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Background and Aim: Alzheimer’s disease (AD) is the most common type of dementia

and presents with metabolic perturbations early in the disease process. In order to

explore biomarkers useful in predicting early AD, we compared serummetabolites among

patients suffering different stages of AD.

Methods: We recruited 107 participants including 23 healthy controls (HC), 21

amnestic mild cognitive impairment (aMCI), 24 non-amnestic mild cognitive impairment

(naMCI) and 39 AD patients. Via liquid chromatography-mass spectrometry based serum

untargeted lipidomics analysis, we compared differences in serum lipid metabolites

among these patient groups and further elucidated biomarkers that differentiate aMCI

from HC.

Results: There were significant differences of serum lipid metabolites among the

groups, and 20 metabolites were obtained under negative ion mode from HC and

aMCI comparison. Notably, 16:3 cholesteryl ester, ganglioside GM3 (d18:1/9z-18:1) and

neuromedin B were associated with cognition and increased the predictive effect of aMCI

to 0.98 as revealed by random forest classifier. The prediction model composed of MoCA

score, 16:3 cholesteryl ester and ganglioside GM3 (d18:1/9z-18:1) had good predictive

performance for aMCI. Glycerophospholipid metabolismwas a pathway common among

HC/aMCI and aMCI/AD groups.

Conclusion: This study provides preliminary evidence highlighting that 16:3 cholesteryl

ester were useful for AD disease monitoring while ganglioside GM3 (d18:1/9z-18:1) and

neuromedin B discriminated aMCI from HC, which can probably be applied in clinic for

early predicting of AD.

Keywords: Alzheimer’s disease, amnestic mild cognitive impairment, untargeted lipidomics, serum, cholesteryl

ester, ganglioside GM3, neuromedin B
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INTRODUCTION

Alzheimer’s disease (AD) is the commonest type of dementia and
presents with a wide range of metabolic perturbations early in
the disease process (1). However, there is currently no effective
treatment for AD, although diagnosis and treatment should
commence as early as possible in the disease course. It is therefore
particularly important to identify AD in its preclinical stage.

In vivo detection of senile plaque positron emission
tomography and cerebrospinal fluid (CSF) Aβ42/tau level testing
are not universally feasible for AD detection due to high
cost and procedure invasiveness. The accessibility and cost-
effectiveness of blood-based biomarkers, however, make them
rather suitable for clinical use and especially so for disease
surveillance (2). In recent years, a number of metabolomics
studies have attempted to obtain from serum, plasma or
whole blood specimens biomarkers useful for predicting AD.
Biomarkers currently most recognized include the Aβ42:Aβ40
plasma ratio as well as blood neurofilament light chain,
plasma phosphorylated tau 181 and phospho-tau 217 levels
(3–7). Barupal et al., reported that monounsaturated lipid
metabolism plays a role in early AD, whereas polyunsaturated
lipid metabolism was more relevant to later stages of AD (8). Kim
et al., suggested that triacylglycerol 50:1, diacylglycerol 18:1/18:1
and phosphatidylethanolamine 36:2–when incorporated with
test scores of common measurements of cognitive impairment–
improve selectivity in identifying mild cognitive impairment
(MCI) (9). Most of the aforementioned researches, however,
involved comparisons among AD and healthy control (HC)
groups, with or withoutMCI groups.Where present, MCI groups
were seldom subdivided further. In terms of the major areas of
cognitive impairment, MCI can be subdivided into amnestic mild
cognitive impairment (aMCI) and non-amnestic mild cognitive
impairment (naMCI) (10). Previous studies have shown that
aMCI has a higher tendency to progress to AD (11), while naMCI
more easily progresses into other types of dementia, such as
vascular or Lewy body dementias (12). Here, we subdivided MCI
patients into aMCI and naMCI subgroups for further analysis
and utilized liquid chromatography-mass spectrometry based
serum untargeted lipidomics analysis to obtain raw data. This
study aimed to determine whether there was any difference in
serum metabolites among HC, MCI, and AD groups, and to
elucidate potential biomarkers for predicting early AD.

