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Abstract: The calcium sensitiser levosimendan, which is used as an inodilator to treat decompensated
heart failure, may also exhibit anti-inflammatory properties. We examined whether treatment with
levosimendan improves cardiopulmonary function and is substantially beneficial to the inflammatory
response in acute respiratory response syndrome (ARDS). Levosimendan was administered intra-
venously in a new experimental porcine model of ARDS. For comparison, we used milrinone, another
well-known inotropic agent. Our results demonstrated that levosimendan intravenously improved
hemodynamics and lung function in a porcine ARDS model. Significant beneficial alterations in the
inflammatory response and lung injury were not detected.

Keywords: ARDS; intensive medicine; levosimendan; milrinone; animal model

1. Introduction

Acute respiratory distress syndrome (ARDS) is an intensive care disease, which is
associated with a mortality of around 40% due to its possible fulminant course [1]. Pneu-
monia and sepsis are considered common causes of ARDS. Pathophysiologically, ARDS
is a generalised inflammatory reaction of the lungs [2], which leads to damage to the
alveolocapillary unit and consecutively to massive permeability oedema. These patholog-
ical changes result in ARDS-typical changes, such as the development of atelectasis and
dystelectasis, interalveolar oedema, the formation of a fibrotic thickened alveolocapillary
membrane, and an increase in the intrapulmonary shunt [2]. The result is a decrease in
pulmonary compliance, and consecutive gas exchange impairment occurs. Due to the pro-
nounced hypoxaemia, invasive lung-protective ventilation is often required [3]. Moderate
hypercapnia can be tolerated. Supportive therapy regimes, such as the prone position,
are associated with improved oxygenation and survival [2]. Due to the pathophysiology
of pulmonary inflammation, various drug approaches for the treatment of ARDS were
investigated [4,5], but none of the approaches examined demonstrated beneficial results. In
particular, protection of the right heart to prevent pulmonary hypertension plays a key role
in supportive therapy regimes and influences outcomes [6].

A new approach for affecting immunomodulation within ARDS is inhaled levosimen-
dan [7]. Levosimendan is approved for the treatment of acute decompensated chronic
heart failure. First, levosimendan affects calcium sensitivity of the contractile apparatus of
cardiac troponin C and improves inotropy without interfering with the calcium metabolism
or increasing myocardial oxygen consumption. Second, levosimendan interacts with
ATP-dependent potassium channels in smooth muscle cells and causes peripheral vasodi-
lation with a corresponding reduction in the afterload [8]. The first results showed that
inhaled levosimendan reduced the release of pro-inflammatory cytokines in a rodent sepsis
model [7]. Likewise, the prophylactic inhalation of levosimendan reduced the release of
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inflammatory mediators and improved survival in a ventilator-induced lung injury (VILI)
model [9]. Hence, beyond the haemodynamic aspects, a direct anti-inflammatory effect of
levosimendan seems possible. Reducing the inflammatory response and improving right
cardiac function are two major issues for patient survival in ARDS. Therefore, we sought to
further explore these observations in a translational large animal model. We hypothesised
that in a porcine model of severe ARDS levosimendan would (1) intravenously improve
hemodynamic and pulmonary function, and (2) mitigate the inflammatory response and
lung injury directly and not because of pure haemodynamic stabilisation. For comparison,
a control/vehicle group was applied as well as milrinone, a phosphodiesterase-3 (PDE-3) inhibitor,
to account for the inodilation-related haemodynamic effects with an alternative mechanism.

2. Materials and Methods

After approval by the institutional and state animal care committees (Landesun-
tersuchungsamt Rheinland-Pfalz, Koblenz, Germany; approval number G18-1-044), we
performed this prospective randomised animal study in accordance with the international
guidelines for the care and use of laboratory animals [10].

2.1. Anaesthesia and Instrumentation

Twenty healthy male pigs (sus scrofa domestica, mean weight: 31.2 ± 1.2 kg) were
sedated with an intramuscular injection of azaperon (4 mg kg−1) and ketamine (2 mg kg−1)
and delivered by a local breeder. An ear vein was cannulated and general anaesthesia
was induced and maintained by intravenous administration of propofol (Fresenius Kabi,
Bad Homburg, Germany; 4 mg kg−1 followed by 8–12 mg kg−1 h−1) and fentanyl (Janssen-
Cilag, Neuss, Germany; 4 µg kg−1 followed by 0.1–0.2 mg h−1). A single dose of atracurium
(HEXAL AG, Holzkirchen, Germany; 0.5 mg kg−1) was applied, and endotracheal in-
tubation was performed. Pressure-controlled ventilation was initiated: tidal volume
6 mL kg−1, positive end-expiratory pressure (PEEP) 5 cm H2O, an inspiration to expi-
ration ratio of 1:2, fraction of inspired oxygen (FiO2) 0.4 and respiratory rate between
25 and 35 per minute to achieve normocapnia. Haemodynamic monitoring was established
with an ultrasound-guided Seldinger technique: a pulmonary artery catheter, an arterial line
for blood pressure monitoring and repetitive blood gas analysis, a central venous line and
a pulse contour cardiac output catheter (PiCCO, Pulsion Medical, Munich, Germany) were
placed via the femoral vessels, as previously described [11]. All the animals received
a background infusion of balanced electrolyte solution (Sterofundin, B. Braun, Melsungen,
Germany, 5 mL kg−1 h−1). All haemodynamic and ventilation data were continuously
recorded (Datex S/5, GE Healthcare, Solingen, Germany). Normothermia was maintained
by body surface warming.

