, p, q are constants, δ ⁎
b  is termed “effective atomic size misfit”.

The most of alkali halides and metals are semi-brittle materials. The solubilities for the alkali halide solid solu-
tion are often limited, but some are complete. In the KCl-KBr system, the two compounds are entirely soluble in 
each other. Thus, it provide a very suitable model system for studying details of hardening of solid solutions. Some 
data points for the system were determined by Subba et al.11. We derive the fitting formula for the hardening stress 
τ∆ cg

F  from KBrxCl1−x solid solution:

τ δ δ∆ = . = . .⁎G f G f0 27 0 27 (5)v b v bcg
F 2

3

where we take fv  =​  + + − +xR x R R x R R/[ ( ) (1 )( )]Br
3

K
3

Br
3

K
3

Cl
3 , (x <​ 0.5). Figure 1 shows the good agreement 

between theoretical and experimental hardness values of KBrxCl1−x solid solution. Where the values of shear 
modulus and the lattice parameters are obtained via linear interpolation of the values for the end members. The 
Ag-Au alloy also is a semi-brittle material. And it is a classical example of the existence of a entire series of fcc 
solid solutions. Both bulk and film samples are single-phase alloys for any x12. We calculate hardness values of Ag, 
Au and Ag-Au alloy using Eq. 5, which are listed in Table 1. From Fig. 2, itcan be seen that the calculated harden-
ing amplitude of Ag-Au alloy is in agreement with experimental results of bulk and film samples.

In addition to semi-brittle materials, a nonlinear increase of microhardness vs composition was observed on 
brittle solid solution single crystals of the InP-GaP. However, the hardening degrees are not significant compared 
to those of semi-brittle materials abovementioned. For semi-brittle materials the dislocations are mobile at a slip 
plane, In brittle materials the dislocations do not move at room temperatures, they tend to fracture along a slip 
plane before yield can occur. Equation 1 reveals a correlation of the critical shear stress for slip between semi-brittle  
and brittle materials by index n. Therefore, we may employ Eqs 2 and 5 (take n =​ 0, p =​ 1

2
, q =​ 2

3
) to estimate the 

hardening stresses in InP-GaP brittle solid solution. The good agreement between experimantal and calculated 
results can be seen from Fig. 3.

Figure 1.  Experimental and calculated hardness enhancement on (100) planes plotted against composition 
x for KBrxCl1−x solid-solution systems. The triangles indicate experimental data (from ref. 11). The blue curve 
represent the calculated data. The inset is a schematic of the (110) slip plane, where the red ball is the solute 
atom and the other balls are solvent atoms.
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Transition-metal carbides and nitrides are important bulk and thin-film materials and widely used for cut-
ting tools and wear-resistant coatings15,16. Due to the complexity of strong d-electron effect the hardness of 
transition-metal carbides and nitrides solid solutions is not yet completely understood at a fundamental level. 
Jhi et al.17 attempted uncovering veil for the solid solution hardening, but studied only the effect of valence elec-
tron concentration (VEC) on shear modulus. Hu et al.18 noted that shear modulus cannot be used as a rigorous 
measure of the hardness of covalent/ionic crystal solid solutions. Hugosson et al.19 proposed a mechanism to 
enhance hardness in multilayer transition metal carbide/nitride coatings. Such type of hardening is attributed to 
a large number of different glide-systems suppressing the propagation of dislocations, which is consistent with 
the theory of hardness10. However, they did not give any quantitative method for the hardness increases. In the 

Crystal Slip system

Indent 
diagonal 

orientation ψ (°) φ (°)
τe

cg 
(GPa)

Hk calc. 
(GPa)

Hv expt. 
(GPa)

G 
(GPa) δb (10−3) fv

∆τcg
F  

(GPa)

Ag (111)[110] (100)[110] 35.264 0 0.172 0.14
0.251 30.3

(100)[001] 45 35.264 0.172 0.18

Au (111)[110] (100)[110] 35.264 0 0.173 0.14
0.216 27.5

(100)[001] 45 35.264 0.173 0.19

Cu (111)[110] (100)[110] 35.264 0 0.337 0.28
0.369 44.7

(100)[001] 45 35.264 0.337 0.36

Au0.5Ag0.5 1.96 0.50 0.23

Table 1.   Calculated Knoop hardness. For comparision, experimental Vickers hardness Hv expt. (from ref. 13) 
are listed.

Figure 2.  Calculated hardness on (100) planes plotted against composition x for the Ag-Au solid solutions. 
Inset, microhardness of bulk alloys (right) and thin films (left) samples (from ref. 12).