METHODS AND MATERIALS

Subjects
A total of 107 elderly patients were recruited from the memory
clinic of the First Affiliated Hospital, Zhejiang University School
of Medicine between October 2016 and June 2018. This included

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; aMCI,
amnestic mild cognitive impairment; naMCI, non-amnestic mild cognitive
impairment; HC, healthy controls; BMI, body mass index; MMSE, mini-mental
State Examination; MOCA, Montreal Cognitive Assessment; AUC, area under
the curve; PCA, principal component analysis; OPLS-DA, orthogonal partial least
squares-discriminant analysis; APOEε4, apolipoprotein Eε4; RT-MZ, retention.
time-mass charge ratio; Cer, Ceramides.

23 HC, 45 MCI patients (21 aMCI and 24 naMCI patients), and
39 cases of AD. Patients included in this study were diagnosed as
probable AD according to the criteria of the National Institute
of Neurological and Communicative Disorders and the Stroke
and Alzheimer Disease and Related Disorders Association (13).
Patients suffering MCI also met the Petersen criteria (14).
Diagnostic criteria for aMCI were: (1) memory loss confirmed
by a relative or friend; (2) auditory verbal learning test delayed
recall score <1.5 standard deviations as compared to age and
education matched control subjects; (3) other cognitive functions
relatively intact; mini-mental state examination (MMSE)≥ 24 or
Mattis Dementia Rating Scale ≥ 120 (in the case of junior high
school and above education levels); (4) preserved ability to work
and socialize and with activities of daily life either not affected
or only affected by memory loss; (5) failure to meet diagnostic
criteria for dementia (15). Patients without any signs of cognitive
impairment as determined by cognitive assessment scales (A total
of 11 scales for testing memory, attention, executive ability, visual
space, etc.) or neuropathological changes noted on magnetic
resonance imaging were included as HC. Written informed
consent were collected from all the subjects prior to participating
in the study, in accordance with protocols approved by the Ethics

FIGURE 1 | The flow chart of raw data processing.

TABLE 1 | General characteristics and clinical data of participants.

HC

(n = 23)

MCI

(n = 45)

AD

(n = 39)

p

Age (years), mean (SD) 62.61 (8.409) 68.22 (8.140) 71.10 (8.899) 0.001*

Gender (male/female) 5/18 15/30 18/21 0.140

APOEε4 allele

(absence/presence)

14/6 34/9 19/11 0.329

Education (years),

mean (SD)

8.22 (5.143) 7.62 (3.557) 6.51 (3.872) 0.271

MMSE score, mean

(SD)

27.87 (1.792) 26.16 (2.567) 18.00 (5.226) <0.001*

MoCA score, mean

(SD)

26.00 (2.908) 20.33 (3.458) 13.90 (5.413) <0.001*

One-way ANOVA analysis were used to examine the differences in the characteristics of

HC, MCI and AD groups, and categorical data were compared using χ2 tests.

*Statistically significant differences (p < 0.05).
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Committee of the First Affiliated Hospital of Zhejiang University
School of Medicine (reference number: 2016-315).

Serum Sample Collection and Processing
Patients with co-morbidities including thyroid disease, diabetes
and other neuropsychiatric illnesses were excluded from this
study. All selected patients were either not treated or relevant
drugs were stopped 1 month prior to blood sample collection. All
blood samples were collected on an empty stomach and promptly
placed in 5mL vacutainer tubes. After centrifugation, serum
was separated and stored at −80◦Cfor later use. Serum samples
(40 µL) were subsequently added to corresponding 300 µL 96-
well plate wells of centrifuge tube racks; 120 µL of isopropanol
was added to the wells and the plate was shaken for 1min,

kept at room temperature for 10min, and refrigerated at −20◦C
overnight. Samples were centrifuged the following day at 4,000 g
at 4◦C for 20min. Next, 25 µL of supernatant and 225 µl of
isopropanol:acetonitrile:water (2:1:1) solution were mixed in a
new 300 µL 96-well plate for dilution. To monitor instrument
analysis and test-retest reliability, quality control samples were
prepared by pooling 20 µL of each sample and analyzing these
together with other samples. These quality control samples were
analyzed every 10 samples.

