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  Introduction 

 For several decades, the concept of cancer immunotherapy 
(CIT) has been struggling to establish itself as the fourth pil-
lar of acknowledged cancer treatment strategies alongside 
surgery, radiation and chemotherapy. With its nomination 
as Science  ‘ Breakthrough of the Year 2013 ’  (Couzin-Frankel 
2013) and preclinical studies gradually translating into 
clinical data, the fi eld of CIT has fi nally reached a state of 

acceptance among the established oncological domains. 
Currently, diff erent immunotherapeutic approaches are 
standing their ground as powerful treatment strategies for 
a wide range of malignant diseases. A very prominent and 
recent example of an outstanding CIT success involves 
immune checkpoint blockade therapy by monoclonal 
antibodies (mAb) targeting inhibitory molecules on either 
immune eff ector T-cells or tumor cells. Interfering with 
co-inhibitors has been shown to unleash a powerful anti-
tumor T-cell response (Pardoll 2012). Promising early-stage 
clinical trials have shown safety and impressive activity of 
mAb blocking activity of programmed cell death 1 (PD1), 
expressed on T-cells (Topalian et   al. 2012), or one of its 
ligands, programmed death-ligand 1 (PD-L1) (Brahmer 
et   al. 2012). Recently, the FDA approved lambrolizumab, a 
PD1-targeting mAb for treatment of advanced or unresected 
melanomas that no longer respond to other drugs (Hamid 
et   al. 2013). Furthermore ipilimumab, a mAb against cyto-
toxic T-lymphocyte-associated antigen 4 (CTLA4) on T-cells, 
was approved for the treatment of metastatic melanoma 
(Lipson and Drake 2011). In 2013, a combination of anti-
CTLA4 and anti-PD1 mAb treatment was reported to act 
synergistically in increasing survival and tumor regression 
in advanced melanoma patients (Wolchok et   al. 2013). Th is 
novel immunomodulatory approach exhibits great potential 
especially for the treatment of severe malignancies resistant 
to conventional therapies. 

 However, major obstacles to broad clinical applicability 
of CIT become more evident. Whereas signifi cant improve-
ments of overall and progression-free survival can be 
achieved in individual cancer patients, most CIT strategies 
fail to establish long-lasting tumor rejection in large patient 
groups  –  with many patients responding poorly to treatment 
(Brahmer and Pardoll 2013, Fishman 2014, Raval et   al. 2014). 
Th e precise processes behind this high variability of thera-
peutic effi  cacy remain to be clarifi ed, but most likely involve 
high heterogeneity of diff erent tumor types as well as poor 
immunogenicity and evolving capability to escape immune 
recognition (Kalbasi et   al. 2013, Kelderman et   al. 2014). Based 
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on the concept of cancer immunoediting, tumors undergo 
three distinct phases of interaction with the immune system: 
Elimination, equilibrium and ultimately escape (Schreiber 
et   al. 2011). Progressing through these steps involves tumors 
actively shaping the immune system in order to circumvent 
immune recognition and establish a state of permanent 
immune evasion. Successful therapy approaches counteract 
this active immunosuppression and empower the immune 
system to regain control over tumor growth. In numerous 
patients, CIT by itself fails at stably reversing the immuno-
editing process (Kalbasi et   al. 2013). Th erefore, the search 
has begun to look for potent partners in tipping the scales 
back from tumor immune escape to elimination. 

 Radiation therapy (RT) comes into play as a particu-
larly attractive partner for CIT in empowering the immune 
system to re-engage in tumor elimination, since recent 
years have shown a number of mechanisms through which 
RT interacts with immunity. In addition to being highly 
eff ective at reducing tumor burden by inducing irreversible 
DNA damage causing cancer cell death, RT has been demon-
strated to contribute actively to tumor immune recognition 
by various means as will be outlined in the following section 
(Kwilas et   al. 2012).   