2.2. Extended Respiratory Monitoring

The end-expiratory lung volume was determined semi-automatically through the
Engström Carestation using the nitrogen wash-out/wash-in method with a FiO2 change of
0.1 as described by Olegard and co-workers [12]. The development of pulmonary oedema
was assessed by the transpulmonary thermodilution-derived extravascular lung water
index (EVLWI (ml kg−1); PiCCO, Pulsion Medical, Munich, Germany) and the post-mortem
wet/dry ratio (W/D). The alveolar fluid clearance (AFC (%)) was calculated as reported
by Hartmann et al., using the amount of non-recovered lavage fluid as the reference:
(EVLWBaseline (mL)–EVLW8h (mL)) × 100/non-recovered lavage fluid (mL) [13]. To
analyse the regional ventilation distribution, we used an electrical impedance tomography
device (Goe-MF II, CareFusion, San Diego, CA, USA) that records thoracic impedance
variations associated with tidal ventilation. The electrodes were placed on a transverse
lung section just below the axilla. The regional ventilation distribution was examined
for the non-dependent, central and dependent lung regions (named levels L1–L3) as
a percentage of the global tidal amplitude [14].
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2.3. ARDS Induction

Following instrumentation, the baseline parameters were assessed at a healthy state.
Afterward, ARDS was induced by a double-hit [11]. First, repeated bronchoalveolar lavage
over the endotracheal tube with a 30 mL kg−1 heated isotonic solution was performed.
The endotracheal tube was clamped in inspiration, and the lavage set was connected and
immediately instilled and drained by gravity. The lavage procedures were repeated until
a ratio of arterial partial pressure of oxygen (PaO2) and FiO2 ≤ 250 mmHg was achieved.
The amount of instilled and drained fluid was recorded. Second, oleic acid (0.1 mL kg−1)
was given intravenously. The oleic acid (Ölsäure, Applichem GmbH Darmstadt, Germany)
was dissolved in a balanced electrolyte solution in a ratio of 1:10 and then applied in
fractions of 1–2 mL over 30 min. Short-term hemodynamic instability, which regularly
occurs immediately after injection, was treated by norepinephrine boli of 5–10 µg. The
procedure was continued until the quotient of arterial PaO2 and FiO2 was <100 mmHg over
15 min or until a dose maximum of 0.3 mL kg−1 was administered. This was followed by
a stabilisation phase of 15 min. Afterward, all parameters for the time point T0 were assessed.

2.4. Study Protocol and Measured Parameters

After ARDS induction and stabilisation, randomisation of the study medication to
one of three groups was performed by blinded observers using a random generator, same-
coloured perfusion syringes and from the study assistant programmed hidden running rates.

• Levosimendan (Simdax, Orion Pharma, Espoo, Finland; Bolus 24 µg kg−1 over 20 min,
followed by 0.3 µg kg−1 min) intravenous;

• Milrinone (Sanofi Aventis GmbH, Wien, Austria; Bolus 25 µg kg−1 over 10 min,
followed by 0.6 µg kg−1 min) intravenous;

• Vehicle group (Glucose 5%, B. Braun Melsungen AG, Melsungen, Germany),
5.0 mL/h intravenous.

Figure 1 summarises the experimental protocol.
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Figure 1. Experimental flowchart. EIT: electrical impedance tomography. ARDS: acute respiratory
distress syndrome. Tx: timepoint.