Liquid Chromatography-Mass
Spectrometry Analysis
All chromatographic separations were performed using an ultra-
performance liquid chromatography system (Waters, UK). An

FIGURE 2 | (A) Principal component analysis diagram of HC, MCI and AD comparison. (B) Partial least squares-discriminant analysis diagram of HC, MCI and AD

comparison. (C) Dendrogram construction of HC, MCI and AD comparison. (D) Heatmap results of HC, MCI and AD comparison.
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ACQUITY ultra-performance liquid chromatography CSH C18
column (100mm × 2.1mm; 1.7µm, Waters, UK) was used for
separation. The column oven was maintained at 55 ◦C. The flow
rate was 0.4 ml/min and the mobile phase consisted of solvent
A [ACN:H2O (60:40), 0.1% formatae and 10mM ammonium
formate] and solvent B [IPA:ACN (90:10), 0.1% formate and
10mM ammonium formate]. Gradient elution conditions were
set as follows: 0–2min, 40–43% phase B; 2.1–7min, 50–54%
phase B; 7.1–13min, 70–99% phase B; 13.1–15min, 40% phase
B. Injection volume for each sample was 10 µL.

A high-resolution tandem mass spectrometer, Xevo G2 XS
QTOF (Waters, UK), was used to detect metabolites eluted from
the column; Q-TOF was operated in both positive and negative
ion modes. For the positive ion (POS) mode, the capillary and
sampling cone voltages were set at 3.0 kV and 40.0V, respectively.
For the negative ion (NEG) mode, the capillary and sampling
cone voltages were set at 2 kV and 40V, respectively. Mass
spectrometry data were acquired in centroid MSE mode. The
TOF mass ranged from 100 to 2,000 Da and 50 to 2,000 Da
in positive and negative modes, respectively, and the survey
scan time was 0.2 s. For MS/MS analysis, all precursors were
fragmented using 19–45 eV; scan time was also 0.2 s. During
acquisition, the LE signal was acquired every 3 s to calibrate
mass accuracy. In order to evaluate the stability of liquid
chromatography-mass spectrometry throughout acquisition, a
quality control sample (pool of all samples) was acquired after
every 10 samples. Raw data were processed as detailed in
Figure 1. The raw data from the mass spectrometer is imported
into the commercial software Progenesis QI (version 2.2,
hereinafter referred to as QI) for peak extraction to obtain MS1,
MS2, retention time, and ion area information. The metabolite
identification is based on the databases HMDB and LipidMaps
(Supplementary Tables 1, 2).

Pattern Recognition Analysis
After normalization and integration via support vector
regression, processed data were uploaded into MetaboAnalyst
(www.metaboanalyst.ca) for further analysis (16–18). Principal
component analysis (PCA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA) models were established
using SIMCA-P 14.1 (Umetrics, Umea, Sweden); these models
were used to analyze data collected from both positive and
negative models after logistic transformation and Pareto scaling.
Univariate analysis included use of the Student’s t-test and
variable fold-change analysis.

Statistical Analyses
Statistical analyses were performed using MetaboAnalyst and
SPSS v26.0 (IBM, USA). One-way ANOVA and chi-squared test
were used to compare differences in demographic characteristics
and serum metabolites among HC, MCI, and AD groups; PCA,
PLSDA, dendrogram, and heatmap analyses were performed
for the obtained differential metabolites. Differential serum
metabolites of aMCI and HC groups were analyzed on the
MetaboAnalyst website and subjected to further analysis, such
as OPLS-DA and volcano map construction. We build multiple
models and screened the optimal model for prediction (see

Supplementary Table 3). The random forest analyses were
subsequently performed using Python software (version 3.7.1)
to further confirm the utility of differential metabolites in
distinguishing among HC and aMCI status.