 From escape back to elimination  –  the immune 
modulatory capacities of radiotherapy 

 Numerous lines of evidence have initiated a paradigm shift 
from the traditional notion of radiation causing detrimen-
tal eff ects on various immune cell types towards the rec-
ognition of a potent systemic immunostimulatory impact 
(McBride et   al. 2004, Formenti and Demaria 2013). Th is more 
recent concept has moved into the center of attention due 
to repeated observations of so-called abscopal RT eff ects 
(Kalbasi et   al. 2013), which describe the regression of tumor 
growth at sites distant from the primary fi eld of irradiation 
(Demaria et   al. 2004). Several such case reports inspired 
researchers to investigate how radiation can systemically 
induce tumor elimination which led to the discovery of 
various mechanisms through which RT actively induces 
anti-tumor immunity (Barker and Postow 2014). 

 Of utmost importance, radiation causes a strong increase 
in tumor-associated antigen (TAA) quantity and variety 
through induced cancer cell death (Corso et   al. 2011, Burnette 
et   al. 2012) as well as enhanced protein translation (Reits 
et   al. 2006), permitting specialized antigen-presenting cells 
(APC) such as dendritic cells (DC) to eff ectively prime T-cells 
for specifi c recognition and effi  cient clearance of residual 
tumor cells (Ahmed et   al. 2013, Frey et   al. 2014). In addi-
tion, it has been shown that radiation is capable of inducing 
activation of DC by the release of specifi c damage-associated 
molecular patterns (DAMP) through immunogenic tumor 
cell death, a process critical for enabling DC to orchestrate 
a potent anti-tumor immune response (Roses et   al. 2014). 
Particularly high-mobility group box 1 protein (HMGB1), 
released from irradiated dying tumor cells, has been 
demonstrated to induce sustained DC maturation through 
activation of the toll-like receptor (TLR) 4 pathway, which 
also increases effi  ciency of TAA processing and presentation 

(Apetoh et   al. 2007). Persistent DC activation forms a criti-
cal part in generating a potent anti-tumor immune response 
since immature antigen-presenting DC induce anergy or 
even deletion of antigen-reactive T-cells  –  a mechanism 
which has been shown to be actively exploited by tumor 
cells as a means to escape T-cell recognition and cytotoxicity 
(Kim et   al. 2006). Th e combined eff ects of radiation provid-
ing antigens along with adjuvant activating signals hinder 
tumors at taking the fi nal step in the immunoediting process 
 –  escape  –  and have therefore led to the concept of referring 
to RT as an in situ anti-tumor vaccine (Demaria et   al. 2014, 
Frey et   al. 2014). 

 But the eff ects of RT on TAA detection and presentation 
go beyond increasing antigen availability: Th e induction of 
calreticulin translocation to the surface of tumor cells serves 
as a signal for recognition and phagocytosis by DC, thereby 
enhancing TAA processing and presentation (Obeid et   al. 
2007). Also traffi  cking of APC to regional lymph nodes, where 
interaction with T-cells takes place, has been described to 
be augmented by RT (Lugade et   al. 2005). A similar eff ect 
has been reported regarding recruitment and cytotoxic-
ity of CD8  �   T-cells. Lim et   al. (2014) observed the induc-
tion of type I and II interferons (IFN) through radiation, 
leading to enhanced intratumoral numbers and cytolytic 
activity of eff ector T-cells. Also Draghiciu et   al. (2014) 
reported enhanced recruitment of tumor-specifi c CD8  �   
cells into tumors upon low-dose radiation. In addition, the 
production of chemokines such as CXCL16 has been shown 
to be upregulated following radiation, which also attracts 
eff ector T-cells to the irradiated tumor site (Matsumura and 
Demaria 2010). Th e direct recruitment of cytotoxic T-cells 
into the tumor provides a strong basis for the immune system 
to regain control over the transformed tissue. 