The animals were monitored for eight hours after ARDS induction. The ventila-
tion and extended hemodynamic parameters were recorded continuously (Datex S/5, GE
Healthcare, Solingen, Germany). Blood gas samples (Rapidlab 248, Bayer Healthcare,
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Oststeinbek, Germany) were collected every hour to adjust the ventilation, based on the
ARDS low PEEP table to achieve a PaO2 between 60–120 mmHg and peripheral capillary
oxygen saturation (SpO2) above 92%. To maintain hemodynamic stability (mean arterial
pressure > 60 mmHg) and to avoid instability, the animals were treated by continuous
central venous noradrenaline infusion. The hematological parameters were determined at
baseline, T4, and T8. The plasma levels of TNF-alpha, interleukin-6 (IL-6), and the soluble
receptor for advanced glycation (sRAGE) were determined by quantifying enzyme-linked
immunosorbent assays (Porcine IL-6 Quantikine ELISA, Porcine TNF-alpha Quantikine
ELISA, Porcine sRAGE Quantikine ELISA, R&D Systems, Wiesbaden, Germany) accord-
ing to the manufacturer’s instructions. At the end of the experiment, the animals were
euthanised under general anesthesia by central venous injection of propofol (200 mg) and
potassium chloride (40 mval).

2.5. Histopathological Parameters

After the experiment, the lungs were ventilated with the previous ventilatory settings
until they were removed en bloc from the chest. A bloating manoeuvre was omitted.
The post-mortem pulmonary expressions of inflammatory markers (IL-6, IL-1b, COX-2,
iNOS, and TNF-alpha) were determined in cryopreserved lung samples from the right
lower lobe for mRNA analysis by real-time polymerase chain reaction (rt-PCR; Lightcycler
480 PCR System; Roche Applied Science, Penzberg, Germany.) The mRNA expression was
normalised to peptidylprolyl isomerase A. The right ventral upper and lower lobes were
evaluated for histological evidence of pulmonary damage. Hence, the lung samples were
fixed in formalin for paraffin embedding and stained using haematoxylin/eosin dye. To
determine the lung damage, we used a standardised scoring system, as described in detail
by our group previously [14]. The exsanguinated left lung was weighed, sliced, and dried
for determination of the wet-to-dry ratio.

2.6. Statistics

All parameters are presented as mean and standard deviation (±SD) or displayed
as error bars and multiple scatter lines. The analysis focuses on the relevant time points
at baseline, T0, T4, and T8. The group effects over time (levosimendan vs. milrinone
vs. vehicle) were compared by two-way analysis of variance (ANOVA) with a post-hoc
Student–Newman–Keuls test. The secondary outcome parameters (i.e., wet-to-dry/ratio
and AFC) were compared by the Kruskall–Wallis test. A p-value lower than 0.05 was
accepted as significant. The software package SigmaPlot 12.5 (Systat Software, San Jose,
CA, USA) was used.

3. Results

The study protocol was completed in all 20 animals (weight: 31.2 ± 1.2 kg; levosi-
mendan n = 8, milrinone n = 8, vehicle n = 4). During the ARDS induction, no adverse
events occurred. The hemodynamic and respiratory parameters did not differ at baseline.
After ARDS induction, the PaO2/FiO2 ratio significantly decreased in all groups at T0
(p < 0.05). Afterward, the PaO2/FiO2 ratio significantly increased in the animals treated
with levosimendan (p < 0.05 vs. milrinone/vehicle; Figure 2). There is a rapid decrease of
the effect, similar to that seen with milrinone or vehicle.

Further, the minute ventilation showed a steady significant rise in all groups over
time (p < 0.05; Table 1). At T8, the animals in the vehicle group required higher minute
ventilation compared to the levosimendan group (p < 0.031; Table 1). The functional residual
capacity decreased significantly after the ARDS induction compared to the baseline in all
groups without any further intergroup differences over eight hours (p < 0.05; Table 1).
The EVLWI remained significantly elevated after ARDS induction in all groups over the
experiment’s duration without any intergroup differences (p < 0.05; Table 2). All other
respiratory parameters showed no relevant alterations (Table 1).
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Figure 2. PaO2/FiO2 ratio. * indicates p < 0.05 BLH vs. T0 for all groups. # indicates p < 0.05
levosimendan vs. milrinone T1–T6. h: hours. PaO2: partial pressure of oxygen. FiO2: fraction of
inspired oxygen. BLH: baseline healthy. Tx: timepoint.

Table 1. Respiratory data over time. Values are mean (SD). * indicates p < 0.05 vs. baseline value.
# indicates p < 0.05 in intergroup comparison. SpO2: oxygen saturation; AaDO2: alveolo–arterial
oxygen difference; PaO2: arterial oxygen; FiO2: fraction of inspired oxygen; PaO2/FiO2: oxygen index;
FRC: fraction of inspired oxygen; MV: minute volume; TV: tidal volume; Ppeak: peak inspiratory
pressure; Pmean: mean airway pressure; PEEP: positive end-expiratory pressure. BLH: baseline healthy.