RESULTS

Demographic Differences Among HC, MCI
and AD Groups
The demographic characteristics of study participants are
detailed in Table 1. The age (HC: 62.61 ± 8.409, MCI: 68.22
± 8.140, AD: 71.10 ± 8.899, P = 0.001), MMSE score (HC:
27.87 ± 1.792, MCI: 26.16 ± 2.567, AD: 18 ± 5.226, P < 0.001)
and Montreal cognitive assessment (MoCA) score (HC: 26 ±

2.908, MCI: 20.33 ± 3.458, AD: 13.90 ± 5.413, P < 0.001)
were significantly different among groups, while no significant
differences in education level, gender ratio or apolipoprotein Eε4
(APOEε4) genotype were noted. The post hoc analysis of HC,
MCI, and AD has been provided in the Supplementary Table 4.

Serum Untargeted Lipidomics Analysis of
HC, MCI and AD Subjects
Among HC, MCI, and AD groups, 101 types of different
retention time-mass charge ratio (RT-MZ) (P < 0.05) were
obtained in NEG mode, among which were 4 types with
P < 0.01. Thirteen RT-MZ types were significant in all 3
pairwise comparisons, while 9 types were significant in only one
pairwise comparisons among the groups; namely between MCI
and AD groups (Supplementary Table 5). Serum metabolome
PCA and PLSDA revealed significant differences among all
3 groups; MCI group samples were midrange between the
HC and AD groups (Figures 2A,B). Consistent with prior
results, dendrogram construction revealed clustering of all 107

samples (Figure 2C).
Analysis of heatmap data of different metabolites (P <

0.05) revealed significant differences among HC, MCI and AD
groups. Differential metabolites of MCI patients were found to
be midrange between HC and AD groups (see Figure 2D for
further subdivision). Analysis of serum untargeted metabolomic

TABLE 2 | General characteristics and clinical data of HC and aMCI patients.

HC

(n = 23)

aMCI

(n = 21)

P

Age (years), mean (SD) 62.61 (8.409) 69.57 (7.152) 0.005*

Gender (male/female) 5/18 5/16 >0.99

APOEε4 allele (absence/presence) 14/6 13/6 >0.99

BMI(kg/m²), mean (SD) 23.17 (2.265) 23.55 (3.193) 0.651

Education (years), mean (SD) 8.22 (5.143) 8.24 (4.073) 0.988

MMSE score, mean (SD) 27.87 (1.792) 25.19 (2.839) 0.001*

MoCA score, mean (SD) 26.00 (2.908) 18.62 (3.025) <0.001*

Independent t-tests were used to examine the differences in the characteristics of the HC

group and aMCI group, and categorical data were compared using χ2 tests.

*Statistically significant differences (p < 0.05).
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analysis of HC, MCI and AD patients in POS mode are shown in
Supplementary Table 6.

Serum Untargeted Lipidomics Analysis of
aMCI and HC Subjects
TheMCI group was further divided aMCI and naMCI subgroups
and the serum metabolites were subsequently compared. No
significant difference in either NEG or POS modes were
noted. Next, serum metabolites of HC and aMCI patients were
compared. The age (HC: 62.61 ± 8.409, aMCI: 69.57 ± 7.152,
P = 0.005), MMSE score (HC: 27.87 ± 1.792, aMCI: 25.19 ±