 RT has also been described to alter the phenotype of 
residual tumor cells surviving irradiation, mostly due to 
lower doses being transmitted further away from the radia-
tion source (Garnett et   al. 2004, Gameiro et   al. 2014). Th is 
alteration includes upregulated expression of various sur-
face molecules, such as major histocompatibility complex 
(MHC) I, co-stimulatory T-cell signaling molecules, adhesion 
molecules and death receptors, thus further contributing to 
immune recognition and elimination by rendering tumor 
cells more visible to the immune system (Chakraborty et   al. 
2004, 2008b, Bernstein et   al. 2014). 

 Furthermore, eff ects of RT on vascular normalization 
and density within tumors have been observed. As a result 
of excessive production of pro-angiogenic factors, tumors 
establish an abnormal vascular structure, which creates a 
hypoxic microenvironment that polarizes infl ammatory 
immune cells towards immunosuppressive activity and 
hinders immune cells at eff ectively entering into tumor 
tissue (Huang et   al. 2013). In CIT, increasing evidence indi-
cates that a normalized tumor vasculature substantially 
enhances immunotherapeutic success as it reverses the 
hypoxic microenvironment and enables immune eff ector 
cell infi ltration (Huang et   al. 2013). RT was shown to induce 
normalization of tumor vasculature by increasing expression 
of chemokines CXCL9 and CXCL10, leading to vessel remod-
eling, as well as vascular cell adhesion protein 1 (VCAM-1), 
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facilitating T-cell migration into tumors (Kershaw et   al. 
2013). A study by Ganss et   al. (2002) showed that RT led to 
enhanced vessel density and diameter within tumors, which 
facilitated access of T-cells by enabling them to adhere to the 
endothelium, ultimately leading to tumor regression (Ganss 
et   al. 2002). Eff ects of radiation on vessel remodeling there-
fore provide another promising rationale for its combination 
with CIT by actively contributing to tumor elimination. 

 Another branch of the immune system aff ected by RT 
is humoral immunity. In melanoma patients, increases in 
tumor-specifi c antibody levels have been observed following 
radiation (Postow et   al. 2012). Demaria et   al. (2005a) reported 
RT to induce production of pro-infl ammatory cytokines, 
resulting in the activation and migration of various immune 
cell subsets. Nevertheless, the actual contribution of a 
heavily pro-infl ammatory cytokine milieu on tumor pro-
gression or rejection has become a matter of debate among 
immunologists and has to be considered carefully in a 
context-dependent manner (Grivennikov et   al. 2010). 

 Nevertheless, when dissecting mechanisms of RT impact-
ing on immunity, its eff ects on immunosuppression also 
have to be taken into account. Such mechanisms include 
proportionally increasing regulatory T-cell (T reg ) incidence, 
which can be attributed to an inherently higher radioresis-
tance of these cells (Formenti and Demaria 2013), as well as 
induction of transforming growth factor (TGF)  β  secretion, 
which was shown to inhibit systemic immune-activating 
eff ects of RT (Diamond et   al. 2013). Blockade of TGF β  was 
proven not only to induce abscopal RT eff ects, but also to 
overcome local immunosuppression (Diamond et   al. 2013). 
In addition to these observations, expression of co-inhibitory 
molecules such as PD-L1 was shown to be induced in tumor 
cells after local high-dose irradiation (Deng et   al. 2014). Th is 
consequence provides a clear example of the strong rationale 
for combining RT with immune checkpoint blockade. 
Hence, it has been implicated that radiation may promote 
immunosuppression by diff erent means in a dose-dependent 
manner (Kwilas et   al. 2012). 

 Th e importance of gaining deeper understanding of 
RT-mediated eff ects and the resulting cellular interactions 
becomes apparent when taking the increased recognition 
of the tumor stroma into account. It has become well-
established that various types of cells ranging from cancer 
cells themselves (including cancer stem and bulk cells), 
local and bone marrow-derived stromal stem and progeni-
tor cells, endothelial cells, pericytes and cancer-associated 
fi broblasts to immune cells, contribute to the formation 
of a unique tumor microenvironment (Hanahan and 
Weinberg 2011). In order to achieve sustained therapy 
success, this entire tumor niche has to be considered 
and numerous groups currently focus on gaining deeper 
understanding of the predominant processes and cellular 
interactions.   