Parameter Group BLH T0 T4 T8

MEAN (SD) MEAN (SD) MEAN (SD) MEAN (SD)

Levosimendan 99 (1) 89 (6) 96 (3) 95 (5)
SpO2 Milrinone 98 (3) 76 (17) 98 (2) 97 (1)
(%) Vehicle 96 (3) 84 (6) 97 (1) 96 (1)

Levosimendan 0.4 (0.0) 1.0 (0.0) 0.55 (0.1) 0.5 (0.1)
FiO2 Milrinone 0.4 (0.0) 1.0 (0.0) 0.54 (0.1) 0.49 (0.1)
(%) Vehicle 0.4 (0.0) 1.0 (0.0.) 0.53 (0.1) 0.5 (0.1)

Levosimendan 498 (88) # 73 (31) #/* 267 (108) # 211 (91)
PaO2/FiO2 Milrinone 472 (110) 60 (22) * 217 (63) 180 (58)

(mmHg) Vehicle 367 (74) 76 (41) * 225 (62) 212 (91)
Levosimendan 34 (33) 572 (28) 197 (80) 203 (108)

AaDO2 Milrinone 47 (39) 546 (55) 218 (77) 225 (72)
(mmHg) Vehicle 85 (29) 487 (204) 201 (53) 197 (61)

Levosimendan 637 (157) 265 (79) * 404 (126) 413 (91)
FRC Milrinone 539 (126) 259 (262) * 393 (87) 356 (130)
(ml) Vehicle 535 (63) 222 (92) * 378 (73) 375 (70)

Levosimendan 5.7 (1.1) 5.7 (0.6) 6.7 (0.5) * 6.6 (0.5) *
MV Milrinone 5.8 (1.0) 5.4 (1.3) 7.3 (1.0) * 7.5 (1.0) *

(l min−1) Vehicle 6.7 (0.6) 7.1 (0.5) # 7.8 (1.4) 8.1 (1.4) */#
Levosimendan 5.5 (0.4) 5.6 (0.5) 5.5 (0.4) 5.4 (0.4)

TV Milrinone 5.7 (0.6) 5.2 (1.4) 5.9 (0.6) 5.9 (0.4)
(ml kg−1) Vehicle 6.0 (0.4) 6.2 (0.2) 6.0 (0.3) 6.1 (0.3)

Levosimendan 15 (2) 25 (5) 25 (5) 24 (6)
Ppeak Milrinone 16 (2) 30 (7) 26 (3) 25 (3)
(mbar) Vehicle 15 (1) 28 (5) 25 (4) 24 (4)

Levosimendan 7.7 (0.4) 11.1 (1.8) 14.1 (3.2) 13.2 (3.4)
Pmean Milrinone 8.0 (0.5) 15.6 (6.0) 14.5 (2.1) 12.7 (2.3)
(mbar) Vehicle 8.0 (0.0) 13.5 (2.6) 13.5 (3.1) 12.2 (3.2)

Levosimendan 5 (0) 10 (3) 9 (3) 8 (2)
PEEP Milrinone 5 (0) 10 (6) 9 (2) 7 (2)

(cm H2O) Vehicle 5 (0) 10 (2) 7 (3) 7 (2)
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Table 2. Hemodynamic data over time. Values are mean (SD). * indicates p < 0.05 vs. baseline value.
# indicates p < 0.05 in intergroup comparison. MAP: mean arterial pressure; HR: heart rate; mPAP:
mean arterial pulmonary pressure; CO: cardiac output; PCWP: pulmonary capillary wedge pressure;
GEDVI: global endiastolic volumen index; EVLWI: end-diastolic lung water index; CVP: central
venous pressure; ScO2: cerebral oxygen saturation. BLH: baseline healthy.

Parameter Group BLH T0 T4 T8

MEAN (SD) MEAN (SD) MEAN (SD) MEAN (SD)

Levosimendan 67 (6) 74 (11) 70 (10) 64 (10)
MAP Milrinone 67 (8) 73 (14) 69 (7) 66 (6)

(mmHg) Vehicle 73 (4) 78 (8) 70 (9) 70 (7)
Levosimendan 79 (14) 110 (32) 119 (43) * 112 (46)

HR Milrinone 80 (14) 113 (30) 125 (44) 130 (44) *
(min−1) Vehicle 101 (16) 104 (33) 119 (22) 103 (21)

Levosimendan 19 (3) 31 (4) #/* 21 (6) # 20 (6) #
mPAP Milrinone 22 (6) 34 (5) #/* 26 (5) # 24 (8) #

(mmHg) Vehicle 20 (3) 32 (2) * 25 (4) 23 (4)
Levosimendan 7 (3) 6 (3) 6 (3) 6 (3)