2.839, P = 0.001) and MoCA score (HC: 26.00 ± 2.908, aMCI:
18.62 ± 3.025, P < 0.001) were significantly different among
HC and aMCI groups, while patient sex, APOEε4 allele data,
body mass index (BMI) and education level were not found
to be significantly different (Table 2). To explore the potential

biomarkers helpful in distinguishing HC from aMCI patients,
we analyzed serum data with an orthogonal partial least squares
discriminant analysis (OPLS-DA) in NEG mode. Findings
revealed serum metabolites of these groups to significantly differ
but at the same time partially overlap (Figure 3A). In total,
238 types of metabolites were obtained from comparison of
HC and aMCI groups (P < 0.05) (Figure 3B). Here, we aimed
to screen out RT-MZ data capable of distinguishing HC from
aMCI as much as possible, but could not clarify all specific
substances corresponding to RT-MZ. Of these 238 RT-MZ
data, 24 corresponded with unique substances; after repetitions
were removed, 20 substances were identified and divided into
6 categories: sterol lipids, sphingolipids, glycerophospholipids,
fatty acids, saccharolipids and others (Table 3). The box plot
reflects differences in 16:3 cholesteryl ester, ganglioside GM3
(d18:1/9Z-18:1) and neuromedin B in the HC and aMCI groups

FIGURE 3 | (A) Orthogonal partial least squares discriminant analysis diagram of HC and aMCI comparison. (B) Volcano Plots of HC and aMCI comparison. (C) Box

plots showed the different peak intensity of 16:3 cholesteryl ester between HC and aMCI groups. (D) Box plots showed the different peak intensity of ganglioside GM3

(d18:1/9Z-18:1) between HC and aMCI groups. (E) Box plots showed the different peak intensity of neuromedin B between HC and aMCI groups.
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(Figures 3C–E). The peak intensity of 16:3 cholesteryl ester
and ganglioside GM3 (d18:1/9Z-18:1) were higher in aMCI as
compared toHC patients, while the peak intensity of neuromedin
B was higher among HC subjects.

Comparison of HC and aMCI groups revealed no significant
findings in POS mode; Comparison of aMCI and AD groups
revealed no significant findings in NEG mode. While in POS
mode, comparison of aMCI and AD groups revealed 146
different RT-MZ (P < 0.05), of which 10 corresponded to unique
substances (Supplementary Table 7). In both HC/aMCI and
aMCI/AD group comparison, 16:3 cholesteryl ester was found.
In order to explore the metabolic pathways that contribute to AD
pathogenesis, we performed a metabolic pathway analysis using
metabolites with P < 0.05 to compare HC and aMCI, as well as
aMCI and AD patients. Comparison of HC and aMCI groups in
NEG mode revealed 4 metabolic pathways differentiating these
groups; namely sialic acid metabolism, phosphatidylinositol
phosphate metabolism, glycosylphosphatidylinositol (GPI)-
anchor biosynthesis, and glycerophospholipid metabolism. The
latter three were the most significantly different (Figure 4A).
Comparison of aMCI and AD groups in POS mode revealed 10
metabolic pathways differentiating HC and aMCI; among them
ubiquinone biosynthesis, D4&E4-neuroprostane formation
and urea cycle/amino group metabolism. These were found
to exhibit the most significant differences (Figure 4B).
Glycerophospholipid metabolism was a pathway common
among HC/aMCI and aMCI/AD groups.

Metabolites Differentiate HC and aMCI
Subjects
The random forest analysis was used to further verify the
usefulness of 16:3 cholesteryl ester, ganglioside GM3 (d18:1/9Z-
18:1) and neuromedin B in distinguishing among HC and aMCI
patients. Basic independent variables (age, sex, education level,
BMI, MMSE, and MoCA data) were included in the Python
random forest prediction model, and the prediction accuracy
was found to be 0.91 (Figure 5A). The prediction accuracy
was found to be 0.96, 0.95 and 0.96 when basic independent
variables combined with 16:3 cholesteryl ester, ganglioside GM3
(d18:1/9Z-18:1) and neuromedin B, respectively (Figures 5B–D).
When all independent variables including three metabolites were
included in the random forest prediction model, prediction
accuracy increased to 0.98 (Figure 6A). The predictive effect of
aMCI increased by 0.07 after considering these 3 metabolites
in combination. In addition, all independent variables among
HC and aMCI groups were included in the model for feature
importance ranking. Among these nine variables, MoCA score,
16:3 cholesteryl ester, and ganglioside GM3 (d18:1/9Z-18:1)
had the greatest impact on the model, while gender had the
least influence (Figure 6B). We combined MoCA score, 16:3
cholesteryl ester, and ganglioside GM3 (d18:1/9Z-18:1) to make
a model and found that the predictive effect of aMCI was up
to 0.97 (Figure 6C). These findings confirm that 16:3 cholesteryl
ester, ganglioside GM3 (d18:1/9Z-18:1) and neuromedin B,
especially the first two are important in distinguishing HC and
aMCI subjects.