 Finding the perfect RT-CIT match  –  preclinical 
and clinical observations 

 Several groups have embarked on the mission of actively evalu-
ating synergisms between individual RT-CIT combinations 

and fi rst results showed robust improvements in therapy 
outcome. At a preclinical state, external beam RT (EBRT) 
in combination with adoptive tumor-specifi c CD8  �   T-cell 
therapy (Chakraborty et   al. 2003, Reits et   al. 2006) and vac-
cination approaches including recombinant virus strategies 
and TLR ligand administration (Chakraborty et   al. 2004, 
Demaria et   al. 2013, Witek et   al. 2014) was demonstrated to 
result in drastically enhanced tumor regression by increased 
CD4  �   and CD8  �   T-cell responses. Similar results were 
obtained with radiolabeled mAb (Chakraborty et   al. 2008a) 
as well as brachytherapy and vaccine-mediated CIT (Hodge 
et   al. 2012). As indicated earlier, combining local radiation 
with antibodies targeting immune checkpoint blockade 
molecules such as CTLA4 or PD-L1 also yielded highly 
synergistic eff ects on therapy outcome (Demaria et   al. 2005b, 
Dewan et   al. 2009, Deng et   al. 2014). Another immuno-
therapeutic agent, which has been investigated in search of 
benefi cial combinatorial strategies, is IL-2. Given its limita-
tions in establishing long-term tumor rejection, relatively 
low response rates and association with severe side eff ects 
(Siegel and Puri 1991, Atkins et   al. 1999, Schwartz et   al. 2002, 
McDermott 2007, Seung et   al. 2012a), several preclinical 
studies have focused on evaluating the potential of combin-
ing IL-2 with RT for improved therapy successes (Cameron 
et   al. 1990, Safwat et   al. 2003, 2004). Importantly, these 
studies showed varying results based on RT dose and target 
with promising synergistic observations for the adminis-
tration of focal radiation prior to IL-2 injection in a mouse 
model of liver metastases (Cameron et   al. 1990). Th ese are 
just few examples of the manifold preclinical investigations 
conducted thus far, which have been paving the way for a 
clinical evaluation of combination treatments. 

 Clinical data on the synergism of RT and CIT are not as 
extensive yet. Nevertheless, various case reports strengthen 
pre-clinical observations and in a number of early-stage 
clinical trials, combinations of mostly local low-dose RT with 
diff erent immunotherapeutic strategies have been proven 
safe and well-tolerated and exhibit great potential of syner-
gistically improving therapy outcomes, with various trials 
ongoing (reviewed extensively by e.g., Kwilas et   al. 2012, 
Formenti and Demaria 2013, Kalbasi et   al. 2013, Barker and 
Postow 2014, Demaria et   al. 2014, Wattenberg et   al. 2014). 

 In a series of pilot trials, Gulley et   al. evaluated the safety 
of combining EBRT with low- or metronomic-dose IL-2 
and a recombinant vaccinia virus-based vaccination strat-
egy in prostate and rectal cancer (Gulley et   al. 2005, 2011, 
Lechleider et   al. 2008). Th ese studies revealed safety and 
tolerance of the therapy combinations as well as effi  cacy in 
generating tumor-specifi c immune responses. Another RT 
strategy, which is currently being evaluated in combina-
tion with recombinant vaccinia virus-based vaccination, 
is Samarium-153-ethylene diamine tetramethylene phos-
phonate ( 153 Sm-EDTMP). In an interim analysis, 29.4% of 
metastatic castration-resistant prostate cancer (CRPC) 
patients receiving the combined therapies were found to 
remain progression-free after 4 months as compared to 
11.8% receiving RT alone (Heery et   al. 2012). A more recent 
study, in which diff erent regimens of stereotactic body RT 
(SBRT) were combined with high-dose IL-2 in metastatic 
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the full potential of RT-CIT combination. Th e repertoire is 
sheer endless  –  ranging from diff erent RT strategies includ-
ing EBRT, SBRT, bone-seeking radionuclides, radiolabeled 
antibodies, brachytherapy and proton therapy, to numer-
ous CIT approaches such as immune checkpoint blockade, 
unspecifi c stimulation, diff erent vaccine-based concepts, 
adoptive eff ector cell transfer or targeted immunotherapeu-
tics like antibodies  –  and not to forget the matters of dosage, 
timing, and choosing the right patient population as well as a 
reasonable stage of disease. 