CVP Milrinone 7 (3) 7 (2) 7 (2) 7 (2)
(mmHg) Vehicle 6 (1) 5 (2) 5 (1) 5 (1)

Levosimendan 3.3 (0.7) 3.0 (0.8) 3.3 (1.2) 3.7 (1.3)
CO Milrinone 3.4 (0.9) 3.7 (0.9) 3.2 (0.5) 4.3 (0.8)

(l min−1) Vehicle 4.6 (0.8) 3.9 (1.0) 3.2 (0.2) 3.5 (0.2)
Levosimendan 9 (3) 8 (2) 8 (2) 8 (4)

PCWP Milrinone 10 (2) 10 (2) 10 (1) 9 (2)
(mmHg) Vehicle 9 (1) 9 (1) 8 (1) 8 (1)

Levosimendan 425 (117) 440 (149) 409 (87) 439 (104)
GEDVI Milrinone 468 (168) 453 (79) 399 (55) 432 (66)

(mL m−2) Vehicle 464 (108) 484 (115) 400 (45) 418 (68)
Levosimendan 10.3 (1.3) 20.8 (7.4) * 18.3 (3.6) * 18.5 (4.9) *

EVLWI Milrinone 11.5 (2.5) 23.1 (5.5) * 18.2 (3.5) * 18.2 (3.7) *
(mL kg−1) Vehicle 11.2 (0.9) 21.2 (5.7) * 18.0 (3.1) * 16.7 (4.5) *

Levosimendan 51 (8) 36 (10) 53 (8) 58 (4)
ScO2 Milrinone 50 (11) 32 (12) 54 (11) 60 (10)
(%) Vehicle 48 (6) 35 (5) 53 (9) 51 (2)

A significant increase in the mean pulmonary arterial pressure following ARDS induc-
tion was observed in all groups compared to the baseline (p < 0.05; Figure 3). The mean
pulmonary arterial pressure remained significantly lower in the levosimendan group for
the rest of the experiment (p < 0.001 levosimendan vs. milrinone; p < 0.05 levosimendan vs.
vehicle; Figure 3).
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 Levosimendan 7 (3) 6 (3) 6 (3) 6 (3) 

CVP Milrinone 7 (3) 7 (2) 7 (2) 7 (2) 

(mmHg) Vehicle 6 (1) 5 (2) 5 (1) 5 (1) 
 Levosimendan 3.3 (0.7) 3.0 (0.8) 3.3 (1.2) 3.7 (1.3) 

CO Milrinone 3.4 (0.9) 3.7 (0.9) 3.2 (0.5) 4.3 (0.8) 

(l min−1) Vehicle 4.6 (0.8) 3.9 (1.0) 3.2 (0.2) 3.5 (0.2) 
 Levosimendan 9 (3) 8 (2) 8 (2) 8 (4) 

PCWP Milrinone 10 (2) 10 (2) 10 (1) 9 (2) 

(mmHg) Vehicle 9 (1) 9 (1) 8 (1) 8 (1) 
 Levosimendan 425 (117) 440 (149) 409 (87) 439 (104) 

GEDVI Milrinone 468 (168) 453 (79) 399 (55) 432 (66) 

(mL m−2) Vehicle 464 (108) 484 (115) 400 (45) 418 (68) 
 Levosimendan 10.3 (1.3) 20.8 (7.4) * 18.3 (3.6) * 18.5 (4.9) * 

EVLWI Milrinone 11.5 (2.5) 23.1 (5.5) * 18.2 (3.5) * 18.2 (3.7) * 

(mL kg−1) Vehicle 11.2 (0.9) 21.2 (5.7) * 18.0 (3.1) * 16.7 (4.5) * 

Figure 3. mPAP. * indicates p < 0.05 BLH vs. T0 for all groups. # indicates p < 0.001 levosimendan vs.
milrinone. + indicates p < 0.05 levosimendan vs. vehicle. mPAP: mean pulmonary arterial pressure.
BLH: baseline healthy. Tx: timepoint. h: hours.
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Further hemodynamic parameters showed no relevant differences (Table 2). The concen-
tration of C-reactive protein increased noticeably more in the vehicle and milrinone groups
compared to the levosimendan group without reaching a level of significance (Table 3).

Table 3. Laboratory diagnostics. Values are mean (SD). BLH: baseline healthy; CRP: C-reactive protein.