TABLE 3 | The significantly altered metabolites in the comparison of HC and

aMCI.

Metabolite P-value

Sterol lipids

16:3 Cholesteryl ester 0.0000275

1alpha-hydroxy-22-[3-(1-hydroxy-1-methylethyl)phenyl]-

23,24,25.26,27-

pentanorvitaminD3/1alpha-hydroxy-22-[3-(1-hydroxy-1-

methylethyl)phen

-yl]-23,24,25,26,27-pentanorcholecalciferol

0.00054943

Sphingolipids

PE-Cer(d14:2(4E,6E)/16:0(2OH)) 0.0000327

N-(tetradecanoyl)-deoxysphing-4-enine-1-sulfonate 0.0000358

Ganglioside GM3 (d18:1/9Z-18:1) 0.00030583

Glycerophospholipids

LPIM1(19:0/0:0) 0.0000897

CL(8:0/11:0/18:2(9Z,11Z)/18:2(9Z,11Z)) 0.0013938

PG(P-16:0/12:0) 0.0015922

PI(P-20:0/22:2(13Z,16Z)) 0.0024846

Fatty Acyls

IC202B 0.00012983

Lysine-containing siolipin 0.00033586

Saccharolipids

DAT(19:0/25:0(2Me[S],3OH[S],4Me[S],6Me[S])) 0.0020767

Others

Nonoxynol-9 0.0000601

2-Decaprenyl-6-methoxyphenol 0.00027562

Remikiren 0.00036897

Hydroxydestruxin B 0.00052018

Drotaverine 0.0006352

Neuromedin B 0.00074886

DISCUSSION

Here, we performed non-targeted lipidomics analysis to confirm
differences in serum metabolites among HC, MCI, and AD
groups, and compared serum differential metabolites of HC and
aMCI subjects in order to obtain lipid biomarkers capable of
discriminating aMCI cases from HC subjects and applicable
even in the early prediction of AD. Firstly, we found significant
differences in serum metabolites among HC, MCI and AD
groups; 96 different RT-MZ were obtained in NEG mode.
Furthermore, 238 different RT-MZ and 20 metabolites were
obtained in NEG mode through the comparison of HC
and aMCI. Secondly, metabolic pathway analysis suggested
glycerophospholipid metabolism to be a common pathway
among HC/aMCI and aMCI/AD subjects, underscoring how
glycerophospholipid metabolism plays an important role in
the progression of AD, and that 16:3 cholesterol ester is
closely related to glycerophospholipid metabolism. Thirdly,
random forest analysis revealed that age, sex, education
level, BMI, MMSE, and MoCA–taken togethe-are capable of
predicting aMCI at an accuracy of 0.91, while combination
with 16:3 cholesteryl ester, ganglioside GM3 (d18:1/9z-18:1)
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FIGURE 4 | (A) Metabolic pathways from HC to aMCI. (B) Metabolic pathways from aMCI to AD.

and neuromedin B increased predictive accuracy to 0.98. Three
variables that had the greatest impact on the model were
selected to set a new predication model, whose prediction
performance was roughly equivalent to that of the model with
all independent variables.

Here, 16:3 cholesteryl ester was the only metabolite found in
both HC/aMCI and aMCI/AD comparisons. Its peak intensity
increased with the severity of AD, underscoring its utility in
AD staging and monitoring. Ganglioside GM3 (d18:1/9z-18:1)
and neuromedin B were found in the HC/aMCI comparison,
indicating their capacity to discriminate aMCI cases from HC
subjects. These three biomarkers improve the predictive accuracy
for aMCI individuals and the model with MOCA score, 16:3
cholesteryl ester, and ganglioside GM3 (d18:1/9Z-18:1) can be
independently used for early AD prediction.