 One major challenge remaining is to identify the most 
promising strategies and treatment schedules which will 
result in maximum effi  cacy by taking advantage of the 
strengths of each single therapy. Considering the broad 
spectrum of mechanisms by which RT impacts on the 
immune system, the balance between immunosuppres-
sion and activation ultimately determines whether a certain 
approach will result in successful tumor elimination. Th is 
underlines the importance to evaluate the predominant 
immunomodulatory eff ects of diff erent RT regimens. Various 
publications have shown that dose, mode of delivery and 
schedule of RT can cause substantially diff erent eff ects on 
the tumor immune response  –  with the most vital question 
remaining  ‘ to fractionate or not to fractionate? ’  (Formenti 
and Demaria 2013, Barker and Postow 2014). Several groups 
have reported low-dose irradiation (LDI) to induce immune-
activating eff ects by altering tumor and immune cell surface 
molecule expression (Ina and Sakai 2005, Kwilas et   al. 2012), 
promoting T-cell-stimulatory capacities of DC (Shigematsu 
et   al. 2007), or an anti-tumor macrophage phenotype (Klug 
et   al. 2013). Simultaneously, ablative high-dose irradiation 
(HDI) was reported to stimulate potent anti-tumor cytotoxic 
T-cell responses, mediated primarily through DC activation 
(Lee et   al. 2009, Gupta et   al. 2012) whereas Schaue et   al. 
(2012) reported benefi cial eff ects of medium-dose fraction-
ated versus single dose radiation. A study by Shen et   al. 
(1988) revealed higher natural killer cell activity and superior 
survival in tumor-bearing mice treated with hypofraction-
ated RT as compared to conventionally fractionated RT. 
All these observations indicate that to date, no conclusive 
explanation could be given as to which strategy will provide 
the best platform for combination with CIT approaches. 

 Another major obstacle to precisely evaluating eff ects of 
RT and CIT combinations on tumor progression is posed by 
the still limited available imaging modalities especially in 
the clinical setting (Kalbasi et   al. 2013). Monitoring the 
successful administration of immunotherapeutic agents 
and their ability to interact with tumor cells often requires 
tracking of individual cell populations and therefore asks for 
labeling techniques in order to distinguish specifi c immune 
eff ector subsets. Th e optimal characteristics for labeling 
agents include visualization in a non-invasive manner, 
minimal toxicity, possibility of serial imaging over longer 
time periods, specifi city, as well as quantitative localization 
(Akins and Dubey 2008). For this purpose, several molecular 
imaging agents have been developed  –  including radioiso-
topic, fl uorescent, bioluminescent, and magnetic resonance 
imaging (MRI) agents (Youn and Hong 2012). However, 
choosing an appropriate imaging technique for a given 

melanoma and renal cell carcinoma patients, revealed a 
promising 71% response rate in patients treated with 1 or 
2 fractions of 20 Gy as compared to a response rate of 16% 
for IL-2 monotherapy, with responding patients showing 
enhanced immune activation (Seung et   al. 2012a, 2012b). 

 Barker et   al. and Postow et   al. focus on dissecting com-
binatorial eff ects of RT and ipilimumab in melanoma 
patients regarding safety and preliminary effi  cacy. In a ret-
rospective study, they reported a 39-month median overall 
survival in patients receiving RT during maintenance 
phase of ipilimumab administration ( �    16 weeks after 
starting ipilimumab) as compared to 9 months in patients 
who received RT during the induction phase ( �    16 weeks of 
starting ipilimumab), which underlines the importance of 
future research regarding treatment schedules. Importantly, 
they also found the combinatorial treatment to be as safe and 
feasible as each individual therapy alone, which is in accor-
dance with numerous case reports at diff erent study centers 
(Postow et   al. 2012, Barker et   al. 2013, Barker and Postow 
2014). As in melanoma, the combination of ipilimumab 
with RT for the treatment of CRPC was also found to be 
well-tolerated  –  nevertheless, it did not reveal signifi cant 
improvements in therapy outcome as compared to ipili-
mumab administration alone, but further clinical trials are 
currently under way (Slovin et   al. 2009, 2013). 