Parameter Group BLH T4 T8

MEAN (SD) MEAN (SD) MEAN (SD)

Levosimendan 10.5 (5.9) 14.3 (13.4) 12.7 (6.5)
Leucocytes Milrinone 12.5 (4.4) 10.2 (6.4) 12.4 (6.7)

(g/L) Vehicle 12.9 (5.2) 15.6 (5.7) 12.2 (3.4)
Levosimendan 8.3 (0.8) 9.4 (1.3) 9.1 (0.6)

Haemoglobin Milrinone 9.2 (1.1) 10.4 (0.9) 9.1 (0.9)
(g/dL) Vehicle 9.8 (0.7) 10.8 (1.1) 9.8 (0.8)

Levosimendan 376 (65) 270 (68) 244 (60)
Thrombocytes Milrinone 329 (112) 272 (67) 276 (61)

(1000/µL) Vehicle 395 (76) 303 (92) 295 (79)
Levosimendan 0.26 (0.1) 0.31 (0.18) 0.34 (0.16)

CRP Milrinone 0.28 (0.15) 0.38 (0.19) 0.58 (0.16)
(mg dL−1) Vehicle 0.33 (0.15) 0.76 (0.14) 0.91 (0.22)

Levosimendan 0.82 (0.20) 0.9 (0.14) 0.97 (0.14)
Creatinine Milrinone 0.81 (0.29) 0.80 (0.20) 0.98 (0.24)
(mg dL−1) Vehicle 0.85 (0.19) 0.9 (0.24) 0.9 (0.23)

Levosimendan 8 (2) 10 (2) 12 (3)
Urea Milrinone 5 (3) 8 (2) 11 (1)

(mg dL−1) Vehicle 6 (4) 7 (3) 9 (2)
Levosimendan 1351 (7230) 1416 (3629) 114 (2286)

Creatine kinase Milrinone 1257 (2160) 2118 (1217) 1882 (1032)
(U L−1) Vehicle 1468 (1138) 1008 (779) 936 (657)

The blood gas analyses showed no relevant differences (Table 4). At baseline, the
inflammatory markers in the plasma showed no differences. Levosimendan tended to
suppress the sRAGE and IL-6 plasma levels more than milrinone or vehicle over eight hours
(p = 0.055 for intergroup comparisons; Figure 4). The IL-6 levels increased significantly in
all groups compared to the baseline levels (Figure 4).

Table 4. Blood gas analysis. Values are mean (SD). BE: base excess; PaCO2: arterial carbon dioxide;
BLH: baseline healthy. # indicates p < 0.05 in intergroup comparison.

Parameter Group BLH T0 T4 T8

MEAN (SD) MEAN (SD) MEAN (SD) MEAN (SD)

Levosimendan 7.46 (0.06) 7.36 (0.09) 7.47 (0.08) 7.45 (0.09)
pH Milrinone 7.48 (0.07) 7.28 (0.08) 7.47 (0.06) 7.47 (0.06)

Vehicle 7.45 (0.03) 7.36 (0.09) 7.48 (0.05) 7.49 (0.04)
Levosimendan 5.9 (2.8) 3.9 (3.2) 7.2 (3.2) # 6.4 (2.8)

BE Milrinone 5.5 (2.1) 2.1 (1.7) 5.6 (2.9) 5.9 (2.7)
(mmol
mL−1) Vehicle 5.0 (2.6) 2.4 (3.4) 6.8 (2.4) 7.5 (1.5)

Levosimendan 42 (4) 53 (10) 43 (5) 45 (10)
PaCO2 Milrinone 39 (6) 64 (18) 41 (5) 40 (8)

(mmHg) Vehicle 41 (1) 51 (9) 40 (3) 40 (4)
Levosimendan 3.5 (0.3) 3.9 (0.5) 4.7 (0.3) 4.5 (0.5)

Potassium Milrinone 3.4 (0.4) 3.8 (0.4) 4.9 (0.6) 4.4 (0.4)
(mmol L−1) Vehicle 3.4 (0.3) 3.6 (0.2) 4.6 (0.6) 4.3 (0.5)

Levosimendan 2.2. (1.4) 1.9 (0.7) 1.0 (0.2) 1.8 (2.1)
Lactate Milrinone 1.6 (1.2) 2.0 (0.8) 1.6 (1.5) 1.4 (1.3)

(mmol L−1) Vehicle 2.2 (2.1) 1.9 (0.4) 0.9 (0.3) 0.7 (0.2)
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Figure 4. Blood sample analysis of inflammatory markers. * indicates p < 0.01 sham/milrinone/levosimendan
for IL-6 for T4/T8 vs. BLH. sRAGE: soluble receptor for advanced glycation; IL-6: Interleukin-6. BLH:
baseline healthy. Tx: timepoint.

The pulmonary tissue mRNA expression revealed a significant upregulation of COX-2
(p < 0.05 levosimendan vs. milrinone; Figure 5).
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Figure 5. Tissue sample analyses. Inflammatory marker expressions of COX-2, IL-6, IL-1b, INOS,
TNF-alpha. * indicates p < 0.05 levosimendan vs. milrinone for COX-2. • statistical outliers. COX-2:
Cyclooxygenase-2. IL-6: Interleukin-6. IL-1b: Interleukin-1b. INOS: Inducible nitric oxide synthase.