Previous studies have revealed high cholesterol levels to
associated with an increased risk of developing AD both in
animal and human studies (19, 20). Normally, due to the blood
brain barrier, cerebral cholesterol is produced almost entirely via
de novo synthesis (21). Neuronal cellular machinery responds to
an excess of cholesterol in a variety of ways, such as esterification
and subsequent intracellular storage in lipid droplets, direct
excretion through the ATP binding cassette transporters (22,
23) or conversion to 24(S)-hydroxycholesterol (24). The 24(S)-
hydroxycholesterol can exit the brain either by diffusion or by
organic anion transport across the barrier (25).

Possible mechanisms of cognitive dysfunction caused
by excessive cholesterol in the brain are likely related to
oxidative stress and Aβ production. Oxidative stress disrupts
acyl-CoA:cholesterol acyltransferase (26); inhibition of acyl-
CoA:cholesterol acyltransferase activity causes a significant
reduction in cholesteryl esters, amyloid level, and brain amyloid
plaques (27–29). Aβ production, metabolism and aggregation
also depend on lipid rafts (30). In addition, elevated cholesterol

levels may increase 24 hydroxycholesterol in the brain, which
was suggested to be neurotoxic and to potentiate Aβ toxicity (31).

Although it remains unclear whether blood lipid changes
or AD occurs first, changes in blood lipids almost certainly
reflect illness. In recent years, studies have found long chain
cholesterol esters to be associated with AD, in particular the
cholesterol esters 32:0, 34:0, 34:6, 32:4, 33:6, and 40:4. The plasma
concentrations of these molecules are highest in HC, lower in
MCI patients and lowest in the setting of overt AD (32). Our
findings, however, revealed that peak levels of 16:3 cholesterol
esters in serum were lowest in HC, higher in MCI patients and
highest in ADpatients. Elevated levels of thesemolecules in aMCI
patients likely associates with cholesterol esters synthesized from
24 hydroxycholesterol excreted from the central nervous system.

Ceramides (Cer) are the simplest sphingolipids. Normally,
ganglioside metabolism includes both a-series (Cer→ GlcCer→
LacCer→ GM3→ GM2→ GM1→ GD1a) and b-series
(Cer→ GlcCer→ LacCer→ GM3→ GD3→ GD2→ GD1b→
GT1b) metabolism. Complex gangliosides are the predominant
form of gangliosides expressed within the healthy adult brain;
simple gangliosides are only expressed in small quantities (33).
Previous studies have found simple gangliosides, in particular
GM3, to be consistently increased in the brain of AD patients,
while complex gangliosides (GT1b, GD1b, GD1a and GM1)
appeared to be uniformly decreased (34–36). The cause of this
increased proportion of GM3 in the AD brain is likely associated
with astrogliosis (34–36) and the enhancement of the catabolic
pathway of more complex gangliosides (37). Indeed, GM3 has
been suggested to upregulate pro-apoptotic signaling pathways as
well-inhibit vascular endothelial growth factor receptor activity,
thus leading to toxicity when accumulated in neurons (38, 39).
Moreover, Aβ was reported to have a high affinity for interaction
with gangliosides (40). This results in a change of ganglioside-Aβ

structural conformations, leading to aggregation of Aβ (41–43).
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FIGURE 5 | Different prediction models generated by Random Forest Classifier and the macro-average ROC curve considered as a reference. (A) The ROC curves of

basic independent variables. (B) The ROC curves of basic independent variables+16:3 cholesteryl ester. (C) The ROC curves of basic independent

variables+ganglioside GM3 (d18:1/9z-18:1). (D) The ROC curves of basic independent variables+neuromedin B.

However, the reduced neuroprotective effect of GM1 also likely
plays a role (44, 45).