 Further examples involve immunotherapeutic strategies 
aimed at DC-mediated tumor immune recognition (For-
menti and Demaria 2013). In patients bearing metastatic 
solid tumors, the combination of granulocyte macrophage 
colony-stimulating factor (GM-CSF) administration with 
local radiotherapy was shown to induce an abscopal response 
in 30% of patients (Formenti and Demaria 2009). Limited 
success was achieved in a diff erent phase I trial, in which 
advanced hepatocellular carcinoma patients were injected 
intratumorally with autologous DC following a single fraction 
of radiotherapy, with eight of 14 patients showing enhanced 
tumor-specifi c immune responses (Chi et   al. 2005). Another 
approach involved intratumoral autologous DC injection 
during fractionated EBRT in soft-tissue sarcoma patients, 
which led to remarkable tumor-specifi c immune responses 
and one-year progression-free survival in 12 of 17 patients 
(Finkelstein et   al. 2012). Furthermore, a retrospective multi-
variate regression analysis by Dillman et   al. (2011) revealed 
RT as one of six features correlating with survival in metastatic 
melanoma patients receiving vaccinations of autologous DC 
loaded with tumor antigens. Brody et   al. (2010) conducted 
a phase I/II trial for the combination of low-dose RT with 
intratumoral injection of a DC-activating TLR9 agonist in 
15 patients with low-grade B cell lymphoma and reported 
one complete and three partial responses. Finally, Dohnal 
et   al. (2007) demonstrated safety and feasibility of an 
autologous tumor-lysate-loaded DC therapy approach in 
combination with RT in pediatric sarcoma patients.   

 The era of combination therapy  –  hurdles to be 
taken in the future 

 In the fi nal section we want to highlight the main chal-
lenges that have to be addressed in the future to exploit 
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combinatorial treatment strategy has to take into account 
limitations of each technique. As an example, optical fl uo-
rescence or bioluminescence imaging off ers high sensitivity, 
but shows poor penetration in deep tissues, which limits 
its clinical applicability (Liu and Li 2014). MRI on the other 
hand has high resolution and contrast while lacking sen-
sitivity (Akins and Dubey 2008, Liu and Li 2014). Positron 
emission tomography (PET) again off ers high sensitivity as 
well as deep penetration, but suff ers from a short half-life 
of labeling radioisotopes (Liu and Li 2014). Furthermore, 
powerful combination treatments most likely induce strong 
infl ammatory responses resulting in temporary tissue 
swelling which can be hard to distinguish from persistent 
disease if imaging techniques lack high resolution, contrast 
or sensitivity (Kalbasi et   al. 2013). Taken together, the track-
ing of tumor-immune system interactions on cellular level 
remains challenging, especially in a clinical setting. 

 Based on the extensive number of advantages that both 
RT and CIT treatment strategies off er, it seems obvious why 
there is growing interest in fi nding the right design of com-
bining these two approaches. As outlined, each individual 
therapy concept struggles with establishing potent and 
long-lasting tumor rejection in a large number of patients 
(Fishman 2014, Kelderman et   al. 2014, Raval et   al. 2014). Th e 
devil seems to lie in the details of overcoming the tumor ’ s 
ability to suppress and manipulate the immune system in 
order to maintain a state of immune evasion. Th e manifold 
pathways through which RT has now been shown to inter-
act with immunological mechanisms provide a particularly 
strong rationale as to why these two forces might represent 
specifi cally powerful allies in the ongoing war on cancer.    
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