Figure 3.  Experimental and calculated hardness enhancement on (100) planes plotted against composition 
x for GaxIn1−xP solid-solution systems. The red triangles indicate experimental data (from ref. 14). The blue 
curve represent the calculated data.
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transition-metal carbide and nitride solid solutions, the hardness enhances may attributed to solute atoms hin-
dering dislocation movement. The predicted hardness enhancements of transition-metal carbide and nitride solid 
solutions by Eq. 5 are shown in Fig. 4. For comparison, Hu’s calculated results are also displayed. From Fig. 4a, it 
is seen that the deviation between the calculated hardness by Hu et al. and the corresponding experimental values 
are great although they try to reveal composition dependence of hardness of TiNxC1−x. In contrast, our scheme 
reproduce the hardness trend with x correctly. It should be noted that the deviation still exist using Eq. 5. The 
carbides and nitrigencarbides of the transition metals Ti, Zr, Hf and Nb all have the NaCl structure, which con-
sists of close-packed planes of metal atoms. The C and N atoms locate in the octahedral holes. Their bonding is a 
combined covalent-metallic-ionic type of chemical bond, which is far more complex than that of alkali halides, 
Au-Ag and InP-GaP solid solutions. Therefore, for transition metal nitrigencarbides the parameters (A, p, q) in 
Eq. 5 might need to adjusted appropriately.

The search for novel hard materials would benefit from the advance in the theoretical treatment of solid 
solutions. We take BN-BP solid solutions as example. The hardness of binary BN-BP solid solutions depends 
strongly on their composition. Figure 5 shows the results for the BN-BP system. In particular, a ultrahigh hard-
ness plateau region around the x =​ 0.55–0.85 in BNxP1−x is predicted. As evident in Fig. 5, BN0.75P0.25 (B4N3P) 
are hardest among BN-BP solid solutions. Its hardness value, 61 GPa is far greater than that of cubic BN, 46 GPa. 
Thus, it is a candidate for new superhard materials. To confirm structure and structural stability of BN0.75P0.25 
(B4N3P), we performed first-principles calculations using DFT code and the Vienna Ab-initio Simulation Package 
(VASP)20–24. The calculated results show that B4N3P exhibit a zinc-blende structure. The calculated lattice param-
eters of cubic B4N3P were 3.896 Å. The calculated elastic constants for B4N3P were C11 =​ C22 =​ C33 =​ 565 GPa, 
C44 =​ 297 GPa, and C12 =​ 132 GPa. The mechanical stability criteria in a cubic crystal are given by C11 >​ 0, C44 >​ 0, 
C11 >​ |C12|, (C11 +​ 2C12) >​ 0. The elastic constants of B4N3P clearly satisfy all of the mechanical stability criteria, 
indicating their elastic stability. The calculated bulk modulus and shear modulus values for B4N3P were 339 GPa 
and 265 GPa, respectively. The phonon dispersion curves of B4N3P at ambient pressure are presented in Fig. 6. 
No imaginary frequencies were observed throughout the whole BZ, confirming the dynamic stability of the 
diamond-structured cubic phases. Moreover, the calculated electronic band structures of B4N3P showed that the 
band gap is 1.7 eV under ambient conditions, indicating a good semiconductivity. Using modern high-pressure–
high-temperature technique, the B4N3P could be fabricated if a suitable synthesis route could be developed.

In conclusion, we demonstrated the origin of hardening of cubic solid solutions. A hardness formula was 
developed. The theoretical prediction for BN-BP solid solution indicated that the B4N3P solid solution single 
crystal possesses a superhardness that exceeds that of cubic BN. The successful application of this method would 
contribute to the continuing search for novel hard solid solutions for industrial applications.

Figure 4.  Experimental and calculated hardness enhancement on (100) planes plotted against composition 
x for various solid-solution systems. The red curves indicate experimental data (from ref. 16). The blue 
diamond represent the calculated data by this work. The blue triangle represent the calculated data from ref. 18.
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Methods
The total energies are calculated by using a plane-wave pseudpotential method based on density functional theory 
(DFT), implemented in Vienna Ab initio Simulation Package (VASP)20,21. The general gradient approximation 
(GGA) of the Perdew-Burke-Ernzerhof parameterization was used for the exchange and correlation functions22. 
Integrations over the Brillouin zone (BZ) were performed using Monkhorst-Pack (a tetrahedron method for BZ 
integration) grids23. Optimization of the structural parameters was achieved by the minimization of forces and 
stress tensors. Calculations of the phonon dispersions were carried out using the density functional perturbation 
theory (DFPT) within the local density approximation in a plane-wave basis, as implemented in the Quantum 
ESPRESSO code with the Troullier–Martins (TM) pseudopotentials24. The elastic constants were determined by 
applying an appropriate set of distortions with the distortion parameter varying between −​0.02 and +​0.02. In KBr, 
the suggested radius of the Br atom is RBr = rBr d/(rK + rBr)fi + fc d/2, where rBr is the effective ionic radius of the Br 
atom, d is the bond length, and fi and fc are the ionicity and covalency10, respectively.
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