Unfortunately, available literature mainly reports elevated
GM3 levels in the AD brain; studies exploring the elevation of
blood GM3 levels are scarce. Here, serum GM3 levels were found
to be increased in aMCI patients as compared to HC, consistent
with prior literature that reported cerebral GM3 levels to be
increased in AD patients (34–36). These findings further suggest
that changes in serum gangliosides levels indeed reflect early
cerebral lesion formation in AD.

Gastrin-releasing peptide and neuromedin B are both
members of the bombesin-like peptide family. Previous studies
reported that locally produced neuromedin peptides and/or
peptide fragments can be transported throughout the entire
body, including transport across the blood brain barrier (46).
Early studies reported that either systemic administration of
gastrin-releasing peptide receptor agonists or infusion of the

agonist-Bombesin into the hippocampus improves memory
retention in rodent models (47, 48). Possible mechanisms of
this phenomenon include gastrin-releasing peptide modulated
neurogenesis and neuronal development, thus contributing
to hippocampal circuit function (49). Moreover, gastrin-
releasing peptide and neuromedin B were reported to restores
impaired synaptic plasticity and were able to elevate expression
of synaptic proteins, synaptophysin and Ca2+/calmodulin
dependent protein kinase II, all of which play pivotal roles
in synaptic plasticity (50). To date, few studies exploring
the association between neuromedin B and dementia exist in
literature. Only Yang et al., verified that gastrin-releasing peptide
and neuromedin B substantially improve spatial learning and
memory abilities in a rat model of vascular dementia (50).
Since these molecules are both homologous substances, gastrin-
releasing peptide can be postulated to exert effects similar to
neuromedin B. Previous studies have not found a relationship
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FIGURE 6 | (A) The ROC curves of all independent variables. (B) Feature importance ranking of prediction model with all independent variables. (C) The ROC curves

of MoCA+16:3 cholesteryl ester+16:3 cholesteryl ester.

between serum neuromedin B levels and MCI or AD status;
we here first report that serum neuromedin B levels effectively
distinguish HC from aMCI patients.

In summary, our research reveals that 16:3 cholesteryl ester,
ganglioside GM3 (d18:1/9z-18:1) can be effectively used as
biomarkers in the early clinical prediction of aMCI or AD.
We found severity of dementia to positively correlate to serum
16:3 cholesteryl ester and ganglioside GM3 levels. We also
found that lower levels of neuromedin B were expressed in
the serum of aMCI patients as compared to HC subjects.
Although glycerophospholipid metabolism plays an important
role in the progression of AD, the specific mechanisms by
which the aforementioned molecules influence dementia remain
unclear. In addition, due to the deficiency of small sample
size and cross-sectional study, the conclusions obtained are
relatively preliminary, which requires further repeated studies
evaluating a larger number of subjects and extending the follow-
up time to investigate the potential clinical utility of metabolic

biomarkers in the diagnosis and treatment of both aMCI
and AD.

LIMITATIONS

This study had several limitations. First, only 107 participants
(including 21 aMCI participants) in total were recruited. This
relatively small sample may reduce the credibility of our
conclusions. Second, study participants stopped taking relevant
drugs for 1 month prior to blood sample collection. Ideally,
study participants should stop taking medications at least 3
months prior to study commencement to ensure that no residual
drug levels remain in the body. We thus could not exclude
any potential effects of certain medications on serum lipidomics
profiling, nor the influence of different dietary habits among
study participants. Third, if the obtained biomarkers could be
compared to others currently known, such as p-tau-181, their
efficacy would be better reflected. In addition, the effectiveness
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of biomarkers detailed in our study in distinguishing HC and
aMCI should be further compared with cognitive assessment
scores. Finally, our comparison of aMCI and naMCI status
revealed no significant differences. It would be meaningful for
early and accurate prediction of AD if future studies evaluate
different metabolites among aMCI and naMCI sub-groups.
While our results are novel and promising, these aforementioned
limitations should be addressed in future studies to fully validate
clinical application of the biomarkers we detailed.
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