The regional distribution of ventilation did not differ between the groups. Lung injury
scoring showed no relevant intergroup differences. The alveolar fluid clearance showed no
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significant changes. The tissue wet-to-dry ratio as a surrogate of oedema formation did not differ
between the groups (p > 0.05; levosimendan 6.3 ± 1.7; milrinone 7.5 ± 1.4; vehicle 6.7 ± 1.3).

4. Discussion

In this study, we investigated the effects of levosimendan administered intravenously
on hemodynamics and pulmonary function after experimental ARDS induction. Further,
we examined the inflammatory response and lung injury.

The chosen new double-hit ARDS model is highly reproducible and suitable [11].
Combining the oleic acid infusion and bronchoalveolar lavage mimics the main pathophys-
iological changes seen in human ARDS [11], resulting in a severe and persistent impaired
gas exchange over eight hours. As reported, mean pulmonary arterial pressure initially
increased due to ARDS. This common phenomenon with right heart strain and failure is
similar to human ARDS [6,15].

Levosimendan, an inotropic agent, is effective for hemodynamic stabilisation of pa-
tients with acute heart failure [16]. Levosimendan improves inotropy and causes peripheral
vasodilation with a corresponding reduction in afterload [8]. Several studies have indicated
that levosimendan administration has immunomodulatory effects, even when adminis-
tered by inhalation [9,17,18]. Most studies administer the drug as preconditioning, which
is unrealistic in clinical practice, as levosimendan is not indicated in the early disease
stage [19]. Furthermore, in pulmonary edema, pulmonary hypertension, and atelectasis, it
remains unclear what proportion of the drug reaches the alveolar space and lung tissue
when inhaled [9]. For this reason, we administered levosimendan intravenously in early
ARDS. Once administered, we observed an initial decrease in cardiac output followed by
a steady increase. Further, no cardiac output undulations, as seen in the milrinone group,
were recorded. Theoretically, cardiac output improvement contributes to the downregula-
tion of inflammatory transcriptional factors such as NF-κB [20]. As a result, the production
of cytokines is inhibited. Further, activation of the ATP-dependent potassium channels in
the mitochondrion of damaged endothelial cells attenuates the activity of NF-κB [21]. At-
tenuated NF-κB activity reduces the expression of tissue factor and plasminogen-activator-
inhibitor-1 in damaged endothelial cells [21,22]. This anti-thrombotic and pro-fibrinolytic
environment prevents pulmonary microvascular obstruction, a common cause of right
heart failure in human ARDS. NF-κB is a key activator of IL-6 and sRAGE production.
In our study, IL-6 levels remained lower over the whole trial in the levosimendan group.
It is conceivable that levosimendan interacts with the known NF-κB-IL-6 pathway and
inhibits the release of pro-inflammatory cytokines. This could also explain the depressed
levels of sRAGE. sRAGE is a multiligand cell surface receptor from the immunoglobulin
superfamily, with the highest concentrations found in lung tissue [23]. sRAGE plays a key
role in ARDS pathology and the development of organ dysfunction [24,25]. Peak concen-
trations of sRAGE are found in the first days after lung injury. However, it remains unclear
if sRAGE is a simple biomarker or a causal factor in lung injury [23]. There is evidence of
two activation triggers of sRAGE. First, injury to lung parenchyma caused distortion of
the alveolar cells as part of a VILI [26]. In the present study, this part of the activation was
excluded under consideration of lung-protective ventilation without intergroup differences.
Second, sRAGE can be produced from alveolar type I cells after inflammatory activation of
the NF-κB pathway [27,28]. This is also of concern, considering IL-6 as another important
biomolecule in ARDS pathology. IL-6 plays a key role at the onset and progression of ARDS
and can contribute to multiple organ dysfunction syndrome [29,30]. In recent years, IL-6
has become a target of interest for clinical intervention due to its context-dependent pro-
and anti-inflammatory properties [31]. The pathway for controlling IL-6 activity is difficult
and complex. In many diseases, even in new-onset COVID-19 ARDS, persistent elevation
of IL-6 predicts a poor outcome [31,32]. One key activator of the IL-6 pathway is based on
the upregulation of NF-κB, as already described above for sRAGE activation [33].

The calcium-sensitising effect of levosimendan reduces the intracellular concentration
of free calcium molecules. It is reported that calcium overload in heart cells induces



Biomedicines 2022, 10, 1031 11 of 14

apoptotic and inflammatory pathways [34]. This correlates with decreased heart function.
Further, levosimendan protects endothelial cells from death. In human heart microvascular
endothelial cells treated with levosimendan, the intercellular adhesion molecule 1 (ICAM-1)
is almost entirely suppressed [21]. ICAM-1 is responsible for the binding and extravasation
of granulocytes, which result in the formation of pulmonary oedema and local inflammation.
In our study, the wet-to-dry ratio and the reinforced alveolar fluid clearance capacity as
surrogate parameters of local edema and inflammation showed no beneficial effects in the
levosimendan group.

Milrinone is a phosphodiesterase-3 inhibitor that enhances cardiac contractility by in-
creasing the levels of intracellular cyclic adenosine monophosphate (cAMP) [35]. cAMP was
considered to have general anti-inflammatory properties [36,37]. Further, milrinone modu-
lates and attenuates the systemic release of cytokines after cardiopulmonary bypass within
24 h [35]. Less evidence and conflicting reports exist compared to the anti-inflammatory
effects of levosimendan. The effects of the two inotropic agents on cardiac inflammation
and left ventricular performance were examined in mice with caecal ligation and puncture-
induced sepsis [38]. Cardiac inflammation decreased in the levosimendan group and
increased in the milrinone group. Further, inotropy was impaired in the mice when treated
with levosimendan and preserved in the milrinone group. Both agents alleviated cardiac
injury. Similar findings were detected in our study (i.e., reduced systemic inflammation
and improved cardiopulmonary function), thus supporting the different advantages of
levosimendan. However, it is critical to note that it is unclear to what extent levosimendan
or its metabolites are involved in these positive phenomena. The half-life of levosimendan
is one hour [39]. OR-1896 is one active metabolite of levosimendan with a half-life of
approximately 70 h [39]. Different previous studies reported similar hemodynamic and
inflammatory effects, even after a single bolus of levosimendan [7]. We may hypothesise
that OR-1896 could also potentially account for the effectiveness after the infusion of levosi-
mendan as observed in our trial. Actually, there are no data in the literature supporting
this theory.

The pulmonary tissue markers of inflammation were elevated or preserved in the ani-
mals treated with levosimendan. In particular, cyclooxygenase-2 (COX-2) was significantly
elevated compared to the milrinone group. COX-2 is an enzyme from the arachidonic
acid metabolic pathway and produces different prostaglandins. Prostaglandins sustain
homeostatic functions and mediate pathogenic mechanisms, especially inflammatory and
anti-inflammatory responses [40]. COX-2 is highly expressed in the airway epithelium [41].
It is well known that COX-2 is upregulated early (at 2 h) at sites of acute inflammation [42].
These anti-inflammatory responsive elements were shown to regulate the expression of
detoxification and antioxidant enzymes via NF-E2–related factor 2 (Nrf2) [42]. In mouse
models, Nrf2 was shown to play an essential role in protection against acute lung in-
flammation and damage induced by a number of stimuli [43]. It was demonstrated that
prostaglandins from COX-2 directly activate Nrf2 [44]. Cytokines and hypoxia are known
to stimulate COX-2 expression [45,46]. Interactions with levosimendan or milrinone have
not yet been described. It remains unclear if the COX-2 expression in our study was signifi-
cantly elevated due to the aforementioned anti-inflammatory response effects or despite
direct interactions with levosimendan. Further investigations are needed to understand
this phenomenon.

Our study has some limitations. It was difficult to determine the extent to which
lung injury is caused by lavage, oleic acid, or both. This is common to other combined
animal models. Therefore, it is important to have a study protocol with predefined target
values (e.g., PaO2/FiO2 ratio). Dysregulated inflammation, as measured in our study,
is widely known as a major part of the progress of various diseases. The significance
of changes in pro- and anti-inflammatory cytokines in animals remains unclear when
translated to humans. Further human studies will be necessary to clarify this. Due to local
conditions, we were not allowed to extend the experiment’s duration. The study therefore
only represents pathological changes in early-stage ARDS. Late changes in the pathology
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were not recorded. Many hospital patients will not be seen in such an early stage of the
disease. Further studies will be needed to analyse late-stage ARDS. To distinguish between
the effects of levosimendan or its metabolite OR-1896, the measurement of the effectiveness
of plasma concentrations of both compounds should be performed.

5. Conclusions

To summarise the present study and in reference to our hypothesis, we demonstrated
that (1) levosimendan intravenously improved hemodynamics and lung function in early
porcine ARDS. Thereby, (2) significant beneficial alterations in the inflammatory response
and lung injury were not fully conclusive. The potential beneficial immunomodulatory
effects of levosimendan in the ARDS need to be investigated more closely